JPS6120518B2 - - Google Patents

Info

Publication number
JPS6120518B2
JPS6120518B2 JP5613279A JP5613279A JPS6120518B2 JP S6120518 B2 JPS6120518 B2 JP S6120518B2 JP 5613279 A JP5613279 A JP 5613279A JP 5613279 A JP5613279 A JP 5613279A JP S6120518 B2 JPS6120518 B2 JP S6120518B2
Authority
JP
Japan
Prior art keywords
silicon
substrate
silicon carbide
layer
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5613279A
Other languages
Japanese (ja)
Other versions
JPS55149196A (en
Inventor
Toshiki Inooku
Takeshi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5613279A priority Critical patent/JPS55149196A/en
Publication of JPS55149196A publication Critical patent/JPS55149196A/en
Publication of JPS6120518B2 publication Critical patent/JPS6120518B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭化珪素(SiC)結晶を製造する方法
に関するもので、特に珪素基板を用いて珪素の融
点以下で炭化珪素を成長し、その後珪素基板を熔
融し又はエツチング除去してその裏面(珪素基板
に接していた面)上に更に第2の炭化珪素層を形
成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing silicon carbide (SiC) crystals, and in particular, the present invention relates to a method for manufacturing silicon carbide (SiC) crystals, in particular, growing silicon carbide using a silicon substrate at a temperature below the melting point of silicon, and then melting or etching the silicon substrate. The present invention relates to a method for further forming a second silicon carbide layer on the back surface (the surface that was in contact with the silicon substrate).

炭化珪素は耐熱、耐腐蝕、耐放射線特性に優れ
硬度が大で大きい禁制帯幅(結晶多形により2.4
乃至3.3エレクトロンボルト)をもち、容易にp
形及びn形に不純物添加できる半導体材料である
が、工業的に半導体装置を形成するために十分な
大きさと製造再現性をもつてウエハー状の結晶を
供給できなかつた為に炭化珪素を用いた半導体装
置も、試験的に製造されるにとどまり広く実用化
するには至つていない。
Silicon carbide has excellent heat resistance, corrosion resistance, and radiation resistance, and has high hardness and a large forbidden band width (2.4
to 3.3 electron volts) and easily p
Although silicon carbide is a semiconductor material that can be doped with impurities in both the shape and n-type, silicon carbide was used because it was not possible to supply wafer-shaped crystals with sufficient size and manufacturing reproducibility to industrially form semiconductor devices. Semiconductor devices have only been manufactured on a trial basis and have not yet been widely put into practical use.

発明者らは先にSi基板上に○イSiC単結晶、○ロ界
面に於てグレインの方位の配向した多結晶、○ハ界
面に於て結晶方位の配向したグレインを含む多結
晶、又は○ニSiとSiCとの混在物等より成る種層を
形成し、Si基板の裏面に炭素原料を存在させた状
態に於てSi基板を熔融させこのSi融液から種層裏
面上にSiC(2次層という)を液相成長させる方
法を提案し熔融基板からのエピタキシ−
(Epitaxy from Molten Substrate,EMSと略称
する)と命名した。このEMS法によればSiC2次
層は最初のSi基板の大きさに且つ薄板状(ウエハ
ー状)に作製できるので、現在半導体工業で主流
となつている所謂プレーナー技術及びメサ技術を
適用でき、炭化珪素半導体装置の工業化に大きく
貢献するものである。
The inventors previously developed SiC single crystals with ○a SiC single crystals, ○b polycrystals with grains oriented at the ○b interface, ○c polycrystals containing grains with crystal orientation oriented at the ○c interfaces, or ○ A seed layer consisting of a mixture of Si and SiC is formed, and the Si substrate is melted with a carbon material present on the back surface of the Si substrate, and SiC (2 We proposed a method of liquid-phase growth of the next layer (referred to as the next layer) and epitaxy from a molten substrate.
(abbreviated as Epitaxy from Molten Substrate, EMS). According to this EMS method, the SiC secondary layer can be produced in the size of the initial Si substrate and in the form of a thin plate (wafer shape), so the so-called planer technology and mesa technology, which are currently mainstream in the semiconductor industry, can be applied, and carbonization This will greatly contribute to the industrialization of silicon semiconductor devices.

本発明は上記EMS法の改良に係り、更に詳細
には液相成長工程中の原料となる層の改良を目的
とするものである。
The present invention relates to improvements in the above-mentioned EMS method, and more specifically, its purpose is to improve the layer that serves as a raw material during the liquid phase growth process.

EMS法の炭素原料としては炭化珪素又は炭素
層をSi基板の裏側に設置する。このうち炭素を用
いる方法としてはSi基板の裏側に炭素薄膜を
CVD法で被着させる方法が本発明者らにより既
に提案されているがCVD工程をふやすことにな
り工程が繁雑になる欠点がある。本発明では別工
程により炭素板に珪素を含浸させた原料板を用い
ることも特徴とする。珪素含浸は極めて簡単で大
量同時処理ができるのでコスト低減に貢献し得る
材料である。
As the carbon raw material for the EMS method, silicon carbide or a carbon layer is placed on the back side of the Si substrate. Among these, the method using carbon is to deposit a carbon thin film on the back side of the Si substrate.
A CVD deposition method has already been proposed by the present inventors, but it has the disadvantage that it increases the number of CVD steps, making the process complicated. The present invention is also characterized by using a raw material plate obtained by impregnating a carbon plate with silicon in a separate process. Silicon impregnation is extremely simple and can be processed simultaneously in large quantities, making it a material that can contribute to cost reduction.

以下、本発明を実施例に従つて更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 第1図に本実施例に使用される反応装置の一例
を示す。水冷式縦形二重石英反応管22内に黒鉛
製支持棒24により支持された炭化珪素被覆黒鉛
製試料台26を置き反応管22の外胴部に巻回さ
れたワークコイル28に高周波電流を流して、こ
の試料台26を誘導加熱する。反応管22の下端
はステンレス鋼製のフランジ30とO−リングで
シールされている。フランジ30上にはガスの出
口となる継手32及び支柱台34が設けられてい
る。支柱台34に石英製の支柱36が保持され、
支柱36に上記支持棒24が継ぎ足される。出口
側の継手32には排気用管が接続され、廃ガス処
理装置(図示しない)に導かれている。反応管2
2の上端側にはガス流入口となる枝管38が設け
られ、搬送ガスが反応管22内へ供給される。試
料台26上には珪素含浸炭素台64が載置され、
その上には下地基板となる珪素基板2が載置され
ている。
Example FIG. 1 shows an example of a reaction apparatus used in this example. A silicon carbide-coated graphite sample stand 26 supported by a graphite support rod 24 is placed inside a water-cooled vertical double quartz reaction tube 22 , and a high-frequency current is passed through a work coil 28 wound around the outer body of the reaction tube 22 . Then, the sample stage 26 is heated by induction. The lower end of the reaction tube 22 is sealed with a stainless steel flange 30 and an O-ring. A joint 32 serving as a gas outlet and a support stand 34 are provided on the flange 30. A pillar 36 made of quartz is held on a pillar stand 34,
The support rod 24 is attached to the support column 36. An exhaust pipe is connected to the joint 32 on the outlet side and led to a waste gas treatment device (not shown). Reaction tube 2
A branch pipe 38 serving as a gas inlet is provided at the upper end of the reaction tube 22, and a carrier gas is supplied into the reaction tube 22. A silicon-impregnated carbon stand 64 is placed on the sample stand 26,
A silicon substrate 2 serving as a base substrate is placed thereon.

次に本実施例の炭化珪素成長方法について第2
図A,B,C,Dを参照しながら説明する。
Next, we will discuss the silicon carbide growth method of this example in the second section.
This will be explained with reference to Figures A, B, C, and D.

(1a) 反応管22を排気して水素で置換し、公知
の塩化水素・水素混合ガスで珪素含浸炭素台6
4上に載置された{111}面を主面とする珪素
基板2の表面をエツチング除去する(第2図A
参照)。
(1a) The reaction tube 22 is evacuated and replaced with hydrogen, and the silicon-impregnated carbon stand 6 is heated with a known hydrogen chloride/hydrogen mixed gas.
4, the surface of the silicon substrate 2 having the {111} plane as its main surface is removed by etching (see FIG. 2A).
reference).

(1b) 珪素基板2の温度を珪素の融点以下の温
度、好ましくは1100乃至1200℃に設定し、一般
的な気相成長法で炭化珪素を珪素基板2上に成
長させる。搬送ガスにはアルゴン(Ar)ヘリ
ウム(He)などの稀ガス又は水素ガス(H2)が
用いられる。珪素原料としては、四塩化珪素
(SiCl4)、二塩化シラン(SiH2Cl2)、シラン
(SiH4)などが、また炭素原料としては四塩化
炭素(CCl4)やプロパン(C3H8)、メタン
(CH4)をはじめとする炭化水素が用いられる。
(1b) The temperature of silicon substrate 2 is set to a temperature below the melting point of silicon, preferably 1100 to 1200° C., and silicon carbide is grown on silicon substrate 2 by a general vapor phase growth method. A rare gas such as argon (Ar), helium (He), or hydrogen gas (H 2 ) is used as the carrier gas. Silicon raw materials include silicon tetrachloride (SiCl 4 ), silane dichloride (SiH 2 Cl 2 ), and silane (SiH 4 ), and carbon raw materials include carbon tetrachloride (CCl 4 ) and propane (C 3 H 8 ) . ), methane (CH 4 ), and other hydrocarbons.

本実施例では流量1/分の水素ガスを搬送
ガスとし、二塩化シラン(SiH2Cl2)及びプロパ
ン(C3H8)をそれぞれの原料ガスとする。濃度
は原子比で二塩化シランを7.5×10-4、プロパ
ンを1.5×10-3に設定し、30分間の成長で30μ
m厚の珪素と3C形炭化珪素との混在層4を形
成した。珪素基板2の側面にも珪素と炭化珪素
との混在層16が同時に形成される。
In this example, hydrogen gas at a flow rate of 1/min is used as the carrier gas, and silane dichloride (SiH 2 Cl 2 ) and propane (C 3 H 8 ) are used as the respective source gases. The concentration was set to 7.5 x 10 -4 for dichlorosilane and 1.5 x 10 -3 for propane in atomic ratio, and 30μ was grown for 30 minutes.
A mixed layer 4 of m thickness of silicon and 3C type silicon carbide was formed. A mixed layer 16 of silicon and silicon carbide is also formed on the side surface of silicon substrate 2 at the same time.

このとき混在層4の珪素基板2との界面に存
在するSiCグレイン(1000Å程度のオーダーの
粒径と考えられる)は珪素基板の方位に従つて
配向している。即ち、Si<111>SiC<111>
かつSi<110>SiC<110>となつてい
る。但し、記号は平行を表す。
At this time, the SiC grains (estimated to have a grain size on the order of 1000 Å) existing at the interface of the mixed layer 4 with the silicon substrate 2 are oriented in accordance with the orientation of the silicon substrate. That is, Si<111>SiC<111>
And Si<110>SiC<110>. However, the symbol represents parallel.

(1c) 原料ガスの送り込みを停止し、流量1/
分の水素雰囲気だけにする。
(1c) Stop feeding the raw material gas and reduce the flow rate to 1/
Create only a hydrogen atmosphere for 1 minute.

ワークコイル28に流す高周波出力を増して
珪素含浸炭素台64の温度を1500℃程度に昇温
し、珪素基板2を熔融する。熔融後、1450℃乃
至1650℃程度の一定温度に設定してこの状態を
維持する。本実施例では珪素含浸炭素台64に
於いて1500℃になるように設定し、2時間の成
長で10μm厚の単結晶炭化珪素2次層14を形
成した。
The high frequency output applied to the work coil 28 is increased to raise the temperature of the silicon-impregnated carbon stand 64 to about 1500° C., and the silicon substrate 2 is melted. After melting, the temperature is set at a constant temperature of about 1450°C to 1650°C and this state is maintained. In this example, the silicon-impregnated carbon table 64 was set to 1500° C., and a 10 μm thick single-crystal silicon carbide secondary layer 14 was formed by growth for 2 hours.

加熱方式は高周波加熱方式を用いるため、試
料台26がヒーターになり珪素含浸炭素台64
の表面と混在層4との間には自然に温度差がで
き、液相成長したものである。
Since the heating method uses a high frequency heating method, the sample stage 26 becomes a heater and the silicon-impregnated carbon stage 64
There is a natural temperature difference between the surface of the mixed layer 4 and the mixed layer 4, resulting in liquid phase growth.

側面の混在層16は混在層4と試料台26と
の間隔をとるためのスペーサとして作用し、混
在層4が試料台26に対して傾くのを防止する
効果を有する。(第2図C参照) (1d) 高周波出力を停止して降温し、珪素含浸炭
素台64を弗酸硝酸混液に浸漬して珪素をエツ
チング除去し、珪素含浸炭素台64から成長層
4,14を取り外す。(第2図D参照) なお、本実施例によれば珪素含浸炭素台64は
当初から反応管内に置かれるから工程は連続して
行なえる。一方、工程(1b)と(1c)との間で一且降
温してもかまわなければ当初は珪素含浸炭素台を
挿入せず、工程(1b)と(1c)との間にこれを挿入し
てもかまわない。
The mixed layer 16 on the side surface acts as a spacer to maintain a distance between the mixed layer 4 and the sample stage 26, and has the effect of preventing the mixed layer 4 from tilting with respect to the sample stage 26. (See Figure 2C) (1d) Stop the high-frequency output, lower the temperature, immerse the silicon-impregnated carbon base 64 in a hydrofluoric acid/nitric acid mixture to remove silicon, and remove the silicon-impregnated carbon base 64 from the growth layers 4, 14. Remove. (See FIG. 2D.) According to this embodiment, the silicon-impregnated carbon stand 64 is placed in the reaction tube from the beginning, so that the steps can be performed continuously. On the other hand, if there is no problem with the temperature dropping even more between steps (1b) and (1c), the silicon-impregnated carbon stand is not inserted at first, but it is inserted between steps (1b) and (1c). It doesn't matter.

本発明によれば原料層(珪素含浸炭素台)を別
に設けるから高価な試料台を毎回交換することが
なく生産性が向上する。
According to the present invention, since the raw material layer (silicon-impregnated carbon stand) is provided separately, there is no need to replace an expensive sample stand every time, and productivity is improved.

更に、上記実施例では試料台の上に珪素含浸炭
素台を載置しているが、珪素含浸炭素台を試料台
として用いてこれを直接誘導加熱するようにして
もよい。
Further, in the above embodiment, a silicon-impregnated carbon stand is placed on the sample stand, but the silicon-impregnated carbon stand may be used as a sample stand and directly heated by induction.

原料層として厚い炭素板を用いると珪素基板2
を熔融したとき珪素融液12に炭素板に吸い込ま
れ、液相成長できなくなるが、本発明によれば炭
素板に予め珪素を含浸してあるので珪素融液12
が吸収されることなく液相成長させることができ
る。
If a thick carbon plate is used as the raw material layer, the silicon substrate 2
When the silicon melt 12 is melted, it is sucked into the carbon plate and liquid phase growth becomes impossible.However, according to the present invention, since the carbon plate is impregnated with silicon in advance, the silicon melt 12
can be grown in liquid phase without being absorbed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に供する反応装置の要部
断面を示す斜視図、第2図A,B,C,Dは本発
明の一実施例の製造工程を説明する断面図であ
る。 2……珪素基板、4……積層、12……珪素融
液、14……炭化珪素2次層、64……珪素含浸
炭素台。
FIG. 1 is a perspective view showing a cross section of a main part of a reaction apparatus used for implementing the present invention, and FIGS. 2A, B, C, and D are cross-sectional views illustrating the manufacturing process of an embodiment of the present invention. 2...Silicon substrate, 4...Lamination, 12...Silicon melt, 14...Silicon carbide secondary layer, 64...Silicon-impregnated carbon base.

Claims (1)

【特許請求の範囲】 1 珪素基板上に次工程に於て炭化珪素結晶成長
の種となる炭化珪素種結晶を含む種層を形成する
第1工程と、 上記珪素基板の積層形成面と反対側の面を珪素
含浸炭素板に接した状態で上記珪素基板を熔融
し、この珪素融液から上記種層の珪素融液に接触
した面上に炭化珪素層を形成させる工程とよりな
る炭化珪素基板の製造方法。
[Scope of Claims] 1. A first step of forming a seed layer containing a silicon carbide seed crystal that will become a seed for silicon carbide crystal growth in the next step on a silicon substrate, and a side opposite to the layer formation surface of the silicon substrate. A silicon carbide substrate comprising the steps of: melting the silicon substrate with its surface in contact with a silicon-impregnated carbon plate, and forming a silicon carbide layer from the silicon melt on the surface of the seed layer in contact with the silicon melt. manufacturing method.
JP5613279A 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate Granted JPS55149196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5613279A JPS55149196A (en) 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5613279A JPS55149196A (en) 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate

Publications (2)

Publication Number Publication Date
JPS55149196A JPS55149196A (en) 1980-11-20
JPS6120518B2 true JPS6120518B2 (en) 1986-05-22

Family

ID=13018543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5613279A Granted JPS55149196A (en) 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate

Country Status (1)

Country Link
JP (1) JPS55149196A (en)

Also Published As

Publication number Publication date
JPS55149196A (en) 1980-11-20

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US3956032A (en) Process for fabricating SiC semiconductor devices
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JPH06216050A (en) Manufacture of wafer with single crystal silicon carbide layer
JP2006117512A (en) Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120514B2 (en)
JPH06219898A (en) Production of n-type silicon carbide single crystal
JP3322740B2 (en) Semiconductor substrate and method of manufacturing the same
JPS6152120B2 (en)
US3340110A (en) Method for producing semiconductor devices
JPS6120518B2 (en)
JPS6120519B2 (en)
JPS6045159B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6152119B2 (en)
JPS6120517B2 (en)
JPS63283014A (en) Silicon carbide semiconductor element
JPS6121197B2 (en)
JPS6121198B2 (en)
JPS623119B2 (en)
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120516B2 (en)
JPS626644B2 (en)
JPS6115150B2 (en)
JPS6120520B2 (en)