JPS61210826A - Controller for dc multi-terminal power transmission - Google Patents

Controller for dc multi-terminal power transmission

Info

Publication number
JPS61210826A
JPS61210826A JP60050485A JP5048585A JPS61210826A JP S61210826 A JPS61210826 A JP S61210826A JP 60050485 A JP60050485 A JP 60050485A JP 5048585 A JP5048585 A JP 5048585A JP S61210826 A JPS61210826 A JP S61210826A
Authority
JP
Japan
Prior art keywords
control
power transmission
current
converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60050485A
Other languages
Japanese (ja)
Inventor
小西 博雄
菅原 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60050485A priority Critical patent/JPS61210826A/en
Publication of JPS61210826A publication Critical patent/JPS61210826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流多端子送電の制御装置に係シ、特に変換装
置が転流失敗したときに電力回復を早めるのに有効な制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control device for DC multi-terminal power transmission, and more particularly to a control device effective for speeding up power recovery when a conversion device fails in commutation.

〔発明の背景〕[Background of the invention]

直流送電の適用範囲を拡大するために直流多端子送電の
実用化が望まれている。第2図はその1形態を示す図で
ある。図中1.71.72は各々交流系統、2,61.
62は変圧器、3,51゜52は交流を直流または直流
を直流に変換器、40は直流送電線、41.42は直流
リアクトル、300.510,520は各々変換器3,
51゜52の制御装置である。このような多端子送電の
問題点を明確にするために、今、変換器3を交流を直流
に変換する順変換器、変換器51.52を直流を交流に
変換する逆変換器として説明する。
Practical use of DC multi-terminal power transmission is desired to expand the scope of application of DC power transmission. FIG. 2 is a diagram showing one form thereof. In the figure, 1, 71, 72 are AC systems, 2, 61, .
62 is a transformer, 3,51°52 is an AC to DC or DC to DC converter, 40 is a DC transmission line, 41.42 is a DC reactor, 300, 510, 520 are converters 3,
It is a control device of 51°52. In order to clarify the problems of multi-terminal power transmission, the converter 3 will be explained as a forward converter that converts alternating current to direct current, and the converters 51 and 52 will be explained as inverse converters that convert direct current to alternating current. .

特公昭43−8641でも知られているように、多端子
系統を安定に運転するためには、1つの端子で系統の(
直流)電圧を決定し、残りの端子は(直流)電流を決定
する制御方式が有効である。
As is known from Japanese Patent Publication No. 43-8641, in order to operate a multi-terminal system stably, it is necessary to
An effective control method is to determine the (DC) voltage and the (DC) current for the remaining terminals.

ここの場合もその制御方式を踏襲して、順変換器3で直
流電圧を決め、逆変換器51.52は直流電流を決める
ものと仮定する。尚、この仮定は発明の本質的なもので
はなく逆変換器の1つで電圧を決めるようにしても何ら
さしされシはない。このような場合の各変換器の動作を
示す図を第3図に示す。図中、横軸は直流電流、縦軸は
直流電圧を示しており、順変換器3は直流電圧Vpの定
電圧特性と変換器の許容最大電流1.に電流を制限する
友めの定電流制御特性をもっている。一方、逆変換器は
必要な電力相当の電流値1pl、Ipzの定電流制御特
性と変換器が転流時の余裕角を一定に保つ余裕角一定制
御特性をもっている。従って動作点は01+ 02点と
なる。尚、動作点Oは2つの逆変換器を合わせた場合を
示す。この運転状態で例えば交流系統71の交流送電線
で地絡事故が発生し、交流電圧の低下によって逆変換器
51が転流失敗すると、逆変換器52に流れていた電流
も逆変換器51に流れ込むことになるので、送電を停止
せざるを得なくなる。転流失敗の発生は逆変換器におい
ては頻度の高いものであり、そのたびごとに送電を停止
するのでは送電信頼度が落ちてしまう。この対策のため
、逆変換器に流れる電流の立上がりを遅くして事故の波
及を防ぐために直流リアクトル41.42等の値を大き
くすることが考えられているが完全には対策できないし
かつ不経済でちる。また、直流しゃ断器を使って転流失
敗の変換器を多端子系統から切り離す方法も考えられて
いるが、この方法鴫前者以上に高価なものとなり、かつ
直流しゃ断器の保守点検にも困難をともなう。
In this case, it is assumed that the control method is followed, and the forward converter 3 determines the DC voltage, and the inverse converters 51 and 52 determine the DC current. Note that this assumption is not essential to the invention, and there is nothing wrong with determining the voltage with one of the inverters. A diagram showing the operation of each converter in such a case is shown in FIG. In the figure, the horizontal axis shows the DC current and the vertical axis shows the DC voltage, and the forward converter 3 has constant voltage characteristics of the DC voltage Vp and the maximum allowable current of the converter 1. It has a constant current control characteristic that limits the current. On the other hand, the inverse converter has a constant current control characteristic of a current value of 1 pl corresponding to the required power, Ipz, and a constant margin angle control characteristic in which the converter keeps the margin angle constant during commutation. Therefore, the operating point is 01+02 points. Note that the operating point O indicates the case where two inverse converters are combined. In this operating state, for example, if a ground fault occurs in the AC transmission line of the AC system 71 and the inverter 51 fails to commutate due to a drop in AC voltage, the current flowing in the inverter 52 will also flow to the inverter 51. As a result, electricity transmission will have to be stopped. Commutation failures occur frequently in inverters, and if power transmission is stopped every time commutation failures occur, power transmission reliability will drop. As a countermeasure to this problem, it has been considered to increase the value of the DC reactor 41, 42, etc. in order to slow down the rise of the current flowing through the inverter and prevent the spread of the accident, but this is not a complete countermeasure and is uneconomical. Dechiru. Another method has been considered to use a DC breaker to disconnect a converter that has failed commutation from a multi-terminal system, but this method is more expensive than the former and also makes maintenance and inspection of the DC breaker difficult. Tomo.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した従来技術の問題点を解決し、変
換器転流失敗時にも送電停止に至らしめることなく安定
に運転の行える多端子送電の制御装置を提供することに
ある。
An object of the present invention is to solve the problems of the prior art described above and to provide a multi-terminal power transmission control device that can operate stably without stopping power transmission even when converter commutation fails.

〔発明の概要〕[Summary of the invention]

多端子送電系統の1つの端子で転流失敗が発生し、これ
かもとで送電停止に至るのを防止する丸めに、変換器の
転流失敗検出装置からの検出信号により順変換器の制御
角を一定時間インバータ側にシフトして、系統の直流電
流をしゃ断し、転流失敗を除去した後にもとの運転状態
に戻すようにした。
In order to prevent a commutation failure from occurring at one terminal of a multi-terminal power transmission system, which would lead to a power transmission stoppage, the control angle of the forward converter is adjusted by the detection signal from the converter's commutation failure detection device. was shifted to the inverter side for a certain period of time to cut off the DC current in the system and return to the original operating state after eliminating the commutation failure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によシ説明する。前回
と同じ番号のものは同じものを示しているので新しいも
のについて説明すると、301〜304は順変換器3の
制御装置300の詳細ブロックを示し、301は変換器
の電流を最大許容値■、に制限するための定電流制御回
路、302は多端子系統の電圧をVpとするための定電
圧制御回路、303は変換器3の運転状態に応じて30
1または302の出力を選択するための選択回路、30
4は303によって選択された制御回路の出力(制御)
電圧Ecに応じて位相制御されたパルスを出力する位相
制御回路である。この位相制御回路の入出力特性の一例
を第4図に示す。第4図では制御電圧に対して制御角α
1.〜α1.8の範囲で線形な位相特性のものを示し、
制御電圧を大きくすれば位相制御回路の出力パルスの位
相(制御角)も大きくなる特性である。一方、511〜
514及び521〜524は各々制御装置510゜52
0の詳細ブロックを示し、511,521は定余裕角制
御回路、512,522は各々電流指令値Ipl及びI
F5をもつ定電流制御回路で、各々変換器に流れる電流
がIpl及びIpzとなるように動作する。513,5
23は選択回路で、上述の定余裕角制御回路と定電流制
御回路の出力のうちの運転状態にあった回路の出力(制
御)電圧を選択する。514,524は前述同様の第4
図に示した位相特性をもつ位相制御回路である。以上が
従来の制御装置の詳細であり、本発明ではこれに転流失
敗検出装置、例えば特願昭47−118992の検出信
号によりJ@変換器の制御電圧を一定時間大きくして制
御角をシフトすることによって順変換器の電圧を下げ、
系統の直流電流をしゃ断する装置が追加されている。3
05,306がソノタめの回路である。305は下記の
転流失敗検出装置からの転流失敗検出信号りにより一定
期間制御角をインバータ側にシフトさせるための信号発
生回路で、例えば20m5の間出力パルスの制御角を1
20度にシフトさせるに必要な制御電圧Ec’を出力す
る。306は最大値検出回路であり、前述の選択回路3
03により選択された制御電圧と信号発生回路の出力の
うちより大きい電圧を出力する回路である。当然のこと
ながら位相制御回路の位相特性によって信号発生回路の
発生信号も最大値選択回路は異なってき、第4図に示し
た位相特性の場合についてここでは述べている。この回
路の動作を第5図を用いて説明する。第5図は順変換器
3の直流電圧Va、逆変換器51の電流、逆変換器52
の電流、順変換器3の制御電圧Ecで、逆変換器71の
交流系統で事故が発生し、逆変換器51が転流失敗を生
じたときを示した図である。時刻t1で転流失敗が発生
すると、逆変換器51の電流は増加し、52の電流は減
少する。
An embodiment of the present invention will be explained below with reference to FIG. The same numbers as the previous one indicate the same thing, so to explain the new ones, 301 to 304 indicate detailed blocks of the control device 300 of the forward converter 3, and 301 sets the converter current to the maximum allowable value ■, 302 is a constant voltage control circuit for limiting the voltage of the multi-terminal system to Vp; 303 is a constant current control circuit for limiting the voltage of the multi-terminal system to Vp;
a selection circuit for selecting the output of 1 or 302;
4 is the output (control) of the control circuit selected by 303
This is a phase control circuit that outputs a pulse whose phase is controlled according to voltage Ec. An example of the input/output characteristics of this phase control circuit is shown in FIG. In Figure 4, the control angle α with respect to the control voltage
1. It shows a linear phase characteristic in the range of ~α1.8,
The characteristic is that if the control voltage is increased, the phase (control angle) of the output pulse of the phase control circuit is also increased. On the other hand, 511~
514 and 521 to 524 are control devices 510 and 52, respectively.
0, 511 and 521 are constant margin angle control circuits, and 512 and 522 are current command values Ipl and I, respectively.
A constant current control circuit having F5 operates so that the currents flowing through each converter become Ipl and Ipz. 513,5
23 is a selection circuit which selects the output (control) voltage of the circuit in the operating state from among the outputs of the constant margin angle control circuit and the constant current control circuit described above. 514 and 524 are the same fourth
This is a phase control circuit with the phase characteristics shown in the figure. The above are the details of the conventional control device, and the present invention uses a commutation failure detection device, for example, increasing the control voltage of the J@ converter for a certain period of time based on the detection signal of Japanese Patent Application No. 118992/1982 to shift the control angle. Lower the voltage of the forward converter by
A device has been added to cut off the direct current in the grid. 3
05,306 is the Sonata circuit. Reference numeral 305 is a signal generation circuit for shifting the control angle to the inverter side for a certain period of time based on a commutation failure detection signal from the commutation failure detection device described below.
A control voltage Ec' necessary for shifting to 20 degrees is output. 306 is a maximum value detection circuit, which is similar to the selection circuit 3 described above.
This circuit outputs the larger voltage between the control voltage selected by No. 03 and the output of the signal generation circuit. Naturally, the signal generated by the signal generating circuit also varies depending on the phase characteristics of the phase control circuit, and the case of the phase characteristics shown in FIG. 4 will be described here. The operation of this circuit will be explained using FIG. FIG. 5 shows the DC voltage Va of the forward converter 3, the current of the inverse converter 51, and the inverse converter 52.
FIG. 4 is a diagram showing a case where an accident occurs in the AC system of the inverse converter 71 and the inverse converter 51 causes a commutation failure at a current of , and a control voltage Ec of the forward converter 3. When commutation failure occurs at time t1, the current in inverter 51 increases and the current in 52 decreases.

何の制御も行わない場合、逆変換器51の電流は一点鎖
線で示すように順変換器の最大許容電流工、が定常的に
流れることになる。しかし、下記の転流失敗検出装置の
検出信号で信号発生回路が動作して順変換器3の制御電
圧E Cを大きくすることによって制御角を十分シフト
させると、逆変換器51の電流は減衰し、t2の時点で
零となる。
If no control is performed, the current in the inverse converter 51 will constantly flow at the maximum allowable current of the forward converter, as shown by the dashed line. However, when the signal generation circuit is activated by the detection signal of the commutation failure detection device described below and the control angle is sufficiently shifted by increasing the control voltage E of the forward converter 3, the current of the inverse converter 51 is attenuated. However, it becomes zero at time t2.

13)1.の時点で順変換器3の制御電圧Ecをもとの
値に戻すと、逆変換器51.52は正規の転流動作を行
い、従来考えられていたような送電停止を行うことなく
運転が継続できる。
13)1. When the control voltage Ec of the forward converter 3 is returned to its original value at the point in time, the inverse converters 51 and 52 perform normal commutation operation, and operation can be resumed without stopping power transmission as previously thought. Can continue.

尚、信号発生回路の動作として単に一回の転流失敗で動
作させるのでなく、規定された時間に連続して転流失敗
が発生した場合に動作させるようにするのが系統運用上
好ましい。これは変換器の転流失敗が連続して転流失敗
を生じることは稀であり、多くの場合、1回の転失で自
復できる場合が多いことによる。
Note that it is preferable for system operation that the signal generation circuit is not activated when a single commutation failure occurs, but activated when commutation failure occurs continuously over a specified period of time. This is because commutation failures in the converter rarely occur consecutively, and in many cases, it is possible to recover by one commutation failure.

また、直流電流を遮断してもとの運転状態にもどすとき
には、直流電圧、電流を滑らかに立ち上げる方法をとる
のが、直流送電線が長い場合の過電圧発生を防止する上
から好ましいことは明らかであり、本発明から容易に推
察されるので詳細は述べない。
Furthermore, when interrupting the DC current and restoring the original operating state, it is clear that it is preferable to use a method that allows the DC voltage and current to rise smoothly in order to prevent overvoltage from occurring when the DC transmission line is long. Since this can be easily inferred from the present invention, the details will not be described.

〔発明の効果〕〔Effect of the invention〕

本発明によれば直流リアクトルを大きくするとか、直流
回路に直流遮断器を設ける等のことを行うことなく、簡
単な装置の追加により、連続した転流失敗時にも送電を
停止することなく安定に運転が行える多端子送電を実現
できる効果がある。
According to the present invention, without having to do things such as enlarging the DC reactor or installing a DC circuit breaker in the DC circuit, by adding a simple device, it is possible to stabilize power transmission without stopping even in the event of successive commutation failures. This has the effect of realizing multi-terminal power transmission that can be operated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多端子送電の制御装置を示す図、第2
図は多端子系統の一形態図、第3図は第2図の各端子の
動作状態を説明するための図、第4図は位相制御装置の
一位相特性図であシ、第5図は本発明の制御装置による
転流失敗時の動作波形である。 1.71.72・・・交流系統、2,61.62・・・
変圧器、3,51.52・・・変換器、40・・・直流
送電線、41.42・・・直流リアクトル、300,5
10゜520・・・制御装置、301,512,522
・・・定電流制御回路、302・・・定電圧制御回路、
511゜521・・・定電圧制御回路、303,513
゜523・・・選択回路、304,514,524・・
・位相制御回路、305・・・信号発生回路、306・
・・最大値選択回路。
FIG. 1 is a diagram showing a control device for multi-terminal power transmission according to the present invention, and FIG.
The figure is a diagram of one form of a multi-terminal system, Figure 3 is a diagram for explaining the operating state of each terminal in Figure 2, Figure 4 is a diagram of one phase characteristic of the phase control device, and Figure 5 is a diagram for explaining the operating state of each terminal in Figure 2. It is an operation waveform at the time of commutation failure by the control device of the present invention. 1.71.72...AC system, 2,61.62...
Transformer, 3,51.52...Converter, 40...DC transmission line, 41.42...DC reactor, 300,5
10°520...control device, 301,512,522
... constant current control circuit, 302 ... constant voltage control circuit,
511゜521... Constant voltage control circuit, 303,513
゜523...Selection circuit, 304,514,524...
・Phase control circuit, 305...Signal generation circuit, 306・
...Maximum value selection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、少くとも2つ以上の変換器が直流送電線に並列に接
続されて構成される直流多端子送電において、転流失敗
検出信号によつて交流を直流に変換する順変換器の制御
角を一定時間インバータ側にシフトさせることを特徴と
する直流多端子送電の制御装置。
1. In DC multi-terminal power transmission where at least two or more converters are connected in parallel to a DC transmission line, the control angle of the forward converter that converts AC to DC is determined by the commutation failure detection signal. A control device for DC multi-terminal power transmission, which is characterized by shifting to the inverter side for a certain period of time.
JP60050485A 1985-03-15 1985-03-15 Controller for dc multi-terminal power transmission Pending JPS61210826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050485A JPS61210826A (en) 1985-03-15 1985-03-15 Controller for dc multi-terminal power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050485A JPS61210826A (en) 1985-03-15 1985-03-15 Controller for dc multi-terminal power transmission

Publications (1)

Publication Number Publication Date
JPS61210826A true JPS61210826A (en) 1986-09-19

Family

ID=12860215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050485A Pending JPS61210826A (en) 1985-03-15 1985-03-15 Controller for dc multi-terminal power transmission

Country Status (1)

Country Link
JP (1) JPS61210826A (en)

Similar Documents

Publication Publication Date Title
US10063161B2 (en) Active neutral point clamped converter control system and method
KR910008547B1 (en) Power converter of current type
US6339316B1 (en) Exciter for generator
EP0231917A2 (en) Current-type converter with overvoltage protection
US10075091B2 (en) Power converter
JPS61210826A (en) Controller for dc multi-terminal power transmission
US4068294A (en) Circuit for detecting a missed commutation in an inverter
JP2018129977A (en) Electric power conversion system
US20220263430A1 (en) Power conversion device
JP3108444B2 (en) GTO inverter device
JP7304322B2 (en) power converter
AU617629B2 (en) Gate control circuit for a gto thyristor
JP2797937B2 (en) Inverter control device
JP6765588B1 (en) Power conversion system
US4608626A (en) Electrical inverter with minority pole current limiting
WO2023286627A1 (en) Power converting device, and power converting method
JPH10239360A (en) Excess current detection circuit
JP6643957B2 (en) Power converter and control method therefor
JPH05191927A (en) Control device for ac-dc converting apparatus
JP2829684B2 (en) Gate pulse abnormality detection circuit of power converter
JPH0515132B2 (en)
JPH04109835A (en) Uninterruptible ac power supply
JPS5819128A (en) Dc system and generator cooperation control system
JPH1023763A (en) Controller for externally excited reverse inverter
JPS6026469A (en) Controller of ac/dc converter