JPS6026469A - Controller of ac/dc converter - Google Patents

Controller of ac/dc converter

Info

Publication number
JPS6026469A
JPS6026469A JP58137103A JP13710383A JPS6026469A JP S6026469 A JPS6026469 A JP S6026469A JP 58137103 A JP58137103 A JP 58137103A JP 13710383 A JP13710383 A JP 13710383A JP S6026469 A JPS6026469 A JP S6026469A
Authority
JP
Japan
Prior art keywords
converter
transmission system
impedance
commutation
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58137103A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueda
上田 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58137103A priority Critical patent/JPS6026469A/en
Publication of JPS6026469A publication Critical patent/JPS6026469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Abstract

PURPOSE:To enhance the reliability of a power system by inserting an impedance element to an AC/DC converter side and shortcircuiting it when a defect occurs during the reverse conversion time. CONSTITUTION:An AC/DC converter 1 is connected to a DC transmission system 4, and connected to an AC transmission system 3 with the converter as a reverse or normal converting operation. In this case, an impedance element 10 is inserted between the AC terminal side of the converter 1 and the bulb winding side of a transformer 2, and a bidirectional semiconductor switch 15 is connected in parallel with the element. The switch 15 is conducted by a firing signal from a firing controller 300. The conduction conducts the switch 15 by inputting an operation mode signal IVN and a signal of a defect detector 200 for detecting the occurrence of a ground-fault defect F in the system 3 through an AND element A1 to the controller 300 when the converter 1 inverts. Thus, the reactor 10 is shortcircuited, and the commutation impedance is reduced from the forward converting operation time.

Description

【発明の詳細な説明】 この発明は、交直変換器の制御装置に関する。[Detailed description of the invention] The present invention relates to a control device for an AC/DC converter.

第1図に、直流送電システムに用いられる従来の交直変
換装置の主回路を示す。図において、■は交直変換器で
あって、半導体スイッチング素子例えばサイリスクバル
ブS1〜S6をブリッジ接続して構成される。2は交直
変換器用の変圧器、3ば3相の交流送電系統、4は直流
送電系統であ。この構成において、交直変換器1のイン
バータ運転時、即ち、直流電力を交流電力に変換する逆
変換動作時には、各サイリスタバルブS1〜S6が図示
しない制御装置から点弧信号をこの順序で受けてそれぞ
れ120°(電気角)の間づつターンオンする。第2図
はこの逆変換動作時の各サイリスクバルブのアノード・
カソード間電圧■へ−Kを示したもので、Tはサイリス
クバルブがターンオフ状態からターンオフ状態に移行す
るのに必要な逆電圧期間であって、一般に転流余裕角と
呼ばれ、通常、これが8.66°(400μsec相当
の電気角)以上であるとターンオフ可能であるが、8.
64°以下になるとターンオフ不能となって転流失敗と
なる。この転流余裕角γは、下記式で表わされ、 但し、β:制御進み角 Xi:転流インピーダンス ■d:直流電流 Ei:バルブ巻線電圧 該(1)式から明らかな如く、変圧器2のバルブ巻線電
圧E1が小さくなると減少することが分がる。
FIG. 1 shows the main circuit of a conventional AC/DC converter used in a DC power transmission system. In the figure, the reference numeral ``■'' denotes an AC/DC converter, which is constructed by connecting semiconductor switching elements such as silice valves S1 to S6 in a bridge manner. 2 is a transformer for an AC/DC converter, 3 is a three-phase AC transmission system, and 4 is a DC transmission system. In this configuration, during inverter operation of the AC/DC converter 1, that is, during a reverse conversion operation to convert DC power to AC power, each thyristor valve S1 to S6 receives a firing signal in this order from a control device (not shown), and each It turns on every 120 degrees (electrical angle). Figure 2 shows the anode and
The voltage between the cathodes ■ and -K is shown, and T is the reverse voltage period required for the thyrisk valve to transition from the turn-off state to the turn-off state, which is generally called the commutation margin angle, and is usually Turn-off is possible if it is 8.66° (electrical angle equivalent to 400 μsec) or more, but 8.
When the angle is less than 64°, turn-off becomes impossible and commutation fails. This commutation margin angle γ is expressed by the following formula, where β: Control advance angle Xi: Commutation impedance d: Direct current Ei: Valve winding voltage As is clear from equation (1), the transformer It can be seen that as the valve winding voltage E1 of No. 2 becomes smaller, it decreases.

このバルブ巻線電圧Eiと転流余裕角γとの関係を第3
図に示す。
The relationship between this valve winding voltage Ei and commutation margin angle γ is expressed as
As shown in the figure.

このように、バルブ巻線電圧Eiが所定レベルより減少
すると転流余裕角γ< 8.64°となって」二記転流
失敗が起こることになるが、従来は、この転流失敗が起
こると交直変換器1の運転を、一旦、停止させる制御を
行っているので、電力の供給が中断され、送電系統に動
揺を与えると云う問題があり、特に、単独直流送電によ
り大電力を送電するような場合にはこの電力系統の動揺
は著しい。
In this way, when the valve winding voltage Ei decreases below a predetermined level, the commutation margin angle γ becomes less than 8.64°, and a commutation failure occurs. Conventionally, this commutation failure occurs. Since the operation of the AC/DC converter 1 is temporarily stopped, there is a problem that the power supply is interrupted and the power transmission system is disturbed, especially when large power is transmitted by independent DC power transmission. In such a case, the power system will experience significant fluctuations.

勿論、上記転流失敗を防ぐ為に、従来、種々なる方法、
例えば、交流送電系統地絡事故等による電圧低下時に制
御進み角βを大きしたり、直流電流Idを絞り込んだり
する制御方法が開発されているが、現状では、交流送電
系統の電圧が50〜60%に低下すると転流失敗の継続
)く避けられないので、交直変換器を具える直流送シス
テムの信頼性は通常の交流送電系統に較へて極めて低い
と云う問題がある。
Of course, in order to prevent the above commutation failure, various methods have been used in the past.
For example, control methods have been developed that increase the control advance angle β or narrow down the DC current Id when the voltage drops due to a ground fault in the AC transmission system. %, it is unavoidable that commutation failure continues), so there is a problem that the reliability of a DC transmission system equipped with an AC/DC converter is extremely low compared to a normal AC transmission system.

この発明は、上記従来の問題点に鑑みてなされたもので
、交直変換器用変圧器の交直変換器側もしくは交流系統
側にインピーダンス素子を挿入し、上記交流系統側に事
故が発生した場合に交直変換器が逆変換動作中であるこ
とを条件として上記インピーダンス素子を短絡する構成
とすることによって、従来に比し、交流系統の外乱に強
く、交直変煩器を具える電力系統の信頼性を大巾に高め
ることができる交直変換器の制御装置を提供することを
目的とする。
This invention was made in view of the above-mentioned conventional problems, and an impedance element is inserted into the AC/DC converter side or the AC system side of an AC/DC converter transformer, so that when an accident occurs on the AC system side, the AC/DC converter By configuring the impedance element to be short-circuited when the converter is in the process of inverse conversion, it is more resistant to disturbances in the AC system than before, and improves the reliability of power systems equipped with AC/DC converters. It is an object of the present invention to provide a control device for an AC/DC converter that can be greatly improved.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図は単相表示であるが第1図と同一符号は第1図の
ものと同じ構成要素を示している。10はインピーダン
ス素子、即ち、リアクトルであって、交直変換器2の交
流端子側各相と変圧器2のバルブ巻線側各相との間に直
列に挿入されており、両端間に双方向性半導体スイッチ
15が並列に接続されている。この双方向性半導体スイ
ッチ15は逆並列されたサイリスクやゲートターンオフ
サイリスク等を用いて構成されており、点弧制御器30
0から点弧信号を受けて導通すなわち閉路する。100
は交流変成器であって、交流送電系統3の交流母線50
の電圧を検出して故障検出器200に入力する。故障検
出器200は交流送電系統3に地絡事故F等が発生して
交流母線5゜の電圧が降下し、交流変成器1ooがらの
入力が所定値以下に減少すると事故信号をアンド素子A
lに送出する。このアンド素子A1には交直変換器1の
インパーク運転時に運転モード信号INVカ供給すれ、
その出力は点弧指令信号として点弧制御器300に入力
される。
Although FIG. 4 shows a single phase, the same reference numerals as in FIG. 1 indicate the same components as in FIG. Reference numeral 10 denotes an impedance element, that is, a reactor, which is inserted in series between each phase on the AC terminal side of the AC/DC converter 2 and each phase on the valve winding side of the transformer 2. Semiconductor switches 15 are connected in parallel. This bidirectional semiconductor switch 15 is constructed using anti-parallel circuits, gate turn-off circuits, etc., and includes an ignition controller 30.
It receives an ignition signal from 0 and becomes conductive or closed. 100
is an AC transformer, which is connected to the AC bus 50 of the AC power transmission system 3.
voltage is detected and input to the fault detector 200. The fault detector 200 transmits a fault signal to an AND element A when a ground fault F or the like occurs in the AC power transmission system 3 and the voltage of the AC bus 5° drops and the input to the AC transformer 1oo decreases below a predetermined value.
Send to l. An operation mode signal INV is supplied to this AND element A1 during the impark operation of the AC/DC converter 1.
The output is input to the ignition controller 300 as an ignition command signal.

次に、この装置の動作について説明する。Next, the operation of this device will be explained.

今、交直変換器1が順変換動作を行い、直流送 1電系
統4に直流電力を給電しているものとすると ”、アン
ド素子AIには運転モード信号INVが供 −給されな
いので、交流送電系統3に地絡事故が発生しても該アン
ド素子は出力せず、点弧制御器300が点弧信号を送出
することはない。この為、双方向性半導体スイッチ15
ば開路したままとなるので、交直変換器1側から見た転
流インピーダンスXiは、 X1=Xt+XR’−(2) 但し、Xt:変圧器2の転流リアクタンス分XR:リア
クトル10のりアクタンス となる。転流インピーダンスXiは、通常、例えば、変
圧器2の自己容量の20%程度に選定されているので、
上記(2)式のXiの値がこの20%値になるようにX
tとXRを選定しておくことにより、交直変換器1にア
ーム短絡が発生しても、従来通りの短絡電流抑制効果を
得ることができる。
Now, suppose that the AC/DC converter 1 performs a forward conversion operation and supplies DC power to the DC transmission system 4. Since the operation mode signal INV is not supplied to the AND element AI, the AC power is transmitted. Even if a ground fault occurs in the system 3, the AND element will not output and the ignition controller 300 will not send out an ignition signal.For this reason, the bidirectional semiconductor switch 15
Since the circuit remains open, the commutation impedance Xi seen from the AC/DC converter 1 side is: . The commutation impedance Xi is usually selected to be, for example, about 20% of the self-capacity of the transformer 2, so
X so that the value of Xi in equation (2) above becomes this 20% value
By selecting t and XR in advance, even if an arm short circuit occurs in the AC/DC converter 1, it is possible to obtain the same short circuit current suppressing effect as before.

交直変換器1がインバータ運転される時には、今度は、
運転モード信号INVがアンド素子A1に入力されるこ
とにより、交流送電系統3に地絡事故Fが発生して交流
母線50の電圧が所定値以下に降下すると、該アンド素
子AIが故障検出器200の事故信号を受けて出力する
。この為、制御器300が動作して点弧信号を送出する
ので、双方向性半導体スイッチ15が閉路しリアクトル
10を短絡する。この結果、転流インピーダンスX+は
、 Xl−Xt −(3) となり、整流器運転時より減少する。
When the AC/DC converter 1 is operated by an inverter, this time,
By inputting the operation mode signal INV to the AND element A1, when a ground fault F occurs in the AC power transmission system 3 and the voltage of the AC bus 50 drops below a predetermined value, the AND element AI activates the fault detector 200. output after receiving the accident signal. Therefore, the controller 300 operates and sends out an ignition signal, so the bidirectional semiconductor switch 15 closes and the reactor 10 is short-circuited. As a result, the commutation impedance X+ becomes Xl-Xt-(3), which is smaller than when the rectifier is in operation.

このように、インバータ運転時には、転流インピーダン
スXiが減少する為に、前記バルブ巻線電圧EiA<減
少しても、転流余裕角γの減少は抑えられる。即ち、例
えば、転流インピーダンスXiが整流器運転時の1/2
になるようにXRを選定してあれば、Eiが1/2にな
っても、Tの値は変わらず、交流送電系統3の電圧が通
常運転時の(50〜60%)/2=25〜30%に落ち
ても前記転流失敗を起こすことなく運転することができ
る。
In this manner, during inverter operation, the commutation impedance Xi decreases, so even if the valve winding voltage EiA<decreases, the decrease in the commutation margin angle γ is suppressed. That is, for example, the commutation impedance Xi is 1/2 that of the rectifier operation.
If XR is selected so that Ei becomes 1/2, the value of T will not change, and the voltage of AC power transmission system 3 will be (50 to 60%)/2 = 25 during normal operation. Even if the ratio drops to ~30%, the operation can be performed without causing the commutation failure.

なお、上記実施例では、インピーダンス素子であるリア
クトル10が交直変換器1と変圧器2の間に挿入されて
いるが、該リアクトル10は変圧器2の交流送電系統3
側に直列、に挿入しても良い。
In the above embodiment, the reactor 10, which is an impedance element, is inserted between the AC/DC converter 1 and the transformer 2.
It can also be inserted in series on the side.

また、上記実施例では、交流送電系統の事故を交流電圧
の変化により検出しているが、交流電流の変化や事故発
生時に生ずる進行波検出等により検出するようにしても
良い。
Furthermore, in the embodiments described above, faults in the AC power transmission system are detected by changes in the AC voltage, but they may be detected by changes in the AC current or detection of traveling waves that occur when a fault occurs.

以上の如く、この発明によれば、交直変換器用変圧器と
直列にインピーダンス素子を挿入して交直変換器の逆変
換動作時における交流送電系統の事故時には上記インピ
ーダンス素子を短絡して交直変換器の転流インピーダン
スを減少させる構成としたことにより、交流系統の外乱
に強く、交直変換器を具える直流送電システムの信頼性
を大中に高めることができる。
As described above, according to the present invention, an impedance element is inserted in series with the transformer for the AC/DC converter, and in the event of an accident in the AC power transmission system during the inverse conversion operation of the AC/DC converter, the impedance element is short-circuited and the AC/DC converter is By adopting a configuration in which the commutation impedance is reduced, it is resistant to disturbances in the AC system, and the reliability of the DC power transmission system including the AC/DC converter can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の交直変換装置の主回路部分を示す回路図
、第2図は上記交直変換装置のサイリスクバルブの電圧
波形図、第3図は転流余裕角とバルブ巻線電圧との関係
を示す図、第4図はこの発明の一実施例による交直変換
器の制御装置の回路図である。 図において、1−交直変換器、2−交直変換器用変圧器
、3−交流送電系統、4−直流送電系統、10−、−リ
アクトル、15−双方向性半導体スイッチ、5〇−交流
母線、1oo−交流変成器、20〇−故障検出器、30
0−制御器、AI−アンド素子 なお、図中、同一符号は同一または相当部分を示す。 代理人、大岩増雄 =337 VA−に 0.5P、LJ 1.OP、LI
Fig. 1 is a circuit diagram showing the main circuit part of a conventional AC/DC converter, Fig. 2 is a voltage waveform diagram of the silisk valve of the above AC/DC converter, and Fig. 3 is a diagram showing the commutation margin angle and valve winding voltage. FIG. 4, a diagram showing the relationship, is a circuit diagram of a control device for an AC/DC converter according to an embodiment of the present invention. In the figure, 1-AC/DC converter, 2-AC/DC converter transformer, 3-AC power transmission system, 4-DC power transmission system, 10-, -reactor, 15-bidirectional semiconductor switch, 50-AC bus, 1oo - AC transformer, 200 - Fault detector, 30
0-controller, AI-AND element. In the drawings, the same reference numerals indicate the same or corresponding parts. Agent, Masuo Oiwa = 337 VA- 0.5P, LJ 1. OP, LI

Claims (1)

【特許請求の範囲】[Claims] 交直変換器に接続される該交直変換器用変圧器の上記交
直変換器側もしくは交流系統側に挿入されたインピーダ
ンス素子、該インピーダンス素子に並列接続された双方
向性半導体スイッチ及び上記交流系統の事故を検出する
故障検出器を有し、該故障検出器が出力した時に上記交
直変換器が逆変換動作中であることを条件に上記双方向
性半導体スイッチが閉路されることを特徴とする交直変
換器の制御装置。
An impedance element inserted into the AC/DC converter side or the AC system side of the AC/DC converter transformer connected to the AC/DC converter, a bidirectional semiconductor switch connected in parallel to the impedance element, and an accident in the AC system. An AC/DC converter comprising a fault detector for detecting a fault, wherein the bidirectional semiconductor switch is closed on the condition that the AC/DC converter is in an inverse conversion operation when the fault detector outputs an output. control device.
JP58137103A 1983-07-25 1983-07-25 Controller of ac/dc converter Pending JPS6026469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137103A JPS6026469A (en) 1983-07-25 1983-07-25 Controller of ac/dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137103A JPS6026469A (en) 1983-07-25 1983-07-25 Controller of ac/dc converter

Publications (1)

Publication Number Publication Date
JPS6026469A true JPS6026469A (en) 1985-02-09

Family

ID=15190921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137103A Pending JPS6026469A (en) 1983-07-25 1983-07-25 Controller of ac/dc converter

Country Status (1)

Country Link
JP (1) JPS6026469A (en)

Similar Documents

Publication Publication Date Title
US5771161A (en) Uninterruptable capability for an active power line conditioner
JP2695941B2 (en) Uninterruptible power system
JPS62156576A (en) Method and device for testing trouble of control turn-off semiconductor element
US4107771A (en) Circuit for shutting down an inverter
JPH08205423A (en) Uninterruptible power supply
JPS6026469A (en) Controller of ac/dc converter
JPH05344738A (en) Parallel redundancy invertor
JPS6347071B2 (en)
JP2023091301A (en) Power conversion apparatus
JPH09182461A (en) Npc inverter
JPH09172782A (en) Main circuit protection device for inverter
JPH08237952A (en) Controller for ac/dc converter
SU1252881A1 (en) Device for controlling rectifier converter of a.c.voltage to d.c.voltage with reactive energy accumulator at output
JPS5825032B2 (en) Bypass pair control device for thyristor conversion device
JPS63261407A (en) Power supply circuit
JPS5927184B2 (en) Stopping method of converter
JPH1052051A (en) Pulse width modulation converter device
JPH0159822B2 (en)
JPH04109835A (en) Uninterruptible ac power supply
JPH06303725A (en) Dc transmission system
JPS5863042A (en) No-break power source
JPS6334695B2 (en)
JPS6026475A (en) Controller of ac/dc converter
JPH0368620B2 (en)
JPS6147051B2 (en)