JPS6121197B2 - - Google Patents

Info

Publication number
JPS6121197B2
JPS6121197B2 JP12127979A JP12127979A JPS6121197B2 JP S6121197 B2 JPS6121197 B2 JP S6121197B2 JP 12127979 A JP12127979 A JP 12127979A JP 12127979 A JP12127979 A JP 12127979A JP S6121197 B2 JPS6121197 B2 JP S6121197B2
Authority
JP
Japan
Prior art keywords
silicon carbide
layer
silicon
growth
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12127979A
Other languages
Japanese (ja)
Other versions
JPS5645897A (en
Inventor
Toshiki Inooku
Takeshi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP12127979A priority Critical patent/JPS5645897A/en
Priority to DE3002671A priority patent/DE3002671C2/en
Publication of JPS5645897A publication Critical patent/JPS5645897A/en
Priority to US06/369,911 priority patent/US4582561A/en
Publication of JPS6121197B2 publication Critical patent/JPS6121197B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発は炭化珪素(SiC)結晶基板を製造する方
法に関するもので、特に珪素基板を用いて珪素の
融点以下で炭化珪素を成長させ、その後珪素基板
を熔融し、この珪素融液から上記炭化珪素裏面
(珪素融液と接している面)上に第2の炭化珪素
層を析出成長させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silicon carbide (SiC) crystal substrate, in particular, by growing silicon carbide using a silicon substrate at a temperature below the melting point of silicon, and then melting the silicon substrate. The present invention relates to a method of depositing and growing a second silicon carbide layer on the back surface of the silicon carbide (the surface in contact with the silicon melt) from a silicon melt.

炭化珪素は耐熱、耐腐蝕、耐放射線特性に優れ
硬度が大で、広禁制帯幅(結晶多形により約2.4
乃至3.3eV(電子ボルト)をもち、容易にp形及
びn形に不純物添加できるなどの利点をもつ半導
体材料であるが、工業的に半導体装置を形成する
ために十分な大きさと製造再現性をもつてウエフ
ア状の結晶を供給できなかつた為に、炭化珪素を
用いた半導体装置も試験的に製造されるにとどま
り、広く実用化するには至つていない。
Silicon carbide has excellent heat resistance, corrosion resistance, radiation resistance, high hardness, and a wide forbidden band width (approximately 2.4
It is a semiconductor material with an advantage of having a voltage of 3.3eV to 3.3eV (electron volt) and can be easily doped with p-type and n-type impurities. Since it has not been possible to supply wafer-shaped crystals, semiconductor devices using silicon carbide have only been manufactured on a trial basis, and have not been put into widespread practical use.

発明者らは先にSi基板を用いた熔融基板からの
エピタキシヤル法(以下EMS法という)を提案
した。この方法によればSiC結晶をSi基板とほぼ
同じ広さで且つ薄板状(ウエフア状)に作製でき
るので現在半導体工業に於て主流となつている所
謂プレーナー技術及びメサ技術を適用でき、炭化
珪素半導体装置の工業化に大きく貢献するもので
ある。
The inventors previously proposed an epitaxial method using a molten Si substrate (hereinafter referred to as the EMS method). According to this method, SiC crystal can be produced in a thin plate shape (wafer shape) with approximately the same width as the Si substrate, so the so-called planer technology and mesa technology, which are currently mainstream in the semiconductor industry, can be applied. This will greatly contribute to the industrialization of semiconductor devices.

本発明者らはさきにFMS法により2次SiC層を
成長させ、その後、CVD法により更に3次層を
その上に成長させる方法を提案したが本発明はこ
の方法の改良を目的とするもので、2次層成長及
び3次層成長が連続して行なえるようにするもの
である。
The present inventors previously proposed a method in which a secondary SiC layer is grown using the FMS method, and then a tertiary layer is grown thereon using the CVD method, and the present invention aims to improve this method. This allows the secondary layer growth and the tertiary layer growth to be performed continuously.

以下、本発明を実施例に従つて図面を参照しな
がら詳説する。
Hereinafter, the present invention will be explained in detail according to embodiments with reference to the drawings.

実施例 第1図に本実施例に使用される反応装置の一例
を示す。水冷式縦形二重石英反応管22内に黒鉛
製支持棒24により支持された炭化珪素被覆黒鉛
製試料台26を置き反応管22の外胴部に巻回さ
れたワークコイル28に高周破電流を流して、こ
の試料台26を誘導加熱する。反応管22の下端
はステンレス鋼製フランジ30とO−リングでシ
ールされている。フランジ30上にはガスの出口
となる継手32及び支柱台34が設けられてい
る。支柱台34に石英製の支柱36が保持され、
支柱36に上記支持棒24が継ぎ足される。出口
側の継手32には排気用管が接続され、廃ガス処
理装置(図示しない)に導かれている。反応管2
2の上端側にはガス流入口となる枝管38が設け
られ、搬出ガスが反応管22内へ供給される。試
料台26上には下地基板となる珪素基板2が載置
されている。
Example FIG. 1 shows an example of a reaction apparatus used in this example. A silicon carbide-coated graphite sample stand 26 supported by a graphite support rod 24 is placed inside a water-cooled vertical double quartz reaction tube 22, and a work coil 28 wound around the outer body of the reaction tube 22 has a high breaking current. The sample stage 26 is heated by induction. The lower end of the reaction tube 22 is sealed with a stainless steel flange 30 and an O-ring. A joint 32 serving as a gas outlet and a support stand 34 are provided on the flange 30. A pillar 36 made of quartz is held on a pillar stand 34,
The support rod 24 is attached to the support column 36. An exhaust pipe is connected to the joint 32 on the outlet side and led to a waste gas treatment device (not shown). Reaction tube 2
A branch pipe 38 serving as a gas inlet is provided on the upper end side of the reaction tube 22, and the discharge gas is supplied into the reaction tube 22. A silicon substrate 2 serving as a base substrate is placed on the sample stage 26 .

次に本実施例の炭化珪素成長方法について第2
図A,B,C,D,Eを参照しながら説明する。
Next, we will discuss the silicon carbide growth method of this example in the second section.
This will be explained with reference to Figures A, B, C, D, and E.

(a) 反応管22を排気して水素で置換し、公知の
塩化水素・水素混合ガスで試料台26上に載置
された(111)面を主面とする珪素基板2の表
面をエツチング除去する(第2図Aの参照)。
(a) The reaction tube 22 is evacuated and replaced with hydrogen, and the surface of the silicon substrate 2 whose main surface is the (111) plane placed on the sample stage 26 is etched away using a known hydrogen chloride/hydrogen mixed gas. (See Figure 2A).

(b) 珪素基板2の温度を珪素の融点以下の温度、
好ましくは1200乃至1300℃に設定し、一般的な
気相成長法で炭化珪素を珪素基板2上に成長さ
せる。搬送ガスにはアルゴン(Ar)ヘリウム
(He)などの稀ガス又は水素ガス(H2)が用い
られる。珪素原料としては、四塩化珪素
(SiCl4)、二塩化シラン(SiH2Cl2)シラン
(SiH4)などが、また炭素原料としては四塩化
炭素(CCl4)やプロパン(C3H8)、メタン
(CH4)をはじめとする炭化水素が用いられる。
(b) The temperature of the silicon substrate 2 is set to a temperature below the melting point of silicon,
Preferably, the temperature is set at 1200 to 1300° C., and silicon carbide is grown on silicon substrate 2 by a general vapor phase growth method. A rare gas such as argon (Ar), helium (He), or hydrogen gas (H 2 ) is used as the carrier gas. Silicon raw materials include silicon tetrachloride (SiCl 4 ), silane dichloride (SiH 2 Cl 2 ), and silane (SiH 4 ), and carbon raw materials include carbon tetrachloride (CCl 4 ) and propane (C 3 H 8 ). , methane (CH 4 ) and other hydrocarbons are used.

本実施例では流量1/分の水素ガスを搬送
ガスとし、二塩化シラン(SiH2Cl2)及び、プロ
パン(C3H8)をそれぞれの原料ガスとする。濃
度は原子比で二塩化シラン2×10-3プロパンを
4×10-3に設定し、100分間の成長で50μm厚
の多結晶SiCより成る炭化珪素1次層4を形成
した。珪素基板2の側面にも多結晶炭化珪素層
16が同時に形成される。
In this example, hydrogen gas at a flow rate of 1/min is used as the carrier gas, and silane dichloride (SiH 2 Cl 2 ) and propane (C 3 H 8 ) are used as the respective source gases. The concentration was set at an atomic ratio of silane dichloride (2×10 −3 propane) to 4×10 −3 , and a primary silicon carbide layer 4 made of polycrystalline SiC with a thickness of 50 μm was formed by growth for 100 minutes. Polycrystalline silicon carbide layer 16 is also formed on the side surface of silicon substrate 2 at the same time.

(c) 高周液電流を停止して降温し、試料台26を
とり出す。SiC1次層4を堆積させたSi基板2
をとり出し、SiC1次層4が試料台26を接す
るように裏向けにして再びもとの試料台、又は
別の試料台26上に載置し、反応管22内に入
れ、流量1/分の水素雰囲気を流す。
(c) Stop the high frequency liquid current, cool down the temperature, and take out the sample stage 26. Si substrate 2 with SiC primary layer 4 deposited
Take out the sample, place it face down on the original sample stand or another sample stand 26 so that the SiC primary layer 4 is in contact with the sample stand 26, put it into the reaction tube 22, and set the flow rate to 1/min. flowing a hydrogen atmosphere.

ワークコイル28に高周波出力を流して試料
台26の温度を1500℃程度に昇温し、珪素基板
2を熔融する。熔融後、1450℃乃至1650℃程度
の一定温度に設定してこの状態を維持する。本
実施例では試料台表面に於いて1500℃になるよ
うに設定し、1時間の成長で10μm厚の単結晶
炭化珪素2次層14を形成した。側面のSiC1
6はこのときSi融液12の流出を防止する提の
役割をする。
A high frequency output is applied to the work coil 28 to raise the temperature of the sample stage 26 to about 1500° C. and melt the silicon substrate 2. After melting, the temperature is set at a constant temperature of about 1450°C to 1650°C and this state is maintained. In this example, the temperature was set to 1500° C. on the surface of the sample stage, and a 10 μm thick single crystal silicon carbide secondary layer 14 was formed by growth for 1 hour. SiC1 on the side
6 serves as a barrier to prevent the Si melt 12 from flowing out.

(d) 高周波出力を増して約1700℃に昇温し、反応
管内圧を約100torrに減圧する。Si融液は除々
に蒸発して減小していく。反応管内圧を約
100torrに保ちながらSiH2Cl2:0.1Ncc/分、
C3H80.1Ncc/分、H2100Ncc/分流し込み100
分間で約50μm厚の高温CVD−SiC層(3次
層)15を成長させた。(第2図D参照)。
(d) Increase the high frequency output to raise the temperature to approximately 1700°C, and reduce the internal pressure of the reaction tube to approximately 100 torr. The Si melt gradually evaporates and decreases in size. The internal pressure of the reaction tube is approx.
SiH 2 Cl 2 :0.1Ncc/min while maintaining 100torr,
C 3 H 8 0.1Ncc/min, H 2 100Ncc/min pouring 100
A high-temperature CVD-SiC layer (tertiary layer) 15 with a thickness of about 50 μm was grown in minutes. (See Figure 2D).

本発明の2次層成長の機構の詳細は未だ十分に
は解明されていないがおおよそ第3図に示すよう
な機構によるものと思われる。2次層成長後
SiC1次層4は境界部が除去された繊維状のグレ
イン4′,4′の集合体となつている。従つて
SiC1次層4は堆積後は緻密な層状をなしている
が、その結晶構造は繊維状のグレインの緻密な集
合体であるものと思われる。Si基板2を熔融した
場合、この繊維状グレインの中心部は境界部に比
べて結晶完全性が比較的良好であるが、境界部は
極めて不完全であるので、この部分から優先的に
分解してSi融液12中に溶け出し、この一部が繊
維状グレインの先に析出し、液相成長して2次層
14となる。この繊維状グレインはSi基板の方位
に従つて(既述の実施例では(111)面を主面と
して堆積し、2次層14は繊維状グレイン上にエ
ピタキシヤルするので。2次層14を形成する各
グレインは方位が揃う。2次成長が進むと2次層
グレイン同志が横に広がつて結合し、層状とな
る。この場合結合したあとに(111)面使用の場
合には3角形状の孔を残すことがあるが、全面ほ
とんど単結晶状となる。
Although the details of the mechanism of secondary layer growth in the present invention have not yet been fully elucidated, it is believed that the mechanism is roughly as shown in FIG. 3. After second layer growth
The SiC primary layer 4 is an aggregate of fibrous grains 4', 4' whose boundaries have been removed. accordingly
The SiC primary layer 4 has a dense layered structure after being deposited, and its crystal structure is thought to be a dense aggregate of fibrous grains. When the Si substrate 2 is melted, the center part of the fibrous grains has relatively better crystal perfection than the boundary part, but since the boundary part is extremely imperfect, it is preferentially decomposed from this part. A part of this melts into the Si melt 12, precipitates at the tips of the fibrous grains, and grows in a liquid phase to form the secondary layer 14. The fibrous grains are deposited according to the orientation of the Si substrate (in the previously described embodiment, the (111) plane is the main surface, and the secondary layer 14 is epitaxially deposited on the fibrous grains. Each grain formed has the same orientation.As secondary growth progresses, the secondary layer grains spread laterally and combine to form a layered structure.In this case, after combining, in the case of using a (111) plane, a triangular Although some shaped pores may remain, the entire surface becomes almost single-crystalline.

実施例に於てSi基板2上にSiC1次層4を堆積
させる工程(工程(b))に於て、Si基板裏面上にも
不所望のSiC多結晶薄膜が形成されることがあ
る。
In the embodiment, in the step (step (b)) of depositing the SiC primary layer 4 on the Si substrate 2, an undesired SiC polycrystalline thin film may be formed also on the back surface of the Si substrate.

このとき本発明を実施すれば基板裏面のSiC薄
膜上にもSiCが液相から析出するのでSiC1次層上
へのSiC2次層の析出が阻害され成長速度が減小
する。またこのSiC薄膜が3次層成長のさまたげ
になる。従つて基板裏面にSiC薄膜が成長したと
きは工程(b)の後に例えばラツプ法によりこのSiC
薄膜を除去しておくことが好ましい。
At this time, if the present invention is carried out, SiC will also be precipitated from the liquid phase on the SiC thin film on the back surface of the substrate, so the precipitation of the SiC secondary layer on the SiC primary layer will be inhibited and the growth rate will be reduced. Moreover, this SiC thin film hinders the growth of the tertiary layer. Therefore, when a SiC thin film is grown on the back side of the substrate, it is necessary to remove this SiC film after step (b) by, for example, the lapping method.
It is preferable to remove the thin film.

本発明の2次成長によれば2次層成長のための
種となる1次層の結晶不完全部が分解してとけ出
してこれが2次層成長の原料となるため自然に2
次層成長時は結晶完全性の良好な部分にエピタキ
シヤル成長することになり、1次層の結晶不完全
性にかかわらず良好な2次成長ができる。
According to the secondary growth of the present invention, the crystal imperfections of the primary layer, which serve as seeds for the growth of the secondary layer, decompose and melt out, and this becomes the raw material for the growth of the secondary layer.
During growth of the next layer, epitaxial growth will occur in areas with good crystal perfection, and good secondary growth can be achieved regardless of the crystal imperfection of the primary layer.

この方法による2次層は時により三角形の孔を
残し、全面手坦とならない場合がある。従つて本
発明では、この工程に続いてCVD法により気相
からSiCを析出させる。CVDはEMSのようにSi融
液を保つ必要がないので所望の温度で成長させる
ることができ、この点で有利である。
The secondary layer produced by this method sometimes leaves triangular holes and may not be completely smooth. Therefore, in the present invention, following this step, SiC is deposited from the gas phase by the CVD method. Unlike EMS, CVD does not need to maintain a Si melt, so it can grow at a desired temperature, and is advantageous in this respect.

本発明では2次層成長と3次層成長が引続いて
実施できるので製造時間の短縮および不所望の熱
歪みの導入の防止等に有効である。
In the present invention, secondary layer growth and tertiary layer growth can be carried out successively, which is effective in shortening manufacturing time and preventing the introduction of undesired thermal distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に供する反応装置の要部
断面斜視図、第2図A,B,C,Dは本発明の一
実施例の製造工程を模式的に示す断面図、第3図
は本発明の結晶成長機構を模式的に示す断面図で
ある。 2……珪素基板、4……第1の炭化珪素層、
4′……第1の炭化珪素層のグレイン、12……
珪素融液、14……炭化珪素2次層。
FIG. 1 is a cross-sectional perspective view of a main part of a reaction apparatus used for implementing the present invention, FIG. 2 A, B, C, and D are cross-sectional views schematically showing the manufacturing process of an embodiment of the present invention, and FIG. 3 FIG. 2 is a cross-sectional view schematically showing the crystal growth mechanism of the present invention. 2...Silicon substrate, 4...First silicon carbide layer,
4'... Grain of first silicon carbide layer, 12...
Silicon melt, 14...Silicon carbide secondary layer.

Claims (1)

【特許請求の範囲】[Claims] 1 珪素基板上に多結晶炭化珪素より成る第1の
炭化珪素層を形成する第1工程と、上記第1の炭
化珪素層を形成した面を下向きにして上記珪素基
板を基台上に載置し、昇温して珪素基板を熔融
し、この珪素融液から上記第1の炭化珪素層上に
第2の炭化珪素層を成長させる第2工程と、上記
第2の炭化珪素層上に気相から原料を供給して第
3の炭化珪素層を成長させる第3の工程と、より
成る炭化珪素結晶の製造方法。
1. A first step of forming a first silicon carbide layer made of polycrystalline silicon carbide on a silicon substrate, and placing the silicon substrate on a base with the surface on which the first silicon carbide layer is formed facing downward. and a second step of increasing the temperature to melt the silicon substrate and growing a second silicon carbide layer on the first silicon carbide layer from this silicon melt; A method for producing a silicon carbide crystal, comprising: a third step of growing a third silicon carbide layer by supplying a raw material from a phase.
JP12127979A 1979-01-25 1979-09-19 Manufacture of silicon carbide crystal Granted JPS5645897A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12127979A JPS5645897A (en) 1979-09-19 1979-09-19 Manufacture of silicon carbide crystal
DE3002671A DE3002671C2 (en) 1979-01-25 1980-01-25 Process for making a silicon carbide substrate
US06/369,911 US4582561A (en) 1979-01-25 1982-04-19 Method for making a silicon carbide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12127979A JPS5645897A (en) 1979-09-19 1979-09-19 Manufacture of silicon carbide crystal

Publications (2)

Publication Number Publication Date
JPS5645897A JPS5645897A (en) 1981-04-25
JPS6121197B2 true JPS6121197B2 (en) 1986-05-26

Family

ID=14807313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12127979A Granted JPS5645897A (en) 1979-01-25 1979-09-19 Manufacture of silicon carbide crystal

Country Status (1)

Country Link
JP (1) JPS5645897A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283014A (en) * 1987-04-28 1988-11-18 Sharp Corp Silicon carbide semiconductor element
DE4234508C2 (en) * 1992-10-13 1994-12-22 Cs Halbleiter Solartech Method for producing a wafer with a monocrystalline silicon carbide layer
JP6685469B2 (en) * 2017-03-28 2020-04-22 三菱電機株式会社 Silicon carbide substrate, method for manufacturing silicon carbide substrate, and method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JPS5645897A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
EP0619599B1 (en) Thin film single crystal substrate
CN1570225A (en) Device and method for producing single crystals by vapor deposition
JPH11508531A (en) Apparatus and method for growing an object epitaxially by CVD
CN108987257B (en) Growth of Ga on Si substrate by halide vapor phase epitaxy2O3Method for making thin film
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6121197B2 (en)
US5221412A (en) Vapor-phase epitaxial growth process by a hydrogen pretreatment step followed by decomposition of disilane to form monocrystalline Si film
JPS6120514B2 (en)
JP3322740B2 (en) Semiconductor substrate and method of manufacturing the same
JPS6152120B2 (en)
JPS6121198B2 (en)
JPS6121196B2 (en)
JPS6152119B2 (en)
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120519B2 (en)
JPH08236458A (en) Manufacture of semiconductor substrate
JPS6120517B2 (en)
JPS626644B2 (en)
JPS6120518B2 (en)
JPS623119B2 (en)
JPS5812237B2 (en) Method for manufacturing silicon carbide crystal layer
JPH09255495A (en) Silicon carbide film and its production
JPS6120516B2 (en)