JPH0159822B2 - - Google Patents

Info

Publication number
JPH0159822B2
JPH0159822B2 JP56164213A JP16421381A JPH0159822B2 JP H0159822 B2 JPH0159822 B2 JP H0159822B2 JP 56164213 A JP56164213 A JP 56164213A JP 16421381 A JP16421381 A JP 16421381A JP H0159822 B2 JPH0159822 B2 JP H0159822B2
Authority
JP
Japan
Prior art keywords
current
converter
transmission system
voltage
setting value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56164213A
Other languages
Japanese (ja)
Other versions
JPS5866529A (en
Inventor
Yukio Yoshida
Kyoshi Takenaka
Hiroo Konishi
Atsumi Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
Hitachi Ltd
Original Assignee
Denryoku Chuo Kenkyusho
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho, Hitachi Ltd filed Critical Denryoku Chuo Kenkyusho
Priority to JP56164213A priority Critical patent/JPS5866529A/en
Publication of JPS5866529A publication Critical patent/JPS5866529A/en
Publication of JPH0159822B2 publication Critical patent/JPH0159822B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Description

【発明の詳細な説明】 本発明は、直流多端子送電系統の運転制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the operation of a DC multi-terminal power transmission system.

複数台の交直変換装置が直流送電線を介して並
列に接続される直流多端子送電系統(並列4単
子)の一系統分の構成が第1図に示されている。
図において、各交流系統11,12,13,14
は各変圧器21,22,23,24を介して各交
直変換器31,32,33,34に接続され、各
交直変換器31,32,33,34は直流リアク
トル41,42,43,44を介して直流送電線
51,52,53に接続されている。また、各交
直変換器31,32,33,34には制御保護装
置61,62,63,64が接続されており、こ
れら制御保護装置61,62,63,64には集
中制御装置60が接続されている。
FIG. 1 shows the configuration of one DC multi-terminal power transmission system (four parallel terminals) in which a plurality of AC/DC converters are connected in parallel via DC transmission lines.
In the figure, each AC system 11, 12, 13, 14
is connected to each AC/DC converter 31, 32, 33, 34 via each transformer 21, 22, 23, 24, and each AC/DC converter 31, 32, 33, 34 is connected to a DC reactor 41, 42, 43, 44. It is connected to DC power transmission lines 51, 52, and 53 via. Further, control protection devices 61, 62, 63, 64 are connected to each AC/DC converter 31, 32, 33, 34, and a central control device 60 is connected to these control protection devices 61, 62, 63, 64. has been done.

このような多端子送電系統を安定に運転するた
めに、並列多端子の各変換所のうちの1つの変換
所に直流系統の電圧の指定が行なわれ、他の残り
の変換所では定電流制御運転が行なわれる。この
ため各変換所の制御回路には定電流制御回路が設
けられ、その電流設定値は集中制御装置60にて
設定されて情報電送系を介して与えられる。ここ
で、上記電流設定値に関しては整流器運転を行う
全交直変換器の電流設定値の和100をインバータ
運転を行う全変換器の電流設定値の和102より所
定マージン分だけ大きくする電流マージン方式が
採用されている。第2図はこの電流マージン方式
を説明するもので、図においてΔIdは電流マージ
ンを表わしている。一般に直流送電では電力の方
向が接続している交流系統の電力需給の状態で決
まるので、整流器運転であつた変換装置が電力の
方向が変わることによつて逆変換器運転になるこ
ともある。このため、変換装置には整流器運転と
逆変換器運転のいずれも可能なように制御装置は
設計される。即ち一つの変換所には整流運転を行
うAVRと逆変換器運転を行う余裕角制御または
AVRが備えられ、これらが並列につながるよう
に構成される。
In order to operate such a multi-terminal power transmission system stably, the DC system voltage is specified for one of the parallel multi-terminal converter stations, and constant current control is applied to the remaining converter stations. Driving takes place. For this reason, a constant current control circuit is provided in the control circuit of each converter station, and the current setting value thereof is set by the central control device 60 and given via the information transmission system. Regarding the above current setting value, there is a current margin method in which the sum of the current setting values of all AC/DC converters that perform rectifier operation (100) is larger than the sum of the current settings of all converters that perform inverter operation (102) by a predetermined margin. It has been adopted. FIG. 2 explains this current margin method, and in the figure, ΔI d represents the current margin. Generally, in DC power transmission, the direction of power is determined by the power supply and demand conditions of the connected AC system, so a converter that was operating as a rectifier may switch to reverse converter operation due to a change in the direction of power. For this reason, the control device is designed so that the converter can perform both rectifier operation and inverse converter operation. In other words, one converter station has an AVR that performs rectification operation and a margin angle control or inverter operation that performs inverse converter operation.
AVRs are provided and these are configured to be connected in parallel.

このような構成において、電流方向に応じて最
適な制御回路が選択される。
In such a configuration, an optimal control circuit is selected depending on the current direction.

この電流マージン方式においては、いかなる状
態においてもこの電流マージンΔIdが常に正値で
あることが必要で、万一、電流マージンΔIdが零
又は負値となると異常な運転状態に入るおそれが
ある。このため、各変換所へ集中制御装置60か
ら電流設定値を正しく伝送する必要があり、情報
伝送系への依存度が高い。さらに情報伝送系の信
頼度は非常に高いものでなければならない。
In this current margin method, it is necessary that the current margin ΔI d is always a positive value under any condition, and if the current margin ΔI d becomes zero or a negative value, there is a risk of entering an abnormal operating state. . Therefore, it is necessary to correctly transmit the current setting value from the central control device 60 to each converter station, and there is a high degree of dependence on the information transmission system. Furthermore, the reliability of the information transmission system must be extremely high.

又、直流送電線で地絡事故が発生した場合には
断線地絡はまれであつてほとんどはアークを伴つ
た地絡と考えられ、従来より2単子直流送電では
地絡事故が発生すると一端直流電圧が下げられア
ーク消去時間の経過後に再起動を行う方式が採用
されており、多端子送電でも、この再起動方式が
採られている。
In addition, when a ground fault occurs in a DC transmission line, it is rare for a disconnection ground fault to occur, and in most cases it is considered to be a ground fault accompanied by an arc. Conventionally, in two-single DC transmission lines, when a ground fault occurs, A method is adopted in which the DC voltage is lowered and the restart is performed after the arc extinguishing time has elapsed, and this restart method is also used in multi-terminal power transmission.

この再起動方式によれば、変換器局停止に到る
重故障事故時にも、事故局を直流送電系統から分
離し健全な変換局のみで再送電を行うことができ
るので、送電信頼度を向上することができる。
According to this restart method, even in the event of a serious failure that leads to the shutdown of a converter station, the faulty station can be separated from the DC transmission system and power can be retransmitted using only healthy converter stations, improving power transmission reliability. can do.

然しながら本従来例のように多端子送電を行う
場合には、2端子送電を行う場合より情報伝送系
への依存度が前述したようにきわめて高く、情報
伝送系が故障している場合には再起動を行うこと
が困難となり、安全な運転を望むことができな
い。これは、情報伝送系が故障している場合に直
流送電系統で事故が発生すると、事故が直流送電
線で発生したか変換所で発生したかの区別が健全
な変換所では区別がつかないこと、更に、変換局
停止に到る重故障事故では事故局が故障検知によ
り直ちに停止し直流送電系統より分離されるの
で、各変換所の前記電流設定値間の相互関係がく
ずれ、新たに最適な電流設定値を得ることができ
ないこと等による。
However, when performing multi-terminal power transmission as in this conventional example, the degree of dependence on the information transmission system is much higher than when performing two-terminal power transmission, as described above, and if the information transmission system is out of order, it will not be possible to reuse it. It becomes difficult to start the vehicle, and safe driving cannot be expected. This means that if an accident occurs in the DC transmission system when the information transmission system is out of order, it is impossible to distinguish whether the accident occurred in the DC transmission line or at the conversion station at a healthy conversion station. Furthermore, in the event of a serious failure that leads to the stoppage of a converter station, the faulty station will immediately stop when the failure is detected and be isolated from the DC transmission system, so the correlation between the current setting values of each converter station will be disrupted, and a new optimum value will be established. This is due to the inability to obtain the current setting value, etc.

以上のように、多端子送電系統を電流マージン
方式により運転を行い、直流送電系統に事故が発
生すると再起動運転を行う従来の運転制御方法に
は、電流設定値などを伝送する情報伝送系が故障
すると、再起動運転を行うことが困難となり、又
安定な運転を行うことができないという欠点があ
つた。
As described above, the conventional operation control method of operating a multi-terminal power transmission system using the current margin method and restarting operation when an accident occurs in the DC transmission system requires an information transmission system that transmits current setting values, etc. When a failure occurs, it is difficult to restart operation, and stable operation cannot be performed.

本発明は上記従来の課題に鑑みてなされたもの
であり、その目的は、情報伝送系の故障時におい
ても再起動を行い、安定な直流送電を行うことが
できる直流多端子送電系統の運転制御方法を提供
することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide operational control of a DC multi-terminal power transmission system that can restart even when an information transmission system fails and perform stable DC power transmission. The purpose is to provide a method.

上記目的を達成するために、本発明は、直流送
電線に並列接続させた複数台の交直変換器の各定
電流制御回路に情報伝送系を介して電流設定値を
与え、整流器運転を行なう全交直変換器について
の電流設定値の和をインバータ運転を行なう全交
直変換器についての電流設定値の和より電流マー
ジン分だけ大きくとり、送電系統の地絡事故発生
時に一旦直流電圧を降下させその後送電系統を再
起動させる直流多端子送電系統の運転制御方法に
おいて、整流器運転を行う各交直変換器には直流
電流の増加に対して直流電圧が降下する電流−電
圧特性をそしてインバータ運転を行なう各交直変
換器には直流電流の増加に対して直流電圧が上昇
する電流−電圧特性で再起動を行う。再起動後の
定常状態での直流電流検出値と直流電圧検出値と
から各交直変換器の定電流制御回路に新たな電流
設定値を得ることを特徴とする。
In order to achieve the above object, the present invention provides a current setting value to each constant current control circuit of a plurality of AC/DC converters connected in parallel to a DC power transmission line through an information transmission system, and provides a current setting value to all the constant current control circuits for rectifier operation. The sum of the current setting values for AC/DC converters is set to be larger by the current margin than the sum of the current setting values for all AC/DC converters that perform inverter operation, and when a ground fault occurs in the power transmission system, the DC voltage is temporarily lowered and then the power is transmitted. In an operation control method for a DC multi-terminal power transmission system that restarts the system, each AC/DC converter that performs rectifier operation has a current-voltage characteristic in which the DC voltage drops as the DC current increases, and each AC/DC converter that performs inverter operation The converter is restarted with a current-voltage characteristic in which the DC voltage increases as the DC current increases. The present invention is characterized in that a new current setting value is obtained for the constant current control circuit of each AC/DC converter from the detected DC current value and the detected DC voltage value in a steady state after restart.

以下図面に基づいて本発明の好適な実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第3図は本発明に係る方法を説明するもので、
本実施例においても前述の第1図で説明したと同
様に従来の電流マージン方法及び再起動方式が採
用されている。第3図の電流−電圧特性は変換器
の電流−電圧特性を示したもので、131,13
2は各整流器局31,32の特性を、133,1
34は各インバータ変換局33,34の特性を示
す。又、110は全整流器局の特性を、120は
全インバータ局の特性を示したものである。ここ
で、本実施例では、情報伝送系故障時に送電系を
再起動して安定な運転を行うために、事故局を探
知し、これにより電流設定値の再調整を行うこと
としている。このため、本実施例では以下の運転
制御方法が採られる。すなわち、本実施例では、
整流器運転を行う変換所では、第3図に示される
様に、直流電流の増加に対して直流電圧が低下す
る電流−電圧特性をその変換器にもたせる様に前
述の制御回路が予め構成され、一方において、イ
ンバータ運転を行う変換所では、直流電流の増加
に対して直流電圧が上昇する電流−電圧特性をそ
の変換器にもたせる様に前述の制御回路が予め構
成されている。
FIG. 3 explains the method according to the invention,
In this embodiment as well, the conventional current margin method and restart method are adopted as explained in FIG. 1 above. The current-voltage characteristics in Figure 3 show the current-voltage characteristics of the converter, and are 131, 13
2 is the characteristic of each rectifier station 31, 32, 133, 1
34 indicates the characteristics of each inverter conversion station 33, 34. Further, 110 shows the characteristics of all rectifier stations, and 120 shows the characteristics of all inverter stations. Here, in this embodiment, in order to restart the power transmission system and perform stable operation when the information transmission system fails, the fault station is detected and the current setting value is readjusted accordingly. Therefore, in this embodiment, the following operation control method is adopted. That is, in this example,
In a converter station that performs rectifier operation, the above-mentioned control circuit is configured in advance so that the converter has a current-voltage characteristic in which the DC voltage decreases as the DC current increases, as shown in FIG. On the other hand, in a converter station that operates with an inverter, the above-mentioned control circuit is configured in advance so that the converter has a current-voltage characteristic in which the DC voltage increases as the DC current increases.

又、各変換器の電流−電圧特性は相異なる様に
予め設定することにより事故局を確実に検知する
ことができる。
Further, by setting the current-voltage characteristics of each converter to be different in advance, the fault station can be reliably detected.

まず、直流送電線地絡や転流失敗などの中、軽
故障時のように4端子の各局が全て健全な場合に
再起動が行なわれたとき、前もつて与えられた変
換器の電流−電圧特性に従つて再起動を行う。再
起動時の定常状態での動作点は第3図において全
整流器局の特性110と全インバータ変換局の特
性120の交点であるA点となり、各変換所は直
流電圧、直流電流の値から動作点がA点であるこ
とを探知する。その後事故前に与えられていた電
流設定値に変更することにより、安定な再送電を
行うことができる。
First, when restarting is performed when all four terminal stations are healthy, such as in the case of a minor failure such as a DC transmission line ground fault or commutation failure, the converter current given previously - Restart according to voltage characteristics. The operating point in the steady state upon restart is point A, which is the intersection of the characteristics 110 of all rectifier stations and the characteristics 120 of all inverter conversion stations in Figure 3, and each conversion station operates based on the values of DC voltage and DC current. Detect that the point is point A. After that, by changing the current setting to the value given before the accident, stable power retransmission can be performed.

又、重大な事故が発生してインバータ変換局3
4が系統から切り離れた場合には、再起動時の動
作点は第3図において、インバータ変換局33の
電流−電圧特性133と全整流局の電流−電圧特
性110の交点であるB点へ移動する。このよう
に、各変換所の電流−電圧特性を予め異なる値に
設定しておけば、各変換所は予め与えられていた
電流−電圧特性から切り離された局がいずれの局
であるかを知ることができる。切り離された変換
局の電流設定値は前もつて既知であるので、情報
伝送等にたよらずに、新たな電流設定値を各変換
局毎に決定することが可能となる。したがつて、
情報伝送系の故障時における系統の再起動がこの
新たに設定された電流設定値に基づいて行なわ
れ、安定な運転が可能となる。
In addition, a serious accident occurred and the inverter conversion station 3
4 is disconnected from the grid, the operating point at restart is to point B, which is the intersection of the current-voltage characteristics 133 of the inverter conversion station 33 and the current-voltage characteristics 110 of all rectifier stations in FIG. Moving. In this way, by setting the current-voltage characteristics of each converter station to different values in advance, each converter station can know which station is disconnected from the pre-given current-voltage characteristics. be able to. Since the current setting value of the separated conversion station is already known, it is possible to determine a new current setting value for each conversion station without relying on information transmission or the like. Therefore,
In the event of a failure in the information transmission system, the system is restarted based on this newly set current setting value, allowing stable operation.

以上のことは、整流器局の1つが直流系統から
切り離された場合も同様で、整流器局32が切り
離された場合には動作点はA点からC点へ移動す
る。この状態でインバータ局34が切離されると
動作点はD点となる。このD点への動作点の移動
は、当然各局が全て健全な状態からインバータ局
34、整流器局32が同時に切り離された場合も
同じである。そして、各局が全て健全な状態から
インバータ局33,34が切り離されると動作点
B′点となり、各局が全て健全な状態から、整流
器局31,32が切り離されると動作点はC′点と
なる。
The above also applies when one of the rectifier stations is disconnected from the DC system, and when the rectifier station 32 is disconnected, the operating point moves from point A to point C. When the inverter station 34 is disconnected in this state, the operating point becomes point D. This movement of the operating point to point D is of course the same even when the inverter station 34 and rectifier station 32 are disconnected at the same time when all stations are in a healthy state. Then, when the inverter stations 33 and 34 are disconnected from each other when all the stations are in a healthy state, the operating point
The operating point becomes point C' when the rectifier stations 31 and 32 are disconnected from each station in a healthy state.

尚、事故後の再送電は、上述の再起動が行なわ
れて事故の状態が確認されたのち、電流設定値が
新しく設定し直されてただちに通常の運転状態に
戻される。例えば整流器局の1つが系統から切り
離された場合は、残りの整流器局の電流値をその
分増加させるか、またはインバータ局の電流値を
その分減少させる。逆にインバータ局が切り離さ
れた場合は、残りのインバータ局の電流を増加さ
せるか、または整流器局の電流値をその分減少す
るといつた方法を取れば良い、このような仮の運
転状態は情報伝送系で最終的に最適な運転状態に
設定すればよいので、高信頼度で高速な情報伝送
系は本方式によれば不必要となる。
Note that in retransmission of power after an accident, after the above-mentioned restart is performed and the accident state is confirmed, the current setting value is newly set and the normal operating state is immediately returned. For example, if one of the rectifier stations is disconnected from the system, the current value of the remaining rectifier stations is increased by that amount, or the current value of the inverter station is decreased by that amount. Conversely, if an inverter station is disconnected, you can increase the current in the remaining inverter station or decrease the current value in the rectifier station by that amount. Since the transmission system can finally be set to the optimum operating state, a highly reliable and high-speed information transmission system is not necessary according to this method.

以上の説明は4単子送電系統の場合を例とした
が、端子局の数が異なつた場合、あるいは整流器
局及びインバータ局の数が異なつた場合も上記実
施例と本質的に異なるところはない。
The above explanation took the case of a four-single power transmission system as an example, but there is no essential difference from the above embodiment even if the number of terminal stations or the number of rectifier stations and inverter stations is different. .

次に本発明の好適な他の実施例を第4図に基づ
いて説明する。
Next, another preferred embodiment of the present invention will be described based on FIG.

第4図において、交直変換器32の出力電力す
なわち直流系統の電圧は直流電圧変成器601に
より検出され、その電流は直流電流変成器602
により検出されている。これら変成器601,6
02の検出値により関数発生器603は簡単には
例えば第5図に示される電流−電圧特性を交直変
換器にもたせることができる。尚、第5図におい
て、700は整流器局における特性を、800は
インバータ局における特性を各々示している。
In FIG. 4, the output power of the AC/DC converter 32, that is, the voltage of the DC system, is detected by the DC voltage transformer 601, and the current is detected by the DC current transformer 602.
has been detected by. These transformers 601, 6
Using the detected value 02, the function generator 603 can easily provide the AC/DC converter with the current-voltage characteristic shown in FIG. 5, for example. In FIG. 5, 700 indicates the characteristics at the rectifier station, and 800 indicates the characteristics at the inverter station.

ここで、第5図に示す特性を交直変換器にもた
せるためには、例えば、上記直流電圧検出値に応
じて第5図に示される直流電流指令値(設定値)
を作成し、前記制御保護装置62に内蔵された定
電流制御回路で直流電流をこの電流設定値に合致
する様に制御する。尚、このとき、各端子におけ
る交直変換器の電流−電圧特性を予め異なる様に
設定する。すなわち、第5図においてV0,I0を異
なつた値とする、ことにより事故の様子が確実に
判定され、然つて、情報伝送系からの電流設定値
によらない新たな電流設定値に従つた安定な運転
が行なわれる。各変換局の起動、再起動時の電圧
や電流設定値がいくらであり、そのときの運転状
態がどうなるかといつたことは、前もつて各変換
所で分つていることは必須条件となる。
Here, in order to provide the AC/DC converter with the characteristics shown in FIG. 5, for example, the DC current command value (set value) shown in FIG.
A constant current control circuit built into the control protection device 62 controls the DC current to match this current setting value. At this time, the current-voltage characteristics of the AC/DC converter at each terminal are set to be different in advance. That is, by setting V 0 and I 0 to different values in Fig. 5, the state of the accident can be determined reliably, and the new current setting value that is not based on the current setting value from the information transmission system can be used. This ensures stable operation. It is essential that each converter station knows in advance what the voltage and current settings are when starting and restarting each converter station, and what the operating state will be at that time.

尚、この実施例では、送電系の直流電圧検出値
を関数発生器に与えて電流設定値を作成し、これ
を定電流制御回路に与えて交直変換器に第5図に
示される再起動時の電流−電圧特性を与える例を
示したが、この第5図に示される特性は定電流制
御系のゲインを小さくすることによつても設定す
ることができる。この場合、交直変換器が整流器
運転のときには電流設定値がI0、又、インバータ
運転のときにはほぼ零とされ、このとき、各交直
変換器のゲインを異なつた値に設定すれば再起動
時の定常状態を事故の状態に異なる値とすること
ができる。
In this embodiment, the DC voltage detection value of the power transmission system is given to the function generator to create a current setting value, and this is given to the constant current control circuit to cause the AC/DC converter to restart as shown in Fig. 5. Although an example has been shown in which the current-voltage characteristics are given as follows, the characteristics shown in FIG. 5 can also be set by reducing the gain of the constant current control system. In this case, the current setting value is I 0 when the AC/DC converter is operating as a rectifier, and is approximately zero when operating as an inverter.In this case, if the gain of each AC/DC converter is set to a different value, the current setting value will be I 0 at the time of restart. Steady state can be different values to accident state.

以上説明したように、本発明によれば、情報伝
送系の故障時にも再起動を行うことができ、安定
した直流送電を行うことができる。
As described above, according to the present invention, it is possible to restart the information transmission system even in the event of a failure, and stable DC power transmission can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は並列4端子からなる多端子送電系統の
1系統分の構成図、第2図は電流マージン方式の
動作説明図、第3図は本発明の好適な第1実施例
の動作説明図、第4図は本発明の好適な第2実施
例に係る多端子送電系統の構成図、第5図は第2
実施例の動作説明図である。 11,12,13,14……交流系統、21,
22,23,24……変圧器、31,32,3
3,34……交直変換器、51,52,53……
直流送電線、61,62,63,64……制御保
護装置、60……集中制御装置。
Fig. 1 is a configuration diagram of one system of a multi-terminal power transmission system consisting of four terminals in parallel, Fig. 2 is an explanatory diagram of the operation of the current margin method, and Fig. 3 is an explanatory diagram of the operation of the first preferred embodiment of the present invention. , FIG. 4 is a configuration diagram of a multi-terminal power transmission system according to a second preferred embodiment of the present invention, and FIG.
FIG. 3 is an explanatory diagram of the operation of the embodiment. 11, 12, 13, 14... AC system, 21,
22, 23, 24...Transformer, 31, 32, 3
3, 34... AC/DC converter, 51, 52, 53...
DC power transmission line, 61, 62, 63, 64...control protection device, 60...central control device.

Claims (1)

【特許請求の範囲】[Claims] 1 直流送電線に並列接続された複数台の交直変
換器の各定電流制御回路に集中制御装置から情報
伝送系を介して電流設定値を与え、整流器運転を
行なう全交直変換器における電流設定値の和をイ
ンバータ運転を行なう全交直変換器の電流設定値
の和より電流マージン分だけ大きくとる直流多端
子送電系統の運転制御方法において、送電系統の
故障によつて停止後再起動するに当つて整流器運
転を行なう各交直変換器には直流電流の増加に対
して直流電圧が降下する電流−電圧特性を、そし
てインバータ運転を行なう各交直変換器には直流
電流の増加に対して直流電圧が上昇する電流−電
圧特性をそれぞれ予めもたせ、前記電流−電圧特
性は交直変換器ごとに相異なるように設定し、前
記特性に従つて再起動し、再起動後の定常運転状
態での直流電流検出値と直流電圧検出値から前記
定電流制御回路の電流設定値を新たな設定値に変
更し、以後の運転を前記新しい電流設定値を満足
させる電流−電圧特性に従つて運転することを特
徴とする直流多端子送電系統の運転制御方法。
1 A current setting value is given to each constant current control circuit of multiple AC/DC converters connected in parallel to a DC transmission line via an information transmission system from a central control device, and a current setting value is set in all AC/DC converters that perform rectifier operation. In the operation control method of a DC multi-terminal power transmission system, in which the sum of the current values is set to be larger than the sum of the current setting values of all AC/DC converters that perform inverter operation by the current margin, when restarting after stopping due to a failure in the power transmission system, Each AC/DC converter that operates as a rectifier has a current-voltage characteristic in which the DC voltage drops as the DC current increases, and each AC/DC converter that operates as an inverter has a current-voltage characteristic that the DC voltage increases as the DC current increases. Each AC/DC converter has a current-voltage characteristic in advance, and the current-voltage characteristic is set to be different for each AC/DC converter, and the DC/DC converter is restarted according to the characteristic. The current setting value of the constant current control circuit is changed to a new setting value based on the detected DC voltage value, and subsequent operation is performed according to the current-voltage characteristic that satisfies the new current setting value. Operation control method for DC multi-terminal power transmission system.
JP56164213A 1981-10-16 1981-10-16 Method of operating and controlling dc multiterminal transmission system Granted JPS5866529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164213A JPS5866529A (en) 1981-10-16 1981-10-16 Method of operating and controlling dc multiterminal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164213A JPS5866529A (en) 1981-10-16 1981-10-16 Method of operating and controlling dc multiterminal transmission system

Publications (2)

Publication Number Publication Date
JPS5866529A JPS5866529A (en) 1983-04-20
JPH0159822B2 true JPH0159822B2 (en) 1989-12-19

Family

ID=15788811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164213A Granted JPS5866529A (en) 1981-10-16 1981-10-16 Method of operating and controlling dc multiterminal transmission system

Country Status (1)

Country Link
JP (1) JPS5866529A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502005008932D1 (en) * 2005-09-22 2010-03-11 Siemens Ag CONTROL METHOD FOR A DC TRANSMISSION WITH SEVERAL CURRENT TRANSDUCERS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015974A (en) * 1973-06-15 1975-02-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015974A (en) * 1973-06-15 1975-02-20

Also Published As

Publication number Publication date
JPS5866529A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
US4475150A (en) Coordinated load commutated inverter protection system
JPS5849087B2 (en) Denriyuseigiyosoutio Sonata Kouatsuchiyokuriyusoudensouchi
EP0186849B1 (en) Control apparatus of ac/dc power converter
US4107771A (en) Circuit for shutting down an inverter
JPH0159822B2 (en)
JP2001218476A (en) Controller of motor
KR0133492Y1 (en) Apparatus for protecting siv from failure of circuit elements
JPH07193982A (en) Variable speed power generation system
JP2727277B2 (en) Method and apparatus for protecting thyristor converter
JP2634692B2 (en) Secondary overvoltage protection device for AC-excited synchronous machine
JPH0729741Y2 (en) Power supply circuit protector circuit
JPH01103173A (en) Control method for inverter
JPH04261336A (en) Protective device for system interconnection generator facility
JPH06121461A (en) Method of protecting parallel operation of uninterruptive power unit
JPS6338689Y2 (en)
JPS6026469A (en) Controller of ac/dc converter
JPS6240930B2 (en)
JPH0320978B2 (en)
JPS6359733A (en) Safety device for generator
JPS589593A (en) Control device for wound rotor induction motor
JPS63310370A (en) Switching power source
JPH0477560B2 (en)
JPS60141189A (en) Thyristor inverter operation protecting circuit
JPS58195474A (en) Pwm voltage inverter starting system
JPH0443175B2 (en)