JPS5819128A - Dc system and generator cooperation control system - Google Patents

Dc system and generator cooperation control system

Info

Publication number
JPS5819128A
JPS5819128A JP56115218A JP11521881A JPS5819128A JP S5819128 A JPS5819128 A JP S5819128A JP 56115218 A JP56115218 A JP 56115218A JP 11521881 A JP11521881 A JP 11521881A JP S5819128 A JPS5819128 A JP S5819128A
Authority
JP
Japan
Prior art keywords
generator
output
power
transmitted
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56115218A
Other languages
Japanese (ja)
Inventor
小西 博雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56115218A priority Critical patent/JPS5819128A/en
Publication of JPS5819128A publication Critical patent/JPS5819128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は例えば原子力などの大電源を複数の直流送電系
統に接続するときの制御方式に係り、特に、直流系地絡
時の原子力電源側交流系統の安定性を保つに好適な制御
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method when a large power source such as a nuclear power source is connected to multiple DC power transmission systems, and in particular maintains the stability of the nuclear power source side AC system in the event of a DC system ground fault. This invention relates to a control method suitable for.

電力需要の増大に対応して電力系統は拡大強化されてい
く一方、電源は遠隔化、大規模化し、系統運用の複雑化
と共に立地環境上の制約など種々の問題が生じてきてい
る。これら電力系統の問題に対処するだめの一方法とし
て、電力需要地から隔った地点に原子力発電所を設け、
それを直流で負荷地点まで直流で送電する方法が考えら
れている。第1図で説明を行うと、11〜14は原子力
発電機、21〜28は変換用変圧器、31〜38は交流
を直流(31〜34)、又は直流を交流(35〜38)
に変換する交直変換器、41〜48は直流電流を平滑す
るための直流リアクトル、51〜54は直流送電線、6
1は需要地の交流系統を示す。1σ0は発電機の接続さ
れた交流系統、需要地の交流系統及び直流系統の運転状
態を指令する系統指令装置、101〜104は系統指令
装置からの指令に従って前記発電機11〜14の起動・
停止、出力設定等を行う発電機制御回路、300゜30
9は系統指令装置100からの指令に従って前記交直変
換器31〜38を起動・停止、出力設定等を行う直流系
統指令装置、301〜308はこの直流系統指令装置の
指令に従って前記交直変換器31〜38の制御を行う変
換器制御回路である。
While electric power systems are being expanded and strengthened in response to increasing demand for electric power, power sources are becoming more remote and larger in scale, and various problems are arising, such as more complex system operations and environmental constraints. One way to deal with these power system problems is to set up nuclear power plants at locations far away from power demand areas.
A method is being considered in which the power is transmitted via direct current to the load point. To explain using Figure 1, 11 to 14 are nuclear power generators, 21 to 28 are conversion transformers, and 31 to 38 are AC to DC (31 to 34) or DC to AC (35 to 38).
41-48 are DC reactors for smoothing the DC current, 51-54 are DC transmission lines, 6
1 indicates the AC system in the demand area. 1σ0 is a system command device that commands the operating status of the AC system to which the generator is connected, the AC system and the DC system in the demand area, and 101 to 104 are the system command devices that start and operate the generators 11 to 14 according to commands from the system command device.
Generator control circuit for stopping, setting output, etc., 300°30
Reference numeral 9 denotes a DC system command device that starts/stops the AC/DC converters 31 to 38, sets output, etc. according to commands from the system command device 100, and 301 to 308 activates the AC/DC converters 31 to 38 according to commands from the DC system command device. This is a converter control circuit that controls 38.

このような直流系統において直流送電線で地絡事故が生
じた場合、たとえば4系統中の1系統で事故が生じた場
合は残りの健全な直流系の送電電力を夫々33%上げて
発電機の出力と送電出力とを等しくし発電機側交流系統
の過渡安定度を保つように直流系の制御が行われる。し
かし、4系統中2系統以上で事故が発生すると、発電機
出力と直流系の送電電力とのバランスを保とうとすると
健全な直流系の過負荷耐量(一般には定格の33%過負
荷運転まで許容できるよう設計)を超えるだめ交流系統
の電力バランスが保てず、このままでは発電機が脱調し
交流系統がつぶれることになる。このような事故に対し
て原子力発電機には発電機の制御保護を行うため、パワ
ーロードアンバランスリレ(RLURア)が設けられて
いるが、直流送電線事故時には十分な動作をしない場合
が生じる。
If a ground fault occurs in a DC transmission line in such a DC system, for example, if a fault occurs in one of the four systems, the power transmitted by the remaining healthy DC systems will be increased by 33%, and the generator will be turned off. The DC system is controlled so as to equalize the output and the power transmission output and maintain the transient stability of the generator side AC system. However, if an accident occurs in two or more of the four systems, an attempt is made to maintain a balance between the generator output and the transmitted power of the DC system. (Designed to be able to do so) If the power balance of the AC system is not maintained, the generator will lose synchronization and the AC system will collapse. Nuclear power generators are equipped with a power load unbalance relay (RLURA) to control and protect the generator in the event of an accident like this, but it may not function adequately in the event of a DC transmission line accident. .

このことを第2図を用いて説明ず゛る1、第2図は4系
統のうちの2回線の直流送電線51.52で地絡事故が
時ノj・(、で生じた場合の直流系における電流・電力
の概略図を示す。地絡事故が発生すると直流系では過渡
的に過電流、低電圧となることから送電線地絡事故を検
出し、事故の起った変換器を時点t、で停止する。この
51.52に示すような直流系統地絡事故時における事
故電流は過渡的に増大するが、定電流制御(・積面の働
らきによりほぼ一定とされ、全直流電流もまた事故前の
一定値を維持する。一方、健全な直流系53゜54では
事故による電力の損失(事故回線では電圧低下により送
電電力は零である。)を補償するため33%増の過負荷
運転を時点t2以降行う。
This will be explained using Fig. 2.1. Fig. 2 shows the DC transmission line when a ground fault occurs in the DC transmission lines 51 and 52 of two of the four systems at A schematic diagram of current and power in the system is shown.When a ground fault occurs, there is a transient overcurrent and low voltage in the DC system, so a ground fault in the transmission line is detected, and the converter where the fault occurred is immediately The fault current at the time of a DC system ground fault as shown in 51.52 increases transiently. On the other hand, in a healthy DC system53,54, the excess power increases by 33% to compensate for the loss of power due to the accident (the transmitted power is zero due to voltage drop on the faulty line). Load operation is performed after time t2.

このため直流系の全電力Pdi’Tj事故により一旦5
0%まで送電電力が低下9 、+が、健全な直流系の過
負荷運転により送電電力を66.7%まで回復する。
For this reason, due to the DC system total power Pdi'Tj accident, 5.
The transmitted power drops to 0%, but the transmitted power recovers to 66.7% due to healthy overload operation of the DC system.

ところで、原子力発電機の前記PLUR,は一般にター
ビン出力と負荷(電流)のアンバランス40%以上かつ
電流減少割合40%/1oms以上で動作する。この場
合は動作せず、原子力の出力制御は行われない。このた
め発電機の接続された交流系統の過渡安定度が悪くなり
、原子力発電機全体の停止に至る。特に直流系では送電
線で事故が発生しても変換器の定電流制御機能により、
送電電力が低下したにもかかわらず、直流電流には変化
が生じないという不都合があるため、現在使用されてい
るPLURアの特性が電流の大きさ及び変化率のみを見
るものであるため動作せずこれに代って事故検出を行う
だめの装置が必要となる。
By the way, the PLUR of a nuclear power generator generally operates with an imbalance between turbine output and load (current) of 40% or more and a current reduction rate of 40%/1 oms or more. In this case, it does not operate and nuclear power output control is not performed. As a result, the transient stability of the AC system to which the generator is connected deteriorates, leading to the shutdown of the entire nuclear power generator. Especially in DC systems, even if an accident occurs on a power transmission line, the constant current control function of the converter allows
There is an inconvenience that there is no change in the DC current even though the transmitted power has decreased, so the characteristics of the currently used PLUR are those that only look at the magnitude and rate of change of the current, so it is not possible to operate. Instead, an additional device is required to detect accidents.

本発明の目的は上述した従来技術の欠点を除き交流系統
を安定に運転するだめの制御方式を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control system for stably operating an AC system, which eliminates the drawbacks of the prior art described above.

本発明は原子力先電機に接続された交流系統の過渡安定
度を改善するため、健全な直流系で送電可能な電力と原
子力発電機の出力電力の比較を行い、直流系で′送電可
能な電力に比べて原子力発電機の出力が大となった場合
のみ発電機の出力をある一定量減少させるようにした。
In order to improve the transient stability of an AC system connected to a nuclear power generator, the present invention compares the power that can be transmitted by a healthy DC system with the output power of a nuclear power generator, and calculates the amount of power that can be transmitted by a DC system. The output of the generator is reduced by a certain amount only when the output of the nuclear power generator becomes larger than the output of the nuclear power generator.

本発明の一実施例を第3図に示す。第1図と同じ番号の
ものは同じものを示すので異ったものについてのみ説明
すると、110は前記系統指令装置100からの信号で
原子力発電機の全出力値I、と前記系統指令装置300
からの信号で運転中の直流系を示す信号■2を入力とじ
、原子力発電機の全出力値が直流系の送電可能な全送電
電力より大きくなったとき1”なる信号を出力する出力
比較回路である。この回路の詳細を第4図に示す。第4
図においてPa1.Pd2・・・P a 4は各直流系
の最大許容送電電力を設定する設定器、SWI。
An embodiment of the present invention is shown in FIG. The same numbers as in FIG. 1 indicate the same things, so only the different ones will be explained. 110 is a signal from the system control device 100, which indicates the total output value I of the nuclear power generator, and the system control device 300.
An output comparison circuit that inputs the signal ■2 indicating the DC system in operation and outputs a signal that becomes 1 when the total output value of the nuclear power generator becomes greater than the total power that can be transmitted by the DC system. The details of this circuit are shown in Fig. 4.
In the figure, Pa1. Pd2...P a 4 is a setting device, SWI, that sets the maximum allowable transmission power of each DC system.

SW2・・・SW4は前記運転中の直流系を示す信号工
2に従ってスイッチ駆動回路SDにより直流系運転中は
オン、事故等により停止中はオフとなるスイッチ、SU
Mは11 とPdl + Pd21 P’+31 Pa
4の全て又はいずれかの和との差を求める加算器、CO
Mはこの差が正、即ち原子力発電機の全出力値■1が直
流系運転中の送電可能な全送電電力よりも大きくなった
とき゛) I I+、逆の場合は”0”なる信号を出力
する比較器である。この回路の出力01は前記系統指令
装置100に導びかれ、OIが+ 、I T+のときは
、原子力発電機の出力がある一定量だけ小さくなるよう
に前記発電機制御回路101〜104に出力減少指令が
出される。この動作により再び原子力発電機の全出力値
と運転中の直流系による送電可能な最大送電電力とが比
較され、前者が後者よりもまだ太きいときには再び原子
力発電機の出力がある一定量だけ小さくされ、最終的に
運転中の直流系による送電可能な最大送電電力が原子力
発電機の出力より大きくなったところで落ちつく。直流
系の送電電力が原子力発電機の出力よシ大きくなったと
きの出力の差は直流系に定電力制御機能をもたせること
により直流系の送電電力と原子力発電機の出力とをバラ
ンスさせることができる。従って原子力発電機の出力と
直流系の出力とのバランスが常に保たれ発電機の接続さ
れた交流系統の過渡安定度が悪化するのを防止すること
ができる。
SW2...SW4 are switches SU that are turned on when the DC system is in operation and turned off when the DC system is stopped due to an accident, etc., by the switch drive circuit SD according to the signal engineer 2 indicating the DC system in operation.
M is 11 and Pdl + Pd21 P'+31 Pa
Adder that calculates the difference between all or any of the sums of 4, CO
M is when this difference is positive, that is, when the total output value of the nuclear power generator ■1 becomes larger than the total transmitted power that can be transmitted during DC system operation. It is a comparator that The output 01 of this circuit is led to the system control device 100, and when OI is + or IT+, it is output to the generator control circuits 101 to 104 so that the output of the nuclear power generator is reduced by a certain amount. A reduction order is issued. Through this operation, the total output value of the nuclear power generator is again compared with the maximum transmission power that can be transmitted by the operating DC system, and if the former is still larger than the latter, the output of the nuclear power generator is again reduced by a certain amount. The system eventually reaches a point where the maximum power that can be transmitted by the operating DC system becomes greater than the output of the nuclear power generator. When the power transmitted by the DC system is larger than the output of the nuclear power generator, the difference in output can be solved by providing a constant power control function to the DC system to balance the power transmitted by the DC system and the output of the nuclear power generator. can. Therefore, the balance between the output of the nuclear power generator and the output of the DC system is always maintained, and it is possible to prevent deterioration of the transient stability of the AC system to which the generator is connected.

上述の実施例では直流系統が4系統からなる場合につい
て説明したが、系統がこれより増加した場合も減少した
場合もこの実施例から簡単に推察でき同様の効果を得る
ことができることは明らかである。
In the above example, the case where the DC system consists of four systems was explained, but it is clear that it is possible to easily infer from this example and obtain the same effect even when the number of systems is increased or decreased. .

なお、運転中の直流系を示す信号■2は直流系統指令装
置300からの運転指令信号と図中には不記であるが各
直流系統に設けられた故障検出装置からの直流送電線地
絡、インバータ負荷しゃ断等の事故検出信号により簡単
に作成することができる。
Note that the signal 2 indicating the DC system in operation is an operation command signal from the DC system command device 300, and although it is not shown in the diagram, it is a DC transmission line ground fault signal from a fault detection device installed in each DC system. , can be easily created using accident detection signals such as inverter load cutoff.

直流系統が4系統からなる場合のもう一つの実施例の原
子力発電機の出力減少指令作成回路を第5図に示す。3
11〜314は各直流系統の直流送電電線地絡、インバ
ータ負荷しゃ断等、直流系統の送電電力が停止する場合
の事故を検出する事故検出装置(事故検出時”1″を出
力)、ANはアンド回路、EXは排他論理回路、ORは
オア回路で、この回路は2つ以上の事故検出装置が”1
″なる出力を出したとき出力02が”■++となる動作
をする。従って直流系の過負荷耐量を133%と仮定す
ると、直流系統4つのうちl系統がダウンしても他の健
全な直流系で過負荷運転することにより、発電機の出力
と直流系の送電電力をバランスすることが可能であるが
、2系統以上ダウレしたときは第5図に示す回路の出力
がI nとなるのでこれにより発電機の出力を前述の実
施例(第3図)と同様に減少させることにより発電機の
つながれた交流系の過渡安定度が悪化するのを防止する
ことかでき、前述同様の効果を得ることができる。
FIG. 5 shows an output reduction command generation circuit for a nuclear power generator according to another embodiment in which the DC system consists of four systems. 3
11 to 314 are accident detection devices (outputs "1" when an accident is detected) that detect accidents when the power transmission in the DC system is stopped, such as ground faults in DC transmission lines and inverter load cutoffs in each DC system, and AN is an AND The circuit, EX is an exclusive logic circuit, OR is an OR circuit, and this circuit has two or more fault detection devices "1"
When the output becomes ``, the output 02 becomes ``■++''. Therefore, assuming that the overload capacity of the DC system is 133%, even if one of the four DC systems goes down, overload operation will be performed on the other healthy DC systems, which will increase the output of the generator and the transmitted power of the DC system. However, when two or more systems fail, the output of the circuit shown in Figure 5 becomes In, so the output of the generator can be adjusted as in the previous example (Figure 3). By decreasing the amount, it is possible to prevent the transient stability of the AC system connected to the generator from deteriorating, and it is possible to obtain the same effect as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象を示す系統図、第2図は第1図系
統事故時の直流系統の電流電圧波形概略図、第3図は本
発明の一実施例を示す制御回路ブロック線図、第4図は
第3図中の出力比較回路のブロック線図、第5図は本発
明の他の実施例による発電機出力減少指令作成回路であ
る。 11〜14・・・原子力発電機、21〜28・・・変換
用変圧器、31〜38・・・交直変換器、41〜48・
・・直流リアクトル、51〜54・・・直流送電線、6
1・・・交流系統(負荷)、101〜104・・・発電
機制御回路、100・・・系統指令装置、300・・・
直流系妬10 笥2 口 賦30 躬 4回 D 荀50
Fig. 1 is a system diagram showing the object of the present invention, Fig. 2 is a schematic diagram of current and voltage waveforms of the DC system at the time of a system fault in Fig. 1, and Fig. 3 is a control circuit block diagram showing an embodiment of the present invention. , FIG. 4 is a block diagram of the output comparison circuit in FIG. 3, and FIG. 5 is a generator output reduction command generation circuit according to another embodiment of the present invention. 11-14... Nuclear power generator, 21-28... Conversion transformer, 31-38... AC/DC converter, 41-48.
...DC reactor, 51-54...DC transmission line, 6
1... AC system (load), 101-104... Generator control circuit, 100... System command device, 300...
DC envy 10, 2, payment 30, 4 times D, 50

Claims (1)

【特許請求の範囲】[Claims] 1、発電機の出力を複数の直流送電系統により電力需要
地に送電する直流送電系統において、直流系で送電可能
な許容最大電力と発電機の出力電力の比較を行い、後者
が前者よりも大きいとき発電機の出力を減少させること
を特徴とする直流系と発電機との協調制御方式。
1. In a DC transmission system where the output of the generator is transmitted to the power demand area through multiple DC transmission systems, the maximum allowable power that can be transmitted in the DC system is compared with the output power of the generator, and the latter is larger than the former. A cooperative control system between the DC system and the generator, which is characterized by reducing the output of the generator when
JP56115218A 1981-07-24 1981-07-24 Dc system and generator cooperation control system Pending JPS5819128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115218A JPS5819128A (en) 1981-07-24 1981-07-24 Dc system and generator cooperation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115218A JPS5819128A (en) 1981-07-24 1981-07-24 Dc system and generator cooperation control system

Publications (1)

Publication Number Publication Date
JPS5819128A true JPS5819128A (en) 1983-02-04

Family

ID=14657280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115218A Pending JPS5819128A (en) 1981-07-24 1981-07-24 Dc system and generator cooperation control system

Country Status (1)

Country Link
JP (1) JPS5819128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241017A (en) * 1989-03-15 1990-09-25 Sanken Electric Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241017A (en) * 1989-03-15 1990-09-25 Sanken Electric Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
CN103378603B (en) Open-circuit fault detection device, inverter controller, energy conversion system and method
US6339316B1 (en) Exciter for generator
JPS5849087B2 (en) Denriyuseigiyosoutio Sonata Kouatsuchiyokuriyusoudensouchi
EP0186849A2 (en) Control apparatus of AC/DC power converter
RU188256U1 (en) Power supply control device for an industrial energy district with distributed generation sources during a short circuit on a redundant section of substation buses
JPS5819128A (en) Dc system and generator cooperation control system
JP2001298865A (en) Operation monitoring device for dispersed power source
Dougherty et al. Power system stability considerations with dynamically responsive DC transmission lines
JPS6350941B2 (en)
WO2020216581A1 (en) System and method for supplying electric power to a grid and for supporting the grid
JP2022148181A (en) Three-phase power conversion system for electric railway
WO2024042595A1 (en) Dc power transmission system and dc power transmission method
JPS61102124A (en) Frequency controller for direct current transmission system
Roe et al. Computer control of an industrial electrical system with in-plant generation
JP3268017B2 (en) Static variable voltage variable frequency power supply
JPS63242126A (en) Failure detector of generator
CN111337828A (en) Power generation of power plant becomes group and high changer electrical measurement system who is equipped with
JPS58215934A (en) Control system for power facility
Osburn et al. Transient excitation boosting at Grand Coulee third powerplant
JPS60241715A (en) Operation system of dc transmitter
JPS5846836A (en) Network protector
JP2001095156A (en) Power distribution system
JPS59149718A (en) Dc line protecting device
JPS61210826A (en) Controller for dc multi-terminal power transmission
JPS6336212B2 (en)