JPS61210332A - Material for nonlinear optical element and formation of pattern - Google Patents

Material for nonlinear optical element and formation of pattern

Info

Publication number
JPS61210332A
JPS61210332A JP60050339A JP5033985A JPS61210332A JP S61210332 A JPS61210332 A JP S61210332A JP 60050339 A JP60050339 A JP 60050339A JP 5033985 A JP5033985 A JP 5033985A JP S61210332 A JPS61210332 A JP S61210332A
Authority
JP
Japan
Prior art keywords
formulas
tables
nonlinear optical
chemical formulas
mathematical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60050339A
Other languages
Japanese (ja)
Inventor
Takashi Kurihara
隆 栗原
Michiya Fujiki
道也 藤木
Fumihiro Ebisawa
海老沢 文博
Hisao Tabei
田部井 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60050339A priority Critical patent/JPS61210332A/en
Publication of JPS61210332A publication Critical patent/JPS61210332A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a patternable material for a nonlinear optical element having superior processability and stability by using a material having a specified amphipatic molecular structure. CONSTITUTION:This patternable material for a nonlinear optical element having an amphipatic molecular structure is represented by formula I (where M is hydrophobic residue contg. a polymerizable monomeric unit, A is a hydrophobic residue contg. a nonlinear optical substance, and L is a hydrophilic residue). The material patternable with high energy beams is obtd. by introducing an org. compound having a high nonlinear optical constant on the molecular level into amphipatic molecules contg. monomeric units sensitive to high energy beams and having capacity of forming a molecular oriented thin film. The material maintains the high nonlinearity of the org. compound, is hardly damaged by light,and has considerably improved mechanical strength as compared with a low molecular org. compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明に、元情報処理及び光通信に用いられる種々の光
学素子の中で特に加工性、安定性に優れた非線形光学素
子用材料及び該材料を用いた非線形光学パターンの形成
方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to materials for nonlinear optical elements that have particularly excellent workability and stability among various optical elements used in information processing and optical communications, and This invention relates to a method of forming a nonlinear optical pattern using a material.

〔従来の技術〕[Conventional technology]

従来、2−メチル−4−ニトロアニリン(MNA)に代
表される有機化合物の分子性結晶は、無機化合物では得
られないような著しく大きな非線形光学定数を有するも
のが知られている。また、光学非線形性の起源が分子内
に電子にろるため、無機化合物のように格子振動の介在
を受けず、ピコ秒より短い高速のスイッチングが可能と
推定されている。
Conventionally, molecular crystals of organic compounds such as 2-methyl-4-nitroaniline (MNA) are known to have significantly large nonlinear optical constants that cannot be obtained from inorganic compounds. In addition, because the origin of optical nonlinearity is electrons within the molecule, it is presumed that high-speed switching of less than picoseconds is possible without the interference of lattice vibrations unlike inorganic compounds.

具体例を挙げて比較すれば、既に波長変換等の実用素子
として用いられているに馬PO4(KDP)、LiNb
O3のような無機の強誘電性結晶ではピコ秒よシ高遠の
応答が困難とされているのに対して、MNAはKDPの
50倍以上の非線形光学定数を有し、かつa01ピコ秒
程度の高速スイッチングが可能と考えられている。
To give a specific example and compare, LiNb PO4 (KDP) and LiNb, which are already used as practical elements for wavelength conversion etc.
While it is difficult for inorganic ferroelectric crystals such as O3 to respond at high distances of picoseconds, MNA has a nonlinear optical constant more than 50 times that of KDP, and has a response of about a01 picoseconds. It is believed that high-speed switching is possible.

〔発明が解決しよりとする問題点〕[Problems that the invention helps solve]

しかしながら、有機の分子性結晶は、無機光学材料に比
べて機械的・熱的・化学的な外力に弱く、加工性に乏し
いため、集積化の基本となる基板上の光導波路形成が困
難で実用には供し難いと考えられてきた。
However, compared to inorganic optical materials, organic molecular crystals are weaker against mechanical, thermal, and chemical external forces and have poor processability, making it difficult to form optical waveguides on substrates, which is the basis for integration, making it practical. It has been thought that it is difficult to serve.

本発明の目的は、従来になく加工性、安定性に優れた非
線形光学素子用材料及び該材料を用いた非線形光学パタ
ーンの形成方法を提供することにある7 〔問題点を解決するための手段〕 本発明を概説すれば本発明の第1の発明は両親媒性分子
構造のパターニング可能な非線形光学素子用材料に関す
る発明であって、下記一般式〔I〕: 〉L    ・・・  CI) (但し、Mは重合性モノマーユニットを含む疎水性残基
、Aは非線形光学物質を含む疎水性残基、セしてLは親
水性残基金示す]で表されることを特徴とする。
An object of the present invention is to provide a material for a nonlinear optical element that is superior in workability and stability than ever before, and a method for forming a nonlinear optical pattern using the material.7 [Means for solving the problems] ] To summarize the present invention, the first invention of the present invention relates to a patternable nonlinear optical element material having an amphiphilic molecular structure, which has the following general formula [I]: >L...CI) ( However, M is a hydrophobic residue containing a polymerizable monomer unit, A is a hydrophobic residue containing a nonlinear optical substance, and L is a hydrophilic residue.

そして、本発明の第2の発明は非線形光学パターンの形
成方法に関する発明であって、基板上にパターニング可
能な非線形光学素子用材料の結晶性分子配向薄膜を被覆
し、高エネルギー線をパターン照射し、その後現像し所
望の位置に所望の形状を有する非線形光学材料を基板上
に形成することによって非線形光学パターンを形成する
方法において、該パターニング可能な非線形光学素子用
材料として、上記一般式(1)で表される両親媒性分子
構造の材料を用いることを特徴とする。
The second invention of the present invention is an invention relating to a method for forming a nonlinear optical pattern, in which a crystalline molecule-oriented thin film of a patternable nonlinear optical element material is coated on a substrate, and a pattern of high-energy radiation is irradiated. , in a method of forming a nonlinear optical pattern by forming a nonlinear optical material having a desired shape at a desired position on a substrate by subsequent development, as the patternable nonlinear optical element material, the above general formula (1) is used. It is characterized by using a material with an amphipathic molecular structure represented by:

既述のような、有機物の非線形光学素子用材料、及び非
線形光学パターンの形成方法の現状にかんがみて、本発
明者らは従来の諸問題を解決すべく種々検討研究した結
果、分子レベルで大きな非線形光学定数を有する有機化
合物を、高エネルギー線に感応するモノマーユニットを
有し、かつ、分子配向薄膜形成能のめる両親媒性分子に
導入し、高エネルギー線によるパターニングが可能な非
線形光学材料とすることが前記目的達成のために極めて
有効であることを見出し本発明を完成した。
In view of the current state of organic materials for nonlinear optical elements and methods of forming nonlinear optical patterns as described above, the present inventors have conducted various studies and researches to solve the conventional problems, and as a result, they have discovered a large An organic compound having a nonlinear optical constant is introduced into an amphiphilic molecule that has a monomer unit that is sensitive to high energy rays and has the ability to form a molecularly oriented thin film, thereby creating a nonlinear optical material that can be patterned by high energy rays. The present invention was completed based on the discovery that this is extremely effective for achieving the above object.

前記本発明の両親媒性分子構造の非線形光学素子用材料
において、Mで示される重合性モノマーユニットを含む
疎水性残基は、例えば下記一般式CI!E〜〔■〕: (!H,= c−c−o+aHけ−    ・・・ (
II)II     n (但し、nは6〜24の整数、Rは水素又はメチル基を
示す) OH寥=CH−+CHけτ      ・・−CI)(
但し、nは6〜24の整数を示すン CH,−ゼH,t7:1050−OEEC−(−CH2
相 ・・・ (IV)(但し、tは6〜18の整数、m
は0〜8の整数を示す) で表されるが、一般式(II)におけるn、(1)にお
けるn及び〔■〕におけるz+mの値ハ、12〜20s
度が最も望ましい。
In the material for a nonlinear optical element having an amphipathic molecular structure according to the present invention, the hydrophobic residue containing a polymerizable monomer unit represented by M has, for example, the following general formula CI! E ~ [■]: (!H, = c-c-o+aHke- ... (
II) II n (where n is an integer of 6 to 24, R represents hydrogen or a methyl group)
However, n represents an integer from 6 to 24.
Phase ... (IV) (however, t is an integer from 6 to 18, m
represents an integer from 0 to 8), but the value of n in general formula (II), n in (1), and z+m in [■] is 12 to 20s.
degree is most desirable.

前記一般式(1)の材料においてAで示される非線形光
学物質を含む疎水性残基は、例えば下記一般式(V)〜
[、IX] : (但し、pは0〜5の整数、qは2〜12の整数、R1
に水素、メチル基又はエチル基を示すン(但し、rは1
〜4の整数、qは2〜12の整(但し、θ及びtは1〜
18の整数、ムbは式−IJHOO−又は−00NH−
で示されるアミド基、R1に水素、メチル基又はエチル
基を示す)OH,−jOH,力ぢCトドHけて (但し、S及びtに1〜18の整数を示す)CHl−?
CTX、f−i:l0H−+0kt(但し、a及びtは
1〜18の整数、2は式アミノ基を示す) で表されるが、一般式(V)〜〔IX)Kおけるp+(
L%r+q及びactの値は、この疎水性残基(ム)の
長さが、一般式〔]〕〜〔Iv〕で示される疎水性残基
(M)の長さとほぼ等しくなることが望ましい。
In the material of the general formula (1), the hydrophobic residue containing the nonlinear optical substance represented by A is, for example, one of the following general formulas (V) to
[, IX]: (where p is an integer of 0 to 5, q is an integer of 2 to 12, R1
represents hydrogen, methyl group or ethyl group (where r is 1
~4 integer, q is an integer from 2 to 12 (however, θ and t are 1 to 12)
an integer of 18, b is the formula -IJHOO- or -00NH-
An amide group represented by R1, OH, -jOH, (wherein S and t are integers from 1 to 18) CHl-?
CTX, f-i:l0H-+0kt (where a and t are integers of 1 to 18, 2 represents an amino group), but p+(
As for the values of L%r+q and act, it is desirable that the length of this hydrophobic residue (M) is approximately equal to the length of the hydrophobic residue (M) shown in general formulas []] to [Iv]. .

また、一般式〔■〕及び[IX)の長鎖アルキル基中の
3級炭素は下式に示すように光学活性炭素おる方が分子
配向簿膜の形成段階で有利であるが基本的ににラセミ体
でも支障はない。
In addition, as shown in the formula below, the tertiary carbon in the long chain alkyl group of general formulas [■] and [IX] is more advantageous in the formation stage of the molecular orientation film, but it is basically an optically active carbon. There is no problem even in racemic form.

前記一般式〔I〕の材料においてLで示される親水性残
基は、例えば下記一般式(X)〜0(M)ニー    
ス        ・  、(但し、R3は式−0H5
又は−〇H,−OL:OH,で示さレル基、xeハCt
e、Bre、工e 又tz CjlOa  テアJ”れ
るアニオン、Yは式−1:!0OCH雪OH,−又は−
CH,−で示されるスペーサーを示す) (但し、Uは2又は5の数、Rは水素又はメチル基、X
、  は−30s  又は−0PO?で示される双性ア
ニオン、Yは式−cooca、cu!−又は−〇H,−
で示されるスペーサーを示す] 1: 1)  C11l−Xl 水性基又は−〇−Go−C==OH,若しくははメチル
基を示す】で示される重合性七ツマー基− ユニットを有する非イオン性親水性を下す〕△ (但し、Wは1又は2の数、Xは1へ12の整数、x0
ハC28、Bre、工0又はClO−3で示されるアニ
オン、Ylは式−0CO−又は−Nuco−で示される
基を示し、−CH−は不斉炭素でらることを示す) (但し、Wは1又は2の数、yは1〜18の整数、Yl
は式−oao−又は−Naco−で示される基を示し、
−0H−は不斉炭素であることを示す]で表される親水
性残基(L)が最も汎用的であるが、大面積で高秩序の
分子配向薄膜を作製する7’?、メKt!、一般式CX
V) 、 (XVII O親水性残基(L)が有効でお
る。
The hydrophilic residue represented by L in the material of the general formula [I] can be represented by, for example, the following general formulas (X) to 0(M).
(However, R3 is the formula -0H5
Or -〇H, -OL:OH, represented by ler group, xehaCt
e, Bre, 工 e and tz CjlOa tear J" anion, Y is the formula -1:!0OCH snow OH, - or -
(represents a spacer represented by CH,-) (However, U is the number 2 or 5, R is hydrogen or a methyl group,
, is -30s or -0PO? Zwitterionic anion represented by, Y has the formula -cooca, cu! -or-〇H,-
] 1: 1) C11l-Xl aqueous group or -〇-Go-C==OH, or methyl group] A nonionic hydrophilic compound having a polymerizable heptadmer group-unit represented by ]△ (However, W is a number of 1 or 2, X is an integer from 1 to 12, x0
(Yl represents a group represented by the formula -0CO- or -Nuco-, and -CH- represents an asymmetric carbon) (However, W is a number of 1 or 2, y is an integer of 1 to 18, Yl
represents a group represented by the formula -oao- or -Naco-,
The hydrophilic residue (L) represented by -0H- indicates an asymmetric carbon is the most commonly used, but 7'? , MeKt! , general formula CX
V), (XVII O hydrophilic residue (L) is effective.

以上説明したように、前記一般式(1)で示される両親
媒性分子構造のパターニング可能な非線形光学素子用材
料において、3つの構成要素M、A%Lの種類は多岐に
わたシ、その組合せも任意である。これらM1ム、Lの
種類や組合せについては、当業者であれば適宜その知識
を活用して実施、改変が可能である。
As explained above, in the patternable nonlinear optical element material having the amphiphilic molecular structure represented by the general formula (1), there are a wide variety of types and combinations of the three constituent elements M and A%L. is also optional. Those skilled in the art can appropriately implement and modify the types and combinations of M1 and L using their knowledge.

更に、非線形光学素子用材料の結晶性分子配向薄膜の被
覆方法の例としては、(1)ラングミエアープロジェッ
ト型累積膜作製法若しくはその改良法たる水平付着法又
は連続製膜法、(2)キャスト膜配向処理法並びK(3
)真空蒸着法等が挙げられる。
Furthermore, examples of methods for coating crystalline molecule-oriented thin films of materials for nonlinear optical elements include (1) the Langmier-Air-Projet type cumulative film production method or its improved horizontal deposition method or continuous film production method; ) Cast film orientation treatment method arrangement K (3
) vacuum evaporation method, etc.

上記の結晶性分子配向薄膜被覆方法は、本発明の非線形
光学素子用材料が両親媒性分子でらることによυ初めて
可能となるものである。
The above-mentioned method for coating a crystalline molecule-oriented thin film becomes possible only when the material for a nonlinear optical element of the present invention comprises amphiphilic molecules.

(1)〜(3)の結晶性分子配向薄膜の具体的な作製方
法としては、以下の報女が参考として挙げられる: (1)  rJ−回 ラングミュア−プロジェット膜国
際会議」資料、シンーソリッドーフイルムズ、99 (
1982) (2)下材、国武、「第52回 高分子討論会予稿集J
 52 (1す、2841、(1985)(3)三矢、
各日、電気学会研究会資料、P51、(1984)、及
び有田、万態、石場、各日、「電気学会研究会資料」、
P 59、(1984)また、本発明によるパターニン
グに際して使用できる高エネルギー線の例としては、遠
紫外線、X線、電子線が挙げられ、これらの高エネルギ
ー線に対し本発明の材料はネガ形として機能する。
As for specific methods for producing crystalline molecularly oriented thin films (1) to (3), the following publications may be cited as references: (1) rJ-times Langmuir-Prodgett International Conference on Films'' materials, Shin- Solid Films, 99 (
1982) (2) Shimozai, Kunitake, “Proceedings of the 52nd Polymer Symposium J”
52 (1su, 2841, (1985) (3) Mitsuya,
Each day, IEEJ Study Group Materials, P51, (1984), and Arita, Banjo, Ishiba, each day, "IEEJ Study Group Materials",
P. 59, (1984) Furthermore, examples of high-energy rays that can be used in patterning according to the present invention include deep ultraviolet rays, Function.

ただし、非線形光学物質を含む疎水性残基(A)の中に
は、スチルベン類、ジフェニルアセチレン類等の高エネ
ルギー線に対して架橋、分解を起こすおそれのある物質
が含まれているため、特に電子線やX線の照射量の設定
は重要である。
However, the hydrophobic residue (A) containing the nonlinear optical substance contains substances that may cause cross-linking and decomposition in response to high-energy rays, such as stilbenes and diphenylacetylenes. Setting the irradiation amount of electron beams and X-rays is important.

本発明においては、非線形光学物質の架橋、分解が最少
でかつ良好なパターン形成が可能な照射条件を見出した
In the present invention, we have found irradiation conditions that minimize crosslinking and decomposition of the nonlinear optical material and allow good pattern formation.

本発明の非線形光学素子用材料の基本的な製造方法とし
ては、まず非線形光学物質を含む疎水性残基(A)と親
水性残基(L)をO−C,O−N。
As a basic manufacturing method of the material for nonlinear optical elements of the present invention, first, a hydrophobic residue (A) containing a nonlinear optical substance and a hydrophilic residue (L) are mixed by O-C, O-N.

C−O結合でカップリングした後、重合性モノマーユニ
ットを含む疎水性残基(M)を導入する方法と、A−L
カップリング後、まず輩の疎水性部分のみを導入し、両
親媒性分子とし、最後にMの重合性七ツマーユニットを
導入する方法がある。通常、前者の方法を用いるが重合
性七ツマーユニットがアクリル醗のように重合性が高い
場合は後者の方法を用いることが望ましい。
A method of introducing a hydrophobic residue (M) containing a polymerizable monomer unit after coupling with a C-O bond, and A-L
After coupling, there is a method of first introducing only the hydrophobic portion of the compound to make it an amphiphilic molecule, and finally introducing the polymerizable heptad unit of M. Usually, the former method is used, but when the polymerizable seven-mer unit has high polymerizability, such as acrylic alcohol, it is desirable to use the latter method.

本発明の非線形光学素子の製造方法の例においては、ま
ず(1)ラングミュア−プロジェット型累積膜作表法若
しくはその改良法たる水平付着法又は連続製膜法、(2
)キャスト膜配向処理法並びに(3)真空蒸着法のうち
いずれかの方法を用いて基板上に炸裂した結晶性分子配
向膜に遠紫外線、X線ではマスクを通して、電子線では
直接照射することによりパターンを焼付け、次いで適当
な現偉液、例えばメチルエチルケトン、キシレン、ある
いはこれらとイソプロピルアルコールやシクロヘキサン
との混合溶媒などで現像、洗浄しボストベークを行って
パターンの密着性を更に向上させると共に現像時の溶媒
を除去する。
In an example of the method for manufacturing a nonlinear optical element of the present invention, first, (1) the Langmuir-Prodgett type cumulative film tabulation method or its improved horizontal deposition method or continuous film forming method;
) A cast film orientation treatment method and (3) a vacuum evaporation method is used to irradiate the crystalline molecular orientation film exploded on the substrate with deep ultraviolet rays, X-rays through a mask, and electron beams directly. The pattern is baked, and then developed with a suitable developing solution such as methyl ethyl ketone, xylene, or a mixed solvent of these with isopropyl alcohol or cyclohexane, etc., followed by washing and post-baking to further improve the adhesion of the pattern and to remove the solvent during development. remove.

かくして本発明の方法によれば、基板上の所望の位置に
所望の大きさの結晶性の非線形光学材料を配すことがで
きる。本発明の材料は、高エネルギー線に対し高い感度
と、優れた解偉性を有するため、高密度化され光集積回
路となっても、十分な生産性をもって使用することが可
能である。
Thus, according to the method of the present invention, a crystalline nonlinear optical material of a desired size can be placed at a desired position on a substrate. The material of the present invention has high sensitivity to high-energy rays and excellent resolution, so it can be used with sufficient productivity even in high-density optical integrated circuits.

更に、非線形性を示す材料が重合によシ固化した有機高
分子結晶でおるため、有機物の高い非線形性を保持し、
かつ光による損傷を受けにくくまた、機械的強度も低分
子の有機化合物に比べ格段に向上させることができる。
Furthermore, since the material exhibiting nonlinearity is an organic polymer crystal solidified by polymerization, it maintains the high nonlinearity of organic matter.
Moreover, it is less susceptible to damage by light, and its mechanical strength can be significantly improved compared to low-molecular organic compounds.

〔実施例〕〔Example〕

以下、製造例並びに実施例によって本発明を更に具体的
に説明するが、本発明の範囲は、これら製造例、実施例
によシ何等制限されない。
Hereinafter, the present invention will be explained in more detail with reference to production examples and examples, but the scope of the present invention is not limited in any way by these production examples and examples.

なお、第1図は本発明の光学材料の測定に用いた導波路
の構造を示す概要図であり、テーパ付石英導波層上部に
試料をパターン化しである。
Note that FIG. 1 is a schematic diagram showing the structure of a waveguide used for measurement of the optical material of the present invention, in which a sample is patterned on top of a tapered quartz waveguide layer.

第2図は測定装置の断面概略図である。第2図中の符号
1はN(1:  YAGレーザ−(λ== 1.06μ
m1 出力1kW)、2は偏光子、5は赤外透過フィル
ター、4は集光レンズ、5は鏡、6はプリズム、7は試
料、8は石英導波層、9は赤外遮断フィルター、10は
干渉フィルター(530nm、552nm)セして11
はフォトマルを意味する。
FIG. 2 is a schematic cross-sectional view of the measuring device. The code 1 in Fig. 2 is N (1: YAG laser (λ = = 1.06μ
m1 output 1kW), 2 is a polarizer, 5 is an infrared transmission filter, 4 is a condenser lens, 5 is a mirror, 6 is a prism, 7 is a sample, 8 is a quartz waveguide layer, 9 is an infrared cutoff filter, 10 Set the interference filters (530nm, 552nm) to 11
means photomaru.

製造例1 下記構造(1)の非線形光学素子用材料の合成CHrf
O11*trrCミ0−Br + HOミOセ%jjB
r−一ユCH3−t−OH!7rICミC−Cミ○−+
0HztrBr     (1b)(IsL) + (
1c)     (1)p−ニトロフェニル酢酸(10
f)とN−メチル−N−(8−ブロモオクチルノアミノ
−p−ベンズアルデヒド(20f)の混合物を120℃
に加熱し1時間反応させた。生成物を95%エタノール
で再結晶し、化合物(1a)を得た。赤橙色鱗状晶、収
*25? 1−ブロモ−1−テトラデシンと10−ブロモ−1−デ
シンを銅触媒下、クロスカップリングさせ合成した化合
物(1b)をアンプル中、ジメチルアミンと反応させ、
化合物(1c)を得た。
Production Example 1 Synthesis of material for nonlinear optical element having the following structure (1) CHrf
O11*trrCmi0-Br+HOmiOse%jjB
r-ichiu CH3-t-OH! 7rIC Mi C-C Mi ○-+
0HztrBr (1b) (IsL) + (
1c) (1) p-nitrophenylacetic acid (10
f) and N-methyl-N-(8-bromooctylnoamino-p-benzaldehyde (20f) at 120°C.
The mixture was heated to a temperature of 100.degree. C. and reacted for 1 hour. The product was recrystallized from 95% ethanol to obtain compound (1a). Red-orange scale-like crystals, yield *25? A compound (1b) synthesized by cross-coupling 1-bromo-1-tetradecine and 10-bromo-1-decyne under a copper catalyst is reacted with dimethylamine in an ampoule,
Compound (1c) was obtained.

等%にの(1a) (10f )と(1c) (10f
 )をジメチルホルムアミド(20(ld)に溶かし、
60℃で5時間反応させた。放冷後析出した結晶をアセ
トニトリルから再結晶し、目的化合物(旬を得意。赤橙
色鱗状晶、収量13f製造例2 下記構造(2)の非線形光学材料の合成(2a)+ H
O[CH社■Br QH,=C!He−Br 菖 p−ニトロフェニルアセチレン(7f ) (!−N。
(1a) (10f ) and (1c) (10f
) in dimethylformamide (20(ld)),
The reaction was carried out at 60°C for 5 hours. After cooling, the precipitated crystals were recrystallized from acetonitrile to obtain the target compound (good for drying. Red-orange scaly crystals, yield 13f. Production Example 2 Synthesis of nonlinear optical material with the following structure (2) (2a) + H
O[CH company■Br QH,=C! He-Br p-nitrophenylacetylene (7f) (!-N.

N、N−)リメチルーN−(4−ヨードフェニル)−テ
トラメチレンテトラミン(17f)、二塩化ビス()9
フエニルホスフイン)パラジウム((L71F)、ヨウ
化第−銅(α05t)を脱水ジエチルアミン(150m
)、中、50℃で18時間反応させた。反応後、溶媒を
減圧留去し、ベンゼン可溶分をカラムクロフトグラフィ
ーによシ精製し、化合物(2a)を得た。赤色針状晶、
収量149 化合物(2a) (10f )と16−プロムー1−ヘ
キサデカノール(9P)をジメチルホルムアミド(10
0ゴ]に溶かし、60℃で5時間反応させた。放冷後析
出した結晶をアセトニトリルから再結晶し、化合物(2
b)を得た。
N,N-)limethyl-N-(4-iodophenyl)-tetramethylenetetramine (17f), bis() dichloride 9
Phenylphosphine) palladium ((L71F), cupric iodide (α05t) was dehydrated with diethylamine (150m
) for 18 hours at 50°C. After the reaction, the solvent was distilled off under reduced pressure, and the benzene-soluble content was purified by column croftography to obtain compound (2a). red needles,
Yield: 149 Compound (2a) (10f) and 16-promo-1-hexadecanol (9P) were dissolved in dimethylformamide (10
0g] and reacted at 60°C for 5 hours. After cooling, the precipitated crystals were recrystallized from acetonitrile to obtain compound (2).
b) was obtained.

化合物(2b) (10F )を、トリエチルアミン(
(12t)を含む塩化メチレン(120mg)に溶かし
、水冷下、アクリル散ブロマイド(2t)を、滴下し、
2時間反応させた。ゆつくシ室温に戻し、冷水で数回洗
浄した後、無水硫酸マグネシウムを加えて乾燥した。溶
媒を減圧留去し、残渣をア七トンより再結晶した。赤橙
色ろう状晶、収t7f 製造例3 下記構造(3)の非線形光学素子用材料の合成H0 −O−0)!、−C!H,J(OH山 CH3(OH,ン70==C! Br + HCE;=
(’−(−OH2@000HOH,(CjH,λ、C=
a−CミC−(−OH2i000H(31))一0CH
,0)TI3N (OH3)3p−ニトロフェニルアセ
チレン(7f)とp−ヨード−N−(61−カルボキシ
オクチ燕ル)アニリン(16f)、二塩化ビス(トリフ
ェニルホスフィン)パラジウム(I17f)、ヨウ化第
−銅((LQ4f)を脱水ジエチルアミン(150d)
中、40℃で14時間反応させた。
Compound (2b) (10F) was converted to triethylamine (
(12t) was dissolved in methylene chloride (120mg) containing the mixture, and acrylic powder bromide (2t) was added dropwise under water cooling.
The reaction was allowed to proceed for 2 hours. After the mixture was cooled to room temperature and washed several times with cold water, anhydrous magnesium sulfate was added to dry it. The solvent was distilled off under reduced pressure, and the residue was recrystallized from a7ton. Red-orange waxy crystals, yield 7f Production Example 3 Synthesis of material for nonlinear optical element having the following structure (3) H0 -O-0)! ,-C! H, J (OH mountain CH3 (OH, n70==C! Br + HCE;=
('-(-OH2@000HOH, (CjH, λ, C=
a-CmiC-(-OH2i000H(31))-0CH
,0) TI3N (OH3)3p-nitrophenylacetylene (7f) and p-iodo-N-(61-carboxyoctyl)aniline (16f), bis(triphenylphosphine)palladium dichloride (I17f), iodide Cupric ((LQ4f) dehydrated diethylamine (150d)
The mixture was reacted for 14 hours at 40°C.

反応後溶媒を減圧留去し、ベンゼン可溶分をカラムクロ
マトグラフィーによシ精製し化合物(3a)を得た。
After the reaction, the solvent was distilled off under reduced pressure, and the benzene-soluble content was purified by column chromatography to obtain compound (3a).

1−ブロモ−1−デシンと11−ウンデシン駿を銅触媒
下、クロスカップリングさせ合成した化合物(jl))
(12f )をジシクロへキシルカルボジイミド(Dc
c)及びN、 N−ジメチルアミノピリジン(DMAP
J  存在下り一α−グリセロホ7ファチジルコリン(
10f)と反応させ化合物(3C)を得た。
Compound synthesized by cross-coupling 1-bromo-1-decyne and 11-undecyne under copper catalyst (jl))
(12f) with dicyclohexylcarbodiimide (Dc
c) and N,N-dimethylaminopyridine (DMAP
J Presence of α-glycerophos-7phatidylcholine (
10f) to obtain compound (3C).

次に(5aバ4f)と(3a)(6t )をDOC! 
、DMAP存在下で反応させた。生成物をカラムクロマ
トグラフィー(担体ニジリカゲル、溶媒:クロロホルム
−メタノール(3:2))により精製し、目的化合物(
3)を得た。赤橙色粉状晶、収Ii5を 製造例4〜20 製造例1〜3の合成法に準じて、下記構造の非線形光学
素子用材料(4)(製造例4)〜(20)(M造例20
ンを合成した。
Next, DOC (5a bar 4f) and (3a) (6t)!
, reacted in the presence of DMAP. The product was purified by column chromatography (carrier Nisilica gel, solvent: chloroform-methanol (3:2)), and the target compound (
3) was obtained. Preparation Examples 4 to 20 Red-orange powdery crystals, Ii5, were prepared according to the synthesis methods of Preparation Examples 1 to 3. Materials for Nonlinear Optical Elements (4) (Production Examples 4) to (20) (M Preparation Example) having the following structures were prepared. 20
synthesized.

Φ −o′+CHzhN(CHs)s の 一部(−C!H耐雪NH。Φ −o′+CHzhN(CHs)s of Some (-C!H snow resistant NH.

(H1±○HxW C=C−伽〇−H5tr coo−
1:!H−OH,−0−Co−GL−0H。
(H1±○HxW C=C-佽〇-H5tr coo-
1:! H-OH, -0-Co-GL-0H.

OH3÷OH,j70=o −Q=Q±aH,g co
o−aH−cH,−o−cc4cH,−7−g−−NH
CO(!H−CH。
OH3÷OH, j70=o −Q=Q±aH, g co
o-aH-cH, -o-cc4cH, -7-g--NH
CO(!H-CH.

(15ン 実施例1〜20 製造例1〜20で得られた非線形光学素子用材料(1)
〜(20)をラングミュア−プロジェット膜作製装置の
水面上に単分子膜分散した。表面圧を25〜45dyn
/l+に定圧コントロールし、石英製テーバ付導波路基
板を水面を横切るように上下させ導波路基板上に単分子
膜を400層累積した。その後、1 kVI Xe−H
gランプ(55mJ/、)を用いて遠紫外線を照射して
、5×10m+”  の長方形のパターンの焼付けを行
いクロロホルム−ヘキサン(1:4)混合溶媒で現像し
たところ、遠紫外線照射部のポリマーは残存し、基板の
所望の位置に膜厚1μm1面積5×15+m”の非線形
光学材料が形成できた。次に第1図のように、入射及び
検出用のプリズムを取付は第2図に示す実験装置を組ん
だ。位相整合は、テーパ状の導波層の導波位置を横方向
に移動させ、伝搬定数を連続的に変化させることによシ
実現した。表1に各試料の@2高調波及び#I3高調波
出力を他の例と共に示す。
(15 Examples 1 to 20 Nonlinear optical element materials obtained in Production Examples 1 to 20 (1)
~(20) was dispersed as a monomolecular film on the water surface of a Langmuir-Prodgett membrane preparation apparatus. Surface pressure 25-45 dyn
The pressure was controlled at a constant pressure of /l+, and the quartz tapered waveguide substrate was moved up and down across the water surface to accumulate 400 monomolecular films on the waveguide substrate. Then 1 kVI Xe-H
When a rectangular pattern of 5 x 10 m+" was printed by irradiating far ultraviolet rays using a g lamp (55 mJ/,) and developing it with a chloroform-hexane (1:4) mixed solvent, the polymer in the far ultraviolet irradiated area was remained, and a nonlinear optical material with a film thickness of 1 μm and an area of 5×15+m” could be formed at a desired position on the substrate. Next, as shown in FIG. 1, the prism for incidence and detection was attached, and the experimental apparatus shown in FIG. 2 was assembled. Phase matching was achieved by moving the waveguide position of the tapered waveguide layer in the lateral direction and continuously changing the propagation constant. Table 1 shows @2 harmonic and #I3 harmonic output of each sample along with other examples.

実施例21〜40 製造例1〜20で得られた非線形光学素子用材料(1)
〜(20)を累積膜炸裂装置の水面上に単分子分散した
。宍面圧を25〜45 ayn、/cMに定圧コントロ
ールし、石英製テーパ付導波路基板を水面に水平に上下
させる水平付着法により400層累積した。その後、実
施例1〜20に従ってパターン化し、測定系に設置し、
第2高調波及び第3高調波の発生を調べた。結果を表1
に示す。
Examples 21-40 Nonlinear optical element materials obtained in Production Examples 1-20 (1)
~(20) was monomolecularly dispersed on the water surface of a cumulative film explosion device. The surface pressure was controlled at a constant pressure of 25 to 45 ayn/cM, and 400 layers were accumulated by a horizontal deposition method in which a tapered quartz waveguide substrate was raised and lowered horizontally on the water surface. Thereafter, it was patterned according to Examples 1 to 20 and installed in a measurement system,
The generation of second and third harmonics was investigated. Table 1 shows the results.
Shown below.

実施例41〜43 製造例1〜5で得られた非線形光学素子用材料(1)〜
(3)を、それぞれ10〜50 f / Aのエタノー
ル溶液とし、石英製テーバ付導波路基板にスプレー塗布
した後55〜85Cに1時間加熱して液晶配向させた。
Examples 41-43 Materials for nonlinear optical elements (1) obtained in Production Examples 1-5
Each of (3) was made into an ethanol solution of 10 to 50 f/A, spray-coated onto a quartz tapered waveguide substrate, and then heated at 55 to 85 C for 1 hour to align the liquid crystal.

その後実施例1へ2゜に従ってパターン化し、測定系に
設置し、第2高調波及び第3高調波の発生を調べた。結
果全表1に示す。
Thereafter, it was patterned in accordance with Example 1 by 2°, installed in a measurement system, and the generation of second harmonics and third harmonics was examined. The results are shown in Table 1.

実施例44S65 製造例1〜20で得られた非線形光学素子用材料(1)
〜(20)を、それぞれ蒸着用タンタルボートにのせ、
60〜150℃の温度で石英製テーパ付導波路基板に蒸
着した。
Example 44S65 Nonlinear optical element material obtained in Production Examples 1 to 20 (1)
~ (20) are each placed on a tantalum boat for vapor deposition,
It was deposited on a tapered quartz waveguide substrate at a temperature of 60 to 150°C.

タンタルボートと基板との距離は10crnとし、蒸着
速度は基板と同じ高さにおいて水晶振動子の固有振動数
変化をモニターすることにより制御した。その後、実施
例1〜20に従ってパターン化し測定系に設置し、第2
高調波及び第3高調波の発生を調べた。結果を表1に示
す。
The distance between the tantalum boat and the substrate was 10 crn, and the deposition rate was controlled by monitoring the change in the natural frequency of the crystal oscillator at the same height as the substrate. After that, it was patterned according to Examples 1 to 20 and installed in the measurement system, and the second
The generation of harmonics and third harmonics was investigated. The results are shown in Table 1.

表−1 表 1 (つづき) 表 1 (つづきン 実施例64−65 実施例1において、遠紫外線に代えて、X線(実施例6
4)、電子線(実施例65)を用いて同様のパターンを
形成した。この時パターン形成に必要な高エネルギー線
の照射量は懺2に示す通りであった。
Table 1 Table 1 (Continued) Table 1 (Continued) Examples 64-65 In Example 1, instead of far ultraviolet rays, X-rays (Example 6
4) A similar pattern was formed using an electron beam (Example 65). At this time, the irradiation amount of high-energy radiation necessary for pattern formation was as shown in Figure 2.

表 2 〔発明の効果〕 以上説明したように本発明によるパターニング可能な非
線形光学素子用材料は高エネルギー線に対して高い感度
を有し、従来のフアプリケーション技術によシ短時間で
効果的に非線形光学材料をバターニングできる。
Table 2 [Effects of the Invention] As explained above, the patternable material for nonlinear optical elements according to the present invention has high sensitivity to high-energy rays, and can be effectively applied in a short time by conventional application techniques. Nonlinear optical materials can be patterned.

しかも、現状の有機超薄膜化技術と微細加工技術を用い
て良質の非線形光学パターンを形成することができる。
Furthermore, high-quality nonlinear optical patterns can be formed using current organic ultra-thin film technology and microfabrication technology.

以上のことは導波路型非線形光学素子ひいては光集積回
路上極めて大きな効果を果たすものである。
The above has an extremely large effect on the waveguide type nonlinear optical element and ultimately on the optical integrated circuit.

【図面の簡単な説明】 第1図は本発明の光学材料の測定に用いた導波路の構造
を示す概要図、そして第2図は測定装置の断面概略図で
ある。 1 : Nd : YAG  レーザー、2:偏光子、
3:赤外透過フィルター、4:集光レンズ、5:鏡、6
:プリズム、7:試料、8:石英導波層、9:赤外遮断
フィルター、10:干渉フィルター、11:7オトマル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the structure of a waveguide used for measuring the optical material of the present invention, and FIG. 2 is a schematic cross-sectional diagram of the measuring device. 1: Nd: YAG laser, 2: polarizer,
3: Infrared transmission filter, 4: Condensing lens, 5: Mirror, 6
: prism, 7: sample, 8: quartz waveguide layer, 9: infrared cutoff filter, 10: interference filter, 11: 7 otomaru

Claims (1)

【特許請求の範囲】 1、下記一般式〔 I 〕: ▲数式、化学式、表等があります▼・・・〔 I 〕 (但し、Mは重合性モノマーユニツトを含む疎水性残基
、Aは非線形光学物質を含む疎水性残基、そしてLは親
水性残基を示す)で表されることを特徴とする両親媒性
分子構造のパターニング可能な非線形光学素子用材料。 2、該Mで示される残基が、下記一般式〔II〕〜〔IV〕
: ▲数式、化学式、表等があります▼・・・〔II〕 (但し、nは6〜24の整数、Rは水素又はメチル基を
示す) ▲数式、化学式、表等があります▼・・・〔III〕 (但し、nは6〜24の整数を示す) ▲数式、化学式、表等があります▼・・・〔IV〕 (但し、lは6〜18の整数、mは0〜8の整数を示す
) で表されるいずれかの基である特許請求の範囲第1項記
載の非線形光学素子用材料。 3、該Aで示される残基が、下記一般式〔V〕〜〔IX〕
: ▲数式、化学式、表等があります▼・・・〔V〕 (但し、pは0〜3の整数、qは2〜12の整数、R_
1は水素、メチル基又はエチル基を示す) ▲数式、化学式、表等があります▼・・・〔VI〕 (但し、rは1〜4の整数、qは2〜12の整数、R_
1は水素、メチル基又はエチル基を示す) ▲数式、化学式、表等があります▼・・・〔VII〕 (但し、s及びtは1〜18の整数、Abは式−NHC
O−又は−CONH−で示されるアミド基、R_1は水
素、メチル基又はエチル基を示す)▲数式、化学式、表
等があります▼・・・〔VIII〕 (但し、s及びtは1〜18の整数を示す)▲数式、化
学式、表等があります▼・・・〔IX〕 (但し、s及びtは1〜18の整数、zは式−NH_2
、−NHCH_3、−N(CH_3)_2又は▲数式、
化学式、表等があります▼で示されるアミノ基を示す) で表されるいずれかの基である特許請求の範囲第1項記
載の非線形光学素子用材料。 4、該Lで示される残基が、下記一般式〔X〕〜〔XV
I〕:▲数式、化学式、表等があります▼・・・〔X〕 (但し、R_2は式−CH_3又は−CH_2−CH=
CH_2で示される基、X^ΘはCl^Θ、Br^Θ、
I^Θ又はClO_4^Θで示されるアニオン、Yは式
−COOCH_2CH_2−又は−CH_2−で示され
るスペーサーを示す)▲数式、化学式、表等があります
▼・・・〔X I 〕 (但し、uは2又は3の数、Rは水素又はメチル基、X
_1^Θは−SO_3^Θ又は−OPO_3^Θで示さ
れる双性アニオン、Yは式−COOCH_2CH_2−
又は−CH_2−で示されるスペーサーを示す) ▲数式、化学式、表等があります▼・・・〔XII〕 ▲数式、化学式、表等があります▼・・・〔XIII〕 ▲数式、化学式、表等があります▼・・・〔XIV〕 〔但し、X_2は式▲数式、化学式、表等があります▼
、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼若 しくは▲数式、化学式、表等があります▼で示される双
性イオン 親水性基又は式▲数式、化学式、表等があります▼若し
くは ▲数式、化学式、表等があります▼(但し、Rは水素 又はメチル基を示す)で示される重合性モノマーユニッ
トを有する非イオン性親水性基を示す〕 ▲数式、化学式、表等があります▼・・・〔XV〕 (但し、wは1又は2の数、xは1〜12の整数、X^
ΘはCl^Θ、Br^Θ、I^Θ又はClO_4^Θで
示されるアニオン、Y_1は式−OCO−又は−NHC
O−で示される基を示し、▲数式、化学式、表等があり
ます▼は不斉炭素であることを示す) ▲数式、化学式、表等があります▼・・・〔XVI〕 (但し、wは1又は2の数、yは1〜18の整数、Y_
1は式−OCO−又は−NHCO−で示される基を示し
、▲数式、化学式、表等があります▼は不斉炭素である
ことを示す) で表されるいずれかの基である特許請求の範囲第1項記
載の非線形光学素子用材料。 5、基板上にパターニング可能な非線形光学素子用材料
の結晶性分子配向薄膜を被覆し、高エネルギー線をパタ
ーン照射し、その後現像し所望の位置に所望の形状を有
する非線形光学材料を基板上に形成することによつて非
線形光学パターンを形成する方法において、該パターニ
ング可能な非線形光学素子用材料として、下記一般式〔
I 〕: ▲数式、化学式、表等があります▼・・・〔 I 〕 (但し、Mは重合性モノマーユニットを含む疎水性残基
、Aは非線形光学物質を含む疎水性残基、そしてLは親
水性残基を示す)で表される両親媒性分子構造の材料を
用いることを特徴とする非線形光学パターンの形成方法
。 6、該高エネルギー線が、遠紫外線、X線、又は電子線
である特許請求の範囲第5項記載のパターンの形成方法
。 7、該被覆方法が、ラングミュア−プロジェット型累積
膜作製法若しくはその改良法たる水平付着法又は連続製
膜法である特許請求の範囲第5項又は第6項記載のパタ
ーンの形成方法。 8、該被覆方法が、直接塗布あるいは有機溶剤溶液から
スピンコート又はスプレー塗布により形成した膜を、加
熱処理して液晶配向させる方法である特許請求の範囲第
5項又は第6項記載のパターンの形成方法。 9、該被覆方法が、真空蒸着法である特許請求の範囲第
5項又は第6項記載のパターンの形成方法。
[Claims] 1. The following general formula [I]: ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [I] (However, M is a hydrophobic residue containing a polymerizable monomer unit, and A is a nonlinear 1. A patternable material for a nonlinear optical element having an amphipathic molecular structure, characterized in that it is represented by a hydrophobic residue containing an optical substance, and L represents a hydrophilic residue. 2. The residue represented by M has the following general formulas [II] to [IV]
: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[II] (However, n is an integer from 6 to 24, and R represents hydrogen or a methyl group) ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [III] (However, n indicates an integer from 6 to 24) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[IV] (However, l is an integer from 6 to 18, m is an integer from 0 to 8 The material for a nonlinear optical element according to claim 1, which is any group represented by: 3. The residue represented by A has the following general formulas [V] to [IX]
: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[V] (However, p is an integer from 0 to 3, q is an integer from 2 to 12, R_
1 indicates hydrogen, methyl group or ethyl group) ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [VI] (However, r is an integer from 1 to 4, q is an integer from 2 to 12, R_
1 indicates hydrogen, methyl group or ethyl group) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[VII] (However, s and t are integers from 1 to 18, Ab is the formula -NHC
Amide group represented by O- or -CONH-, R_1 represents hydrogen, methyl group, or ethyl group) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼... [VIII] (However, s and t are 1 to 18 ) ▲ Numerical formulas, chemical formulas, tables, etc. ▼...[IX] (However, s and t are integers from 1 to 18, z is the formula -NH_2
, -NHCH_3, -N(CH_3)_2 or ▲formula,
There are chemical formulas, tables, etc. The material for nonlinear optical elements according to claim 1, which is any group represented by ▼ (indicates an amino group). 4. The residue represented by L has the following general formulas [X] to [XV
I]: ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [X] (However, R_2 is the formula -CH_3 or -CH_2-CH=
The group represented by CH_2, X^Θ is Cl^Θ, Br^Θ,
Anion represented by I^Θ or ClO_4^Θ, Y represents a spacer represented by the formula -COOCH_2CH_2- or -CH_2-) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[X I] (However, u is the number 2 or 3, R is hydrogen or a methyl group, X
_1^Θ is a zwitterionic anion represented by -SO_3^Θ or -OPO_3^Θ, Y is the formula -COOCH_2CH_2-
or -CH_2-) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[XII] ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[XIII] ▲Mathematical formulas, chemical formulas, tables, etc. There is▼...[XIV] [However, X_2 is a formula▲There are mathematical formulas, chemical formulas, tables, etc.▼
, ▲There are mathematical formulas, chemical formulas, tables, etc.▼,▲Mathematical formulas, chemical formulas,
There are tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Zwitterionic hydrophilic groups or formulas ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, , R represents hydrogen or a methyl group) A nonionic hydrophilic group having a polymerizable monomer unit] ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼... [XV] (However, w is 1 or the number of 2, x is an integer from 1 to 12, X^
Θ is an anion represented by Cl^Θ, Br^Θ, I^Θ or ClO_4^Θ, Y_1 is the formula -OCO- or -NHC
Indicates a group represented by O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ indicates that it is an asymmetric carbon) ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [XVI] (However, w is Number 1 or 2, y is an integer from 1 to 18, Y_
1 indicates a group represented by the formula -OCO- or -NHCO-, and ▲ has a mathematical formula, chemical formula, table, etc. ▼ indicates an asymmetric carbon) A material for nonlinear optical elements according to scope 1. 5. Cover the substrate with a crystalline molecule-oriented thin film of a material for nonlinear optical elements that can be patterned, irradiate the pattern with high-energy rays, and then develop the nonlinear optical material with the desired shape at the desired position on the substrate. In the method of forming a nonlinear optical pattern by forming a patternable nonlinear optical element material, the following general formula [
I]: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[I] (However, M is a hydrophobic residue containing a polymerizable monomer unit, A is a hydrophobic residue containing a nonlinear optical substance, and L is a hydrophobic residue containing a nonlinear optical substance. A method for forming a nonlinear optical pattern, characterized by using a material having an amphipathic molecular structure represented by (indicating a hydrophilic residue). 6. The method for forming a pattern according to claim 5, wherein the high-energy beam is deep ultraviolet rays, X-rays, or electron beams. 7. The pattern forming method according to claim 5 or 6, wherein the coating method is a Langmuir-Prodgett type cumulative film forming method, a horizontal deposition method or a continuous film forming method which is an improved method thereof. 8. The pattern according to claim 5 or 6, wherein the coating method is a method of direct coating, or a method of heat-treating a film formed by spin coating or spray coating from an organic solvent solution to align the liquid crystal. Formation method. 9. The pattern forming method according to claim 5 or 6, wherein the coating method is a vacuum evaporation method.
JP60050339A 1985-03-15 1985-03-15 Material for nonlinear optical element and formation of pattern Pending JPS61210332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050339A JPS61210332A (en) 1985-03-15 1985-03-15 Material for nonlinear optical element and formation of pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050339A JPS61210332A (en) 1985-03-15 1985-03-15 Material for nonlinear optical element and formation of pattern

Publications (1)

Publication Number Publication Date
JPS61210332A true JPS61210332A (en) 1986-09-18

Family

ID=12856160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050339A Pending JPS61210332A (en) 1985-03-15 1985-03-15 Material for nonlinear optical element and formation of pattern

Country Status (1)

Country Link
JP (1) JPS61210332A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281033A (en) * 1988-09-19 1990-03-22 Fujitsu Ltd Production of organic nonlinear optical film
JPH0398026A (en) * 1989-09-11 1991-04-23 Rikagaku Kenkyusho Organic nonlinear optical material
JPH04173841A (en) * 1990-11-05 1992-06-22 Nec Corp Method for partially forming polymer membrane having functional group
JP2015120664A (en) * 2013-12-24 2015-07-02 日油株式会社 Boronic acid-containing phosphorylcholine compound, method of producing the same, and iodo group-containing compound modifier
JP2015120665A (en) * 2013-12-24 2015-07-02 日油株式会社 Alkynyl group-containing phosphorylcholine compound, method of producing the same, and azide group-containing compound modifier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281033A (en) * 1988-09-19 1990-03-22 Fujitsu Ltd Production of organic nonlinear optical film
JPH0398026A (en) * 1989-09-11 1991-04-23 Rikagaku Kenkyusho Organic nonlinear optical material
JPH0670697B2 (en) * 1989-09-11 1994-09-07 理化学研究所 Organic nonlinear optical material
JPH04173841A (en) * 1990-11-05 1992-06-22 Nec Corp Method for partially forming polymer membrane having functional group
JP2015120664A (en) * 2013-12-24 2015-07-02 日油株式会社 Boronic acid-containing phosphorylcholine compound, method of producing the same, and iodo group-containing compound modifier
JP2015120665A (en) * 2013-12-24 2015-07-02 日油株式会社 Alkynyl group-containing phosphorylcholine compound, method of producing the same, and azide group-containing compound modifier

Similar Documents

Publication Publication Date Title
EP0021695B1 (en) Novel nonlinear optical materials and processes employing diacetylenes
DE69109980T2 (en) Chromophore containing compounds for optoelectronic uses.
US4581315A (en) Photoresistive compositions
US5006729A (en) Device for doubling the frequency of a light wave comprising a non-linear optical compound
JPH06118258A (en) Manufacture of polymer-stripe type waveguide and patterning method of waveguide layer
US4603187A (en) Polyacetylenic compositions
DE69209827T2 (en) Polymeric nitrones with an acrylic main chain
JPS61210332A (en) Material for nonlinear optical element and formation of pattern
EP0022618B1 (en) Photographic or photolithographic article and method of forming a photoresist
EP0502955B1 (en) Fluorinated sulfones/ketones for nonlinear optics
JPH04334343A (en) Electroactive compound, composition and apparatus and method of manufacturing said compound
JPS6354422A (en) Orientation polymer material
EP0596325A1 (en) Optical element with Langmuir-Blodgett layers
JPH04507426A (en) (Meth)acrylate copolymers and their use in nonlinear optical systems and their use for producing Langmuir, Blodgett layers
JP2006276066A (en) Raw material solution for manufacturing nonlinear optical material, nonlinear optical material, and nonlinear optical element
JPS63130135A (en) Organic membrane
JPS63237038A (en) Process for forming nonlinear optical pattern
JPS6165237A (en) Resist material
JPS61148433A (en) Patternable material for nonlinear optical element and production of said element
JPS61167930A (en) Production of material for non-linear optical element which can be patterned and non-linear optical element
JPH04301627A (en) Organic nonlinear optical thin film element
JPH03131626A (en) Photo-sensitive amphipathic polymeric compound and production thereof
JPH04368920A (en) Photosensitive organic polymer nonlinear optical material
JPS63175835A (en) Organic nonlinear optical material, optical device using the same and production thereof
JPH0469624A (en) Nonlinear optical material