JPS6350941B2 - - Google Patents

Info

Publication number
JPS6350941B2
JPS6350941B2 JP59009767A JP976784A JPS6350941B2 JP S6350941 B2 JPS6350941 B2 JP S6350941B2 JP 59009767 A JP59009767 A JP 59009767A JP 976784 A JP976784 A JP 976784A JP S6350941 B2 JPS6350941 B2 JP S6350941B2
Authority
JP
Japan
Prior art keywords
power generation
distributed power
grid
voltage
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59009767A
Other languages
Japanese (ja)
Other versions
JPS60156229A (en
Inventor
Koichi Mitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP59009767A priority Critical patent/JPS60156229A/en
Publication of JPS60156229A publication Critical patent/JPS60156229A/en
Publication of JPS6350941B2 publication Critical patent/JPS6350941B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、例えば太陽光発電装置、燃料電池
などの分散型発電設備の系統停止時解列・保護装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a system for disconnecting and protecting distributed power generation facilities such as solar power generation devices and fuel cells during system outages.

周知のように、太陽光発電装置、燃料電池など
の分散型発電設備では発生電力がインバータによ
つて交流に変換された後、系統と連系される。こ
のような分散型発電設備が連系された系統の事故
時あるいは作業停電操作時など、系統の運転状態
から停止状態への変化時に、分散型発電設備を系
統から解列し、分散型発電設備による系統への逆
励磁を防止するための保護回路が必要である。
As is well known, in distributed power generation equipment such as solar power generation devices and fuel cells, generated power is converted into alternating current by an inverter and then connected to the grid. In the event of an accident in a system to which such distributed power generation equipment is connected, or when the system changes from an operating state to a stopped state, such as during a work power outage, the distributed power generation equipment will be disconnected from the grid and the distributed power generation equipment will be disconnected from the system. A protection circuit is required to prevent reverse excitation of the grid due to

従来、小水力発電などを系統へ連系する場合
は、通信回線を利用した転送しや断方式が採用さ
れている。しかし、系統に数多く連系される小容
量の分散型発電設備に転送しや断方式を適用する
ことは設備的にも経済的にも困難であるため、
個々の分散型発電設備自体において、系統の停止
を検出し、系統から解列する装置の開発が切望さ
れている。
Conventionally, when connecting small hydropower generation to the grid, a transfer and disconnection method using communication lines has been adopted. However, it is difficult to apply the transfer and disconnection method to small-capacity distributed power generation facilities that are connected to the grid in large numbers, both in terms of equipment and economics.
There is a strong need for the development of a device that detects grid outage and disconnects each individual distributed power generation facility from the grid.

この発明は、上記事情に基づいてなされたもの
であり、その目的とするところは、系統の運転状
態から停止状態への変化を分散型発電設備と系統
との連系点における高次調波レベルの変動として
検知することにより、確実に系統から解列するこ
とが可能な分散型発電設備の系統停止時解列・保
護装置を提供しようとするものである。
This invention was made based on the above circumstances, and its purpose is to reduce the level of high-order harmonics at the interconnection point between the distributed power generation equipment and the grid to reduce the change from the operating state to the stopped state of the grid. The present invention aims to provide a system disconnection/protection device for distributed power generation equipment that can be disconnected from the system reliably by detecting fluctuations in the system.

先ず、この発明の原理について説明する。第1
図において、分散型発電設備11は系統12に連
系されており、この系統12内には線路開閉器1
3、変電所14のしや断器15、変圧器16等が
設けられている。
First, the principle of this invention will be explained. 1st
In the figure, a distributed power generation facility 11 is connected to a grid 12, and a line switch 1 is included in this grid 12.
3. The substation 14 is equipped with a disconnector 15, a transformer 16, etc.

ところで、前記分散型発電設備11を構成する
インバータには種々の方式があるが、何れもスイ
ツチング素子を用いた静止形であり、有効電力を
系統に供給するとともに、インバータ方式固有の
高次調波も発生している。系統にこのような高次
調波発生源、即ち、分散型発電設備11を連系し
た場合、分散型発電設備11(n次調波発生源)
から見た系統の等価回路は第2図aで表わされ、
連系点に現われる高次調波電圧の概略値は次式の
ように示される。
By the way, there are various types of inverters that make up the distributed power generation equipment 11, but all of them are stationary types that use switching elements, and while supplying active power to the grid, they also generate high-order harmonics that are unique to the inverter type. is also occurring. When such a high-order harmonic generation source, that is, the distributed power generation equipment 11, is connected to the grid, the distributed power generation equipment 11 (n-order harmonic generation source)
The equivalent circuit of the system seen from is shown in Figure 2a,
The approximate value of the high-order harmonic voltage that appears at the interconnection point is expressed by the following equation.

Vo=Zl+ZO・ZF/ZO+ZF/Zt+Zl+ZO・ZF/ZO+ZF×
Vgo……(1) 但し、 Vo:連系点Pのn次調波電圧 Vgo:発生源のn次調波電圧 Zt:連系変圧器のn次調波インピーダンス Zl:線路のn次調波インピーダンス Zp:系統の電源側n次調波インピーダンス ZF:系統の負荷n次調波インピーダンス 上式において、例えば変電所のしや断器15が
開放されると、分散型発電設備11の連系点Pに
おけるn次調波電圧Voは、他の値に比べて十分
小さいZpが∞に変化する。つまり、系統の等価回
路は第2図bに示す如く変化し、連系点Pのn次
調波電圧V′oは V′o=Zl+ZF/Zt+Zl+ZF×Vgo ……(2) となり、発生源のn次調波電圧Vgoに近づくこと
になる。したがつて、この高次調波のレベル変動
を検出することにより、系統の停止を検知するこ
とができる。
V o =Z l +Z O・Z F /Z O +Z F /Z t +Z l +Z O・Z F /Z O +Z F ×
V go ……(1) However, V o : Nth harmonic voltage at interconnection point P V go : Nth harmonic voltage at source Z t : Nth harmonic impedance of interconnection transformer Z l : Line nth harmonic impedance Z p : nth harmonic impedance on the power supply side of the grid Z F : nth harmonic impedance of the grid load The n-th harmonic voltage V o at the interconnection point P of the power generation equipment 11 changes from Z p to ∞, which is sufficiently small compared to other values. In other words, the equivalent circuit of the grid changes as shown in Figure 2b, and the n-th harmonic voltage V' o at the interconnection point P is V' o = Z l + Z F /Z t + Z l + Z F ×V go ... ...(2) and approaches the n-th harmonic voltage V go of the source. Therefore, by detecting the level fluctuation of this higher harmonic, it is possible to detect a system stoppage.

次に、この発明の一実施例について図面を参照
して説明する。尚、第3図において第1図と同一
部分には同一符号を付す。
Next, an embodiment of the present invention will be described with reference to the drawings. In FIG. 3, the same parts as in FIG. 1 are given the same reference numerals.

第3図において、分散型発電設備11を構成す
る直流電源111は例えば太陽光発電装置あるい
は燃料電池等からなり、この直流電源111によ
つて発生された電力はインバータ112に供給さ
れる。このインバータ112によつて変換された
交流電力は連系変圧器113、開閉器114、連系
点Pを介して系統12に供給される。
In FIG. 3, a DC power supply 11 1 constituting a distributed power generation facility 11 is composed of, for example, a solar power generation device or a fuel cell, and the electric power generated by this DC power supply 11 1 is supplied to an inverter 11 2 . . The AC power converted by the inverter 11 2 is supplied to the grid 12 via the interconnection transformer 11 3 , the switch 11 4 , and the interconnection point P.

一方、上記連系点Pの交流電圧は変圧器31に
よつて降圧され、交流電圧の基本波を抽出する通
過帯域が50(Hz)の帯域通過フイルタ(BPF)3
2および基本波を除去する高域通過フイルタ
(HPF)33に供給される。前記帯域通過フイル
タ32より出力された基本波は直流変換手段とし
てのダイオード34によつて基本波の実効値に応
じ直流電圧に変換され、除算器35の一方入力端
に供給される。また、前記高域通過フイルタ33
より出力される交流電圧は分散型発電設備11の
インバータ112より発生されるn次調波に応じ
た通過帯域を有する帯域通過フイルタ(BPF)
36に供給される。この帯域通過フイルタ36よ
り出力されるn次調波は増幅器37を介してダイ
オード38に供給され、このダイオード38によ
つてn次調波の実効値に応じた直流電圧に変換さ
れる。この直流電圧は前記除算器35の他方入力
端に供給される。この除算器35は基本波の実効
値レベルに対するn次調波の実効値レベルを求め
るものであり、この出力電圧はレベル比較器39
の一方入力端(反転入力端)に供給される。この
レベル比較器39の他方入力端(非反転入力端)
には可変基準電圧発生回路40より、分散型発電
設備11が連系されている状態におけるn次調波
の実効値レベル×(1.0+α)の基準電圧が供給さ
れている。この基準電圧は分散型発電設備の出力
変動に伴うn次調波レベルの変動による誤動作を
防止するよう設定されるもので、αは変電所から
系統の電源側を見た短絡容量に応じて、α=0.1
〜0.2程度を目安に設定される。前記レベル比較
器39は実効値レベルに対するn次調波レベルが
基準電圧を越えると所定の出力信号を発生するも
のであり、この信号はしや断信号発生器41に供
給される。このしや断信号発生器41はレベル比
較器41の出力信号に応じて前記開閉器114
しや断信号を供給するものである。
On the other hand, the AC voltage at the interconnection point P is stepped down by a transformer 31, and a bandpass filter (BPF) 3 with a passband of 50 (Hz) extracts the fundamental wave of the AC voltage.
2 and a high pass filter (HPF) 33 that removes the fundamental wave. The fundamental wave output from the bandpass filter 32 is converted into a DC voltage according to the effective value of the fundamental wave by a diode 34 serving as a DC conversion means, and is supplied to one input terminal of a divider 35. Furthermore, the high-pass filter 33
The AC voltage output from the inverter 112 of the distributed power generation facility 11 is passed through a bandpass filter (BPF) having a passband corresponding to the nth harmonic generated by the inverter 112.
36. The n-th harmonic output from the bandpass filter 36 is supplied to a diode 38 via an amplifier 37, and is converted by the diode 38 into a DC voltage according to the effective value of the n-th harmonic. This DC voltage is supplied to the other input terminal of the divider 35. This divider 35 calculates the effective value level of the nth harmonic with respect to the effective value level of the fundamental wave, and this output voltage is sent to the level comparator 39.
is supplied to one input terminal (inverting input terminal) of The other input terminal (non-inverting input terminal) of this level comparator 39
The variable reference voltage generation circuit 40 supplies a reference voltage of the effective value level of the n-th harmonic when the distributed power generation equipment 11 is interconnected x (1.0+α). This reference voltage is set to prevent malfunctions due to fluctuations in the nth harmonic level due to fluctuations in the output of the distributed power generation equipment, and α is determined according to the short-circuit capacity as viewed from the substation to the power supply side of the system. α=0.1
It is set around ~0.2 as a guide. The level comparator 39 generates a predetermined output signal when the nth harmonic level with respect to the effective value level exceeds the reference voltage, and this signal is supplied to the shedding signal generator 41. This shear failure signal generator 41 supplies a shear failure signal to the switch 114 in accordance with the output signal of the level comparator 41.

上記構成において、系統12が運転状態で分散
型発電設備11が連系されている場合は、除算器
35に基本波およびインバータ112より出力さ
れる(1)式で示すn次調波が供給される。この除算
器35の出力電圧はレベル比較器39に供給さ
れ、このレベル比較器39の出力電圧が例えば
“0”(V)となるよう可変基準電圧発生回路40
より出力される基準電圧が設定される。
In the above configuration, when the grid 12 is in operation and the distributed power generation equipment 11 is interconnected, the fundamental wave and the nth harmonic shown in equation (1) output from the inverter 11 2 are supplied to the divider 35. be done. The output voltage of this divider 35 is supplied to a level comparator 39, and a variable reference voltage generation circuit 40
The reference voltage to be outputted is set.

この状態で、例えば変電所のしや断器が開放さ
れ、系統12が運転状態から停止状態に変化した
場合、前述した如く連系点Pのn次調波電圧V′o
((2)式で示す)は正常な場合の電圧Voより高くな
る。このため、除算器35の出力電圧は基準電圧
より高くなり、レベル比較器39からはローレベ
ルの信号が出力される。しや断信号発生器41か
らはこの信号に応じてしや断信号が出力され、こ
のしや断信号によつて連系開閉器114が開放さ
れる。したがつて、分散型発電設備11による系
統12への逆励磁が防止される。
In this state, if, for example, a substation disconnector is opened and the system 12 changes from an operating state to a stopped state, the nth harmonic voltage V′ o at the interconnection point P as described above.
(shown by equation (2)) is higher than the normal voltage Vo . Therefore, the output voltage of the divider 35 becomes higher than the reference voltage, and the level comparator 39 outputs a low level signal. In response to this signal, the shear failure signal generator 41 outputs a shear failure signal, and the interconnection switch 114 is opened by this shear failure signal. Therefore, reverse excitation of the system 12 by the distributed power generation equipment 11 is prevented.

上記実施例によれば、連系点Pにおけるn次調
波レベルの変動を検出することにより、系統12
の停止状態を検知している。したがつて、系統1
2が停止した後の線路負荷が分散型発電設備11
の供給能力に見合つて、分散型発電設備11の過
負荷しや断器(図示せず)が動作しない場合にお
いても、確実に分散型発電設備11を系統12か
ら解列することができ、系統12への逆励磁を防
止することができる。
According to the above embodiment, by detecting fluctuations in the n-th harmonic level at the interconnection point P,
Detects a stopped state. Therefore, lineage 1
2 stops, the line load becomes distributed power generation equipment 11
commensurate with the supply capacity of Reverse excitation to 12 can be prevented.

尚、インバータ方式に応じたn次調波の選定
は、矩形波出力のインバータ等においては、5
次、7次の低次調波を用い、多重方式、PWM方
式のインバータにおいては20次、30次程度の寄数
次調波を選定することにより、スイツチング素子
を用いた総べてのインバータからなる分散型発電
設備にこの発明を適用することができる。
In addition, the selection of the n-th harmonic according to the inverter method is as follows:
By using the low-order harmonics of the 7th and 7th orders, and by selecting the 20th and 30th order harmonics for multiplex system and PWM system inverters, all inverters using switching elements can be used. The present invention can be applied to distributed power generation equipment.

また、前記直流変換手段としてはダイオード3
4,38に代えて例えばRMS/DCコンバータ等
を用いることも可能である。
Further, the diode 3 is used as the DC converting means.
For example, it is also possible to use an RMS/DC converter or the like instead of 4, 38.

また、可変基準電圧発生回路40より出力され
る基準電圧は、除算器35の出力信号を例えばサ
ンプリング回路によつて一定周期毎に取出し、こ
の取出された信号に所定電圧αを加えて生成して
もよい。このような構成とすれば、系統の変化を
一層確実に検出することができ、分散型発電設備
を適確に解列することができる。
Further, the reference voltage output from the variable reference voltage generation circuit 40 is generated by extracting the output signal of the divider 35 at regular intervals using, for example, a sampling circuit and adding a predetermined voltage α to the extracted signal. Good too. With such a configuration, changes in the system can be detected more reliably, and the distributed power generation equipment can be disconnected appropriately.

さらに、この発明を柱上変圧器の同一バンク内
に複数個連系された分散型発電設備に適用するこ
とも可能である。
Furthermore, the present invention can also be applied to distributed power generation equipment in which a plurality of pole transformers are interconnected within the same bank.

その他、この発明の要旨を変えない範囲で種種
変形実施可能なことは勿論である。
It goes without saying that other modifications can be made without departing from the gist of the invention.

以上、詳述したようにこの発明によれば、系統
の運転状態から停止状態への変化を分散型発電設
備と系統との連系点における高次調波レベルの変
動として検知することにより、確実に系統から解
列することが可能な分散型発電設備の系統停止時
解列・保護装置を提供できる。
As described in detail above, according to the present invention, by detecting a change from the operating state of the grid to the stopped state as a fluctuation in the higher harmonic level at the interconnection point between the distributed power generation equipment and the grid, It is possible to provide a disconnection/protection device for distributed power generation equipment that can be disconnected from the grid during a system outage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が適用される電力系統を示す
構成図、第2図はこの発明の原理を説明するため
に示す等価回路図、第3図はこの発明に係わる分
散型電力設備の系統停止時解列・保護装置の一実
施例を示す回路構成図である。 11……分散型発電設備、111……直流電源、
112……インバータ、114……連系開閉器、1
2……系統、32,36……帯域通過フイルタ、
33……高域通過フイルタ、34,38……ダイ
オード又はRMS/DCコンバータ、35…除算
器、39……レベル比較器、40……可変基準電
圧発生回路、41……しや断信号発生器。
Fig. 1 is a configuration diagram showing a power system to which this invention is applied, Fig. 2 is an equivalent circuit diagram shown to explain the principle of this invention, and Fig. 3 is a system outage of distributed power equipment related to this invention. FIG. 2 is a circuit configuration diagram showing an embodiment of a time sequence/protection device. 11...distributed power generation equipment, 11 1 ...DC power supply,
11 2 ... Inverter, 11 4 ... Grid connection switch, 1
2... System, 32, 36... Band pass filter,
33...High-pass filter, 34, 38...Diode or RMS/DC converter, 35...Divider, 39...Level comparator, 40...Variable reference voltage generation circuit, 41...Shield signal generator .

Claims (1)

【特許請求の範囲】[Claims] 1 スイツチング手段によつて変換された交流電
力を開閉器を介して系統に連系する分散型発電設
備と、前記系統との連系点の交流電圧中の高次調
波レベルを求める手段と、この高次調波レベルを
基準電圧と比較し高次調波レベルの変動を判定す
る手段と、この判定結果に応じて前記開閉器を制
御する手段とを具備したことを特徴とする分散型
発電設備の系統停止時解列・保護装置。
1: a distributed power generation facility that connects to the grid via a switch the AC power converted by the switching means; and means for determining the higher harmonic level in the AC voltage at the point of connection with the grid; Distributed power generation characterized by comprising means for comparing this high-order harmonic level with a reference voltage and determining fluctuations in the high-order harmonic level, and means for controlling the switch according to the determination result. A device for disconnecting and protecting equipment during system outage.
JP59009767A 1984-01-23 1984-01-23 System stoppint time disconnection protecting device for dispersive generator facility Granted JPS60156229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59009767A JPS60156229A (en) 1984-01-23 1984-01-23 System stoppint time disconnection protecting device for dispersive generator facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009767A JPS60156229A (en) 1984-01-23 1984-01-23 System stoppint time disconnection protecting device for dispersive generator facility

Publications (2)

Publication Number Publication Date
JPS60156229A JPS60156229A (en) 1985-08-16
JPS6350941B2 true JPS6350941B2 (en) 1988-10-12

Family

ID=11729418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009767A Granted JPS60156229A (en) 1984-01-23 1984-01-23 System stoppint time disconnection protecting device for dispersive generator facility

Country Status (1)

Country Link
JP (1) JPS60156229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453212B2 (en) * 1987-02-23 1992-08-26 Nippon Shokusei Kk
JPH0827798A (en) * 1994-07-15 1996-01-30 Shinwa Kensetsu Kk Protection method of slope surface

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285642A (en) * 1985-10-09 1987-04-20 三洋電機株式会社 Power failure detector
JPS6292725A (en) * 1985-10-16 1987-04-28 三洋電機株式会社 System linkage inverter
JP2503401B2 (en) * 1985-10-30 1996-06-05 株式会社明電舍 Distributed power supply control method
JPH0733591Y2 (en) * 1986-04-19 1995-07-31 三洋電機株式会社 Inverter electrolysis column device
JPH0544742U (en) * 1991-05-14 1993-06-15 土佐鋼業株式会社 Carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453212B2 (en) * 1987-02-23 1992-08-26 Nippon Shokusei Kk
JPH0827798A (en) * 1994-07-15 1996-01-30 Shinwa Kensetsu Kk Protection method of slope surface

Also Published As

Publication number Publication date
JPS60156229A (en) 1985-08-16

Similar Documents

Publication Publication Date Title
US5548504A (en) Power line linking apparatus for linking a power generator to a commercial power line
EP4007108A1 (en) Battery cluster management device and battery energy storage system
KR20190132855A (en) Power conversion system connected grid for supporting grid
Saleh et al. Comparing the performance of protection coordination and digital modular protection for grid-connected battery storage systems
Desale et al. Brief review paper on the custom power devices for power quality improvement
JPS6350941B2 (en)
Deshmukh et al. Overview of dynamic voltage restorer (DVR) for power quality improvement
Vokas et al. Harmonic voltages and currents on two Greek islands with photovoltaic stations: study and field measurements
RU180919U1 (en) CONTROLLER OF PROTECTION AGAINST FAN SHUT-OFFS WITH THE POSSIBILITY OF HARMONIC COMPENSATION
Brenna et al. Real time simulation of smart grids for interface protection test and analysis
CN206401910U (en) A kind of electric supply installation
DE10131226A1 (en) Low voltage current distribution system has medium voltage DC distribution network between HVAC network and LVAC loads
Praisuwanna et al. Fault Detection Method by Utilizing Instantaneous Power Theory for Inverter-based Distributed Generation
Mandava et al. Protection of Dc-micro grid from multiple line and ground faults
Hasnain et al. High-Speed Control Framework to Reduce System Awareness Delay In Microgrids: A Conceptual Approach
CN215835190U (en) Standby power supply system of desulfurization UPS
CN210007408U (en) transformer substation connecting structure with micro-network system
CN115842345B (en) Energy router control method and energy router
Ahmed et al. Impact of Integrating Battery Energy Storage System on Harmonic Distortion in an Industrial Microgrid
CN218976029U (en) Intelligent distribution box
CN217183035U (en) Cascade type energy storage system
CN211428984U (en) Frequency converter low-voltage ride through device and frequency converter
CN111064200B (en) Railway purification power supply device and fault exit protection method thereof
CN220139248U (en) Inverter system
CN212586509U (en) Energy feedback type load testing system