JPS61167930A - Production of material for non-linear optical element which can be patterned and non-linear optical element - Google Patents

Production of material for non-linear optical element which can be patterned and non-linear optical element

Info

Publication number
JPS61167930A
JPS61167930A JP858685A JP858685A JPS61167930A JP S61167930 A JPS61167930 A JP S61167930A JP 858685 A JP858685 A JP 858685A JP 858685 A JP858685 A JP 858685A JP S61167930 A JPS61167930 A JP S61167930A
Authority
JP
Japan
Prior art keywords
optical element
group
nonlinear optical
rays
aromatic group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP858685A
Other languages
Japanese (ja)
Inventor
Takashi Kurihara
隆 栗原
Masao Morita
雅夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP858685A priority Critical patent/JPS61167930A/en
Publication of JPS61167930A publication Critical patent/JPS61167930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To make possible fine working by high energy rays with less light injuries and to improve mechanical strength by using a material which is expressed by the specific formula and can be patterned. CONSTITUTION:The material expressed by the formula is used as the material for the non-linear optical element which can be patterned. The above-mentioned optical element is produced by dissolving the material for the non-linear optical element in a suitable solvent and coating the resultant soln. by a spin coating method, spray method, etc. on a substrate on which an optical waveguide is formed. The substrate is then prebaked by an electric furnace, IR heating, etc. in a dry atmosphere, by which the org. solvent in the film is removed and the adhesiveness to the substrate is improved. The pattern is then backed by the irradiation of far UV rays or X-rays through a mask or the direct irradiation of electron rays and ion beam thereon. The backed pattern is developed with a suitable developing soln. and is washed and thereafter the pattern is post-baked to have the higher adhesiveness and to remove the solvent picked up during the development. The element is thus made less susceptible to the injury by light and the mechanical strength thereof is much improved as compared with a low-molecular org. compd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パ・ターニングが可能な非線形光学素子用材
料及び、これを用いた非線形光学素子の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a patternable material for a nonlinear optical element and a method for manufacturing a nonlinear optical element using the same.

〔従来技術とその問題点〕[Prior art and its problems]

従来、非線形光学素子は、光学非線形性を示す無機結晶
あるいは有機結晶をホルダー等で除振台上に固定し、こ
れにレーザー光を入射させ、該結晶によ)生じる光整流
効果、光混合、第2高調波や第3高調波の発生などの非
線形光学効果を利用して能動的な光デバイスとして機能
させる鴨のであった。しかし、このような光学系を組ん
でい九のでは、系全体として大きなものとなり、 It
、振動等によシ光軸がずれやすいなど多(の欠点があつ
危。これに対し、基板上に光導波路を作製し、これに非
線形光学材料を組み込むことによシ、これらの欠点を除
(ことが可能となる。
Conventionally, nonlinear optical elements have been developed by fixing an inorganic or organic crystal that exhibits optical nonlinearity on a vibration isolating table using a holder, etc., and injecting a laser beam into the crystal to produce a light rectification effect, light mixing, Kamo's work utilized nonlinear optical effects such as the generation of second and third harmonics to function as an active optical device. However, when such an optical system is assembled, the system as a whole becomes large, and
However, by creating an optical waveguide on the substrate and incorporating a nonlinear optical material into it, these drawbacks can be eliminated. (This becomes possible.

しかし、光導波路を高密度化し、光集積回路とし友場合
、微細な非線形光学材料を回路上の必要な部位に1つ1
つ組み込むことは、かなり困難を伴う。したがって、あ
らがしめ形成し次光導波路中i:非線形光学材料を組み
込んで高密度の光集積回路を製造することは、本質的に
不可能である。
However, when increasing the density of optical waveguides to form optical integrated circuits, fine nonlinear optical materials are added to the necessary parts of the circuit.
Incorporating one is quite difficult. Therefore, it is essentially impossible to fabricate high-density optical integrated circuits by incorporating nonlinear optical materials in irregularly formed optical waveguides.

一方、非線形光学材料としては、これまで、LINb(
J3 などの無機結晶が最も多く使用されてきたが、こ
れらに比べ著しく非線形性の高い材料として、ベンゼン
誘導体やスチルベン誘導体のような有機結晶が注目され
ている。しかし、これら有機化合物は、レーザー光によ
シ損傷を受けやすく、また、機械的強度も劣っているな
どの欠点があるため、非線形光学素子への応用が妨げら
れていto C発明の目的〕 本発明の目的は、これらの欠点を解決し、高エネルギー
線による微細加工を可能にり、、がつ光損傷が少なく、
機械的強度に優れた非線形光学材料を提供することにあ
る。
On the other hand, as a nonlinear optical material, LINb (
Inorganic crystals such as J3 have been used most often, but organic crystals such as benzene derivatives and stilbene derivatives are attracting attention as materials with significantly higher nonlinearity than these. However, these organic compounds have drawbacks such as being easily damaged by laser light and having poor mechanical strength, which prevents their application to nonlinear optical elements. The purpose of the invention is to solve these drawbacks, to enable microfabrication using high-energy beams, to reduce photodamage, and to
The object of the present invention is to provide a nonlinear optical material with excellent mechanical strength.

さらに、もう1つの目的としては、該材料を用いて非線
形光学素子を作製する方法を提供することである。
Furthermore, another object is to provide a method for producing a nonlinear optical element using the material.

C問題点を解決するtめの手段〕 このような有機物の非線形光学素子用材料および非線形
光学素子の製造法の現状に鑑みて、本発明者らは従来の
諸問題を解決すべく種々検討、研究し元結果、有棲物の
非線形光学素子用材料を高エネルギー線に感応するポ菖
1マーに導入し、高二ふルギー線によるパターニングが
可能な非線形光学素子材料とすることが、前記目的達成
のfl:、t)E二極めて有効であることを見いだし、
本発明を完成し几。
Third Means for Solving Problem C] In view of the current state of organic nonlinear optical element materials and nonlinear optical element manufacturing methods, the present inventors have conducted various studies to solve the conventional problems. As a result of the research, it was possible to achieve the above-mentioned objective by introducing a material for nonlinear optical elements of living organisms into polymers that are sensitive to high energy rays, and making it possible to pattern with high energy rays. fl:, t) E2 found to be extremely effective,
Completed the invention.

即ち、本発明の/9ターニング可能な非線形光学素子用
材料は、 下記一般式 1 式中88は、水素、ハロゲン、またはメチル基、R8は
、水f1芳香族基、tたはフルキル基、R。
That is, the /9 turnable nonlinear optical element material of the present invention has the following general formula 1, where 88 is hydrogen, halogen, or methyl group, R8 is water f1 aromatic group, t or furkyl group, R .

は芳香#基、置換芳香族基、ピリジン塩基、ニトロ基、
人rは、芳香族基、Xは、ハロゲン、1にはへロゲン化
アル中ル基を示し、!は、Olたは正の整数、!II、
 nは正の整数を示す。
is aromatic group, substituted aromatic group, pyridine base, nitro group,
r represents an aromatic group, X represents a halogen, and 1 represents a helogenated alkyl group; is Ol or a positive integer, ! II,
n indicates a positive integer.

で示されることを特徴とする。It is characterized by the following.

罰紀本発明の非線形光学素子用材料VcNいて、mとn
の比は任*VC*べろが、高エネルギー線に感応するハ
ロゲンま次は^ロダン1こフルキル基(一般f:、(1
)中Xで示す)は、縞々20モル%あれば十分に実用可
能な感度を示す。
The material VcN for nonlinear optical elements of the present invention is m and n.
The ratio of *VC* is as follows, but the halogen group sensitive to high energy rays is the ^rodan 1-furkyl group (general f:, (1
)) shows sufficient practical sensitivity with 20 mol % of stripes.

前記一般式(I)の材料において、R2のアルキル基と
しては、メチル基、エチル基、ブaピル基、ブチル基な
どを挙げることができ、芳香族基としては、フェニル基
、ナフチル基、メチルフェニル基、カルバゾール基、な
どを挙げることがでキル。さらに、Xのハロゲン化アル
キルとしては、paミロメチル、ブロモメチル基、ヨウ
化メチル−基、クロミニチル基、クロロプロピル基など
を挙げることができる。また、R3の芳香族基、置換芳
香族基としては、フェニル基、ナフチル基、メチルフェ
ニル基、カルバゾール基、りaロフェニル基、ニドaフ
ェニル基、ニトロフェニルエチール基などを挙げること
ができる。ttl ピリジン塩基としては、N−メチル
ピリジンの過塩基酸基、N−メチルピリジンの桂皮酸塩
、N−メチルピリジンの7フ化はう素酸塩、N−メチル
ピリジンのレニウム醗塩、N−メチルピリジンのメチル
スルホン酸塩、N−メチルピリジンのメチルスルホン酸
塩などを挙げることができる。
In the material of general formula (I), examples of the alkyl group of R2 include methyl group, ethyl group, butyl group, butyl group, etc., and examples of the aromatic group include phenyl group, naphthyl group, methyl group, etc. Killers include phenyl groups, carbazole groups, etc. Furthermore, examples of the halogenated alkyl group of X include pa-miromethyl, bromomethyl group, methyl iodide group, chromityl group, and chloropropyl group. Examples of the aromatic group and substituted aromatic group for R3 include a phenyl group, a naphthyl group, a methylphenyl group, a carbazole group, a ria-rophenyl group, a nido-a-phenyl group, and a nitrophenylethyl group. The ttl pyridine base includes the overbasic acid group of N-methylpyridine, the cinnamate of N-methylpyridine, the heptafluoroborate of N-methylpyridine, the rhenium salt of N-methylpyridine, and the rhenium salt of N-methylpyridine. Examples include methylsulfonate of methylpyridine and methylsulfonate of N-methylpyridine.

本発明によれば、また非線形光学素子の製造方法が提供
され、基板上にバターニング可能な非線形光学素子用材
料を被覆し、高エネルギー線をパターン照射した後、現
偉し、所望の位置に所望の形状を有する非線形光学材料
を基板上(=形成することによって、光導波路形の非線
形光学素子を製造するに際して、上記一般式()lで表
わされるパターニング可能な非線形光学素子用材料を用
いることを特徴とする。
According to the present invention, there is also provided a method for manufacturing a nonlinear optical element, in which a material for a nonlinear optical element that can be patterned is coated on a substrate, and after patterning is irradiated with high-energy rays, the material is coated and placed at a desired position. When manufacturing an optical waveguide-shaped nonlinear optical element by forming a nonlinear optical material having a desired shape on a substrate, use a patternable nonlinear optical element material represented by the above general formula ()l. It is characterized by

また、パターニングに際して使用できる高エネルギー線
としては、遠紫外線、X線、電子線、イオンビームが挙
げられ、これらの高エネルギー線に対して、本発明の材
料はネガ形として機能する。
Further, high-energy rays that can be used in patterning include deep ultraviolet rays, X-rays, electron beams, and ion beams, and the material of the present invention functions as a negative type with respect to these high-energy rays.

本発明の非線形光学素子用材料の製造方法としては、 一般式璽 + CH2−C−)−(1) Ar ■ 式中R1は水素、ハロゲンまたはメチル基、Arは芳香
族基、Xはハロゲンまたはハロゲン化アルキル基を示す
The method for producing the material for nonlinear optical elements of the present invention is as follows: General formula + CH2-C-)-(1) Ar ■ In the formula, R1 is hydrogen, halogen or a methyl group, Ar is an aromatic group, and X is a halogen or Indicates a halogenated alkyl group.

で示される有機高分子に炭酸カリウムを触媒として、 一般式璽 膜中、R,Fi、水素、芳香族基、またはアルキル基、
R3は芳香族基、置換芳香族基、ピリジン塩基、ニトロ
基を示す。
In the general formula, R, Fi, hydrogen, an aromatic group, or an alkyl group, using potassium carbonate as a catalyst in an organic polymer represented by
R3 represents an aromatic group, a substituted aromatic group, a pyridine base, or a nitro group.

で示される化合物を反応させることによフ得られる。It can be obtained by reacting the compound shown below.

また、一般式1の化合物の単量体と共重合させでもよい
Further, it may be copolymerized with a monomer of the compound of general formula 1.

さら(=、一般式1の有機高分子は、その単量体を重合
させることにより得られるが、 Ar 式中R□は水素、ハロゲンteはメチル基%Arは芳香
族基を示す。
Furthermore, the organic polymer of the general formula 1 can be obtained by polymerizing its monomers, Ar In the formula, R□ is hydrogen, the halogen te is a methyl group, and %Ar is an aromatic group.

で示される有機高分子にハロゲンまたはハロゲン化メチ
ル基を導入することによっても得られる。
It can also be obtained by introducing a halogen or a halogenated methyl group into the organic polymer represented by.

本発明の非線形光学素子の製造方法においては、まず、
光導波路が形成された基板上に本発明の非線形光学素子
用材料を適当な溶剤に溶解させ、得られる溶液をスピン
コード法、スプレー法等によ〕塗布する。次に、乾燥雰
囲気中で電気炉、赤外線加熱等によりプリベーク処現に
付されて、膜中の有機溶剤が除去され、基板との密着性
が高められる。次に、遠紫外線、X線ではマスクを通し
て、電子線、イオンビームでは直接照射することにより
、パターンを焼きつけ、次いで適当な現儂液、例えば、
メチルエチルケトン、キシレン、あるいはこれらとイソ
プロピルアルコールやシククヘギサンとの混合溶媒など
で現俸、洗浄し、ボストベークを行なって、パターンの
密着性をさらに向上させると共に、現俸時の溶媒を除去
する。
In the method for manufacturing a nonlinear optical element of the present invention, first,
The material for a nonlinear optical element of the present invention is dissolved in a suitable solvent on a substrate on which an optical waveguide is formed, and the resulting solution is applied by a spin code method, a spray method, or the like. Next, the film is prebaked in a dry atmosphere using an electric furnace, infrared heating, etc. to remove the organic solvent in the film and improve its adhesion to the substrate. The pattern is then printed by irradiation through a mask with deep ultraviolet rays, X-rays, or directly with electron beams or ion beams, and then with a suitable liquid, e.g.
The pattern is washed with a solvent such as methyl ethyl ketone, xylene, or a mixed solvent of these with isopropyl alcohol or cyclohexane, and then a boost bake is performed to further improve the adhesion of the pattern and to remove the solvent in the current coating.

カくシて本発明によれば、光導波路を有する基板上の所
望の位置に所望の大きさの非線形光学材料を配すること
ができる。本発明の材料は、高エネルギー線に対し高い
感度と優れた解儂性を有する念め、高密度化され光集積
回路となっても、十分な生産性をもって使用Tることが
可能である。
According to the present invention, a nonlinear optical material of a desired size can be placed at a desired position on a substrate having an optical waveguide. Since the material of the present invention has high sensitivity to high-energy radiation and excellent decomposition properties, it can be used with sufficient productivity even when it is highly densified and becomes an optical integrated circuit.

更に、非線形性を示す材料が架橋により固化し友有機高
分子である究め、有機物の高い非線形性−を保持し1か
つ、光による損傷を受けに〈(、まt1機械的強度も低
分子の有機化合物に比べ格段に向上させることができる
Furthermore, we have discovered that materials exhibiting nonlinearity solidify through crosslinking and become organic polymers, which retain the high nonlinearity of organic materials and are less susceptible to damage by light. It can be significantly improved compared to organic compounds.

以下、製造例、並びに実施例によって本発明を更に具体
的に説明するが、本発明の範囲はこれら実施例により何
等制限されない6 製造例1 クロロメチル化し定ポリスチレンCトヨビーム−EX、
東洋1違裂13 gs p−アミノジフェニルジアセチ
レン3gおよび、炭醗力11ウム3gt−N、N−ジメ
チルホルムアミド50−に溶解し、60℃で8時間反応
させ友。得られ次深紅色の溶液を水−メタノール=3=
1の混合溶媒に注ぎ、ポリマーを沈殿させ九〇ポリマー
を水、メタノールで洗浄し、真空乾燥することにより、
ポリマーを得友。
Hereinafter, the present invention will be explained in more detail with reference to Production Examples and Examples, but the scope of the present invention is not limited in any way by these Examples.6 Production Example 1 Chloromethylated constant polystyrene C TOYOBEAM-EX,
A mixture of Toyo 1 and 13 gsp was dissolved in 3 g of p-aminodiphenyl diacetylene and 11 um of carbon dioxide and 50 g of t-N,N-dimethylformamide and reacted at 60°C for 8 hours. The resulting deep red solution was mixed with water-methanol=3=
By pouring into the mixed solvent of 1 to precipitate the polymer, washing the polymer with water and methanol, and vacuum drying,
A good friend of polymers.

)通例2〜7 製造例1において、p−アミノジフェニルアセチレンの
代わりにs’9−’N−メチルアミノ)ジフェニルアセ
チレン(#違例2 )、p −(N−メチルアミノ)−
p′−クロロジフェニルアセチレンC型造例3)、p−
アミノ−p′−二トaジフェニルアセチレン(製造例4
1、p−(N−メチにアミノ)−p′−二トロジフェニ
ルアセチレンC製造例51.1−二)ct−2−(p−
(N−メチルアミノ)フェニル)アセチレンtIJ通例
61.1−(p−ニトロ)フェニル−4−(P−(N−
メチルアミノ)フェニル)ブタジインC製造例7)を用
い、製造例1と同様の操作を行ない、ポリマーを得之。
) Conventional Examples 2 to 7 In Production Example 1, s'9-'N-methylamino)diphenylacetylene (#Unusual Example 2), p -(N-methylamino)-
p'-Chlorodiphenylacetylene C type preparation example 3), p-
Amino-p'-diphenylacetylene (Production Example 4)
1, p-(N-methyamino)-p'-nitrodiphenylacetylene C Production Example 51.1-2) ct-2-(p-
(N-methylamino)phenyl)acetylene tIJ Typical 61.1-(p-nitro)phenyl-4-(P-(N-
Using methylamino)phenyl)butadiin C Production Example 7), the same operation as in Production Example 1 was carried out to obtain a polymer.

製造例8〜12 製造例1において、p−アミノジフェニルアセチレンの
代わシに、N−メチル−p−(2−(p’−N−メチル
アニリノ1エチニル]ピリジニクムの過塩素酸塩C製造
例8)、N−メチル−p−(2−(p’ −N−メチル
アニリノ)エチニル)ビ11ジニウムの過塩素酸塩の桂
皮酸塩C製造例9)、N−メチル−p−(2−(p’−
N−メチルアニリノ)エチニル)ピリジニウムの7フ化
はう素酸塩C梨通例10)、N−メチル−p−(2−(
p’−N−/チルアユ11〕)エチニル)ピリジニウム
のレニウム酸塩(i通例11)、N−メチル−p−r2
−(p’−N−メチルアニリノ)エチニル)ピリジニウ
ムのメチルスルホン陳塩C製通例12 )を用い、製造
例1と同様の操作を行ないポリマーを得几。
Production Examples 8 to 12 In Production Example 1, N-methyl-p-(2-(p'-N-methylanilino-1-ethynyl)pyridinicum perchlorate C Production Example 8) was used instead of p-aminodiphenylacetylene. , N-methyl-p-(2-(p' -N-methylanilino)ethynyl)bi-11dinium perchlorate cinnamate C Preparation Example 9), N-methyl-p-(2-(p' −
N-Methylanilino)ethynyl)pyridinium heptafluoride boronate C2), N-methyl-p-(2-(
p'-N-/chiruayu 11]) ethynyl) pyridinium rhenate (i customary 11), N-methyl-p-r2
-(p'-N-Methyanilino)ethynyl)pyridinium methylsulfone manufactured by C. (Example 12) was used and the same procedure as in Production Example 1 was carried out to obtain a polymer.

製造例13〜17 製造例5において、p−(N−メチルアき))−p′−
二トaジフェニルアセチレンの仕込ミ量を0.5g(製
造例13 )%  1−Og (製造例、14)、1.
5g(製造例15)、2.0g(製造例16)、2.5
g(製造例17)として製造例7と同様の操作を行ない
、ポリマーf!−得7’j。
Production Examples 13 to 17 In Production Example 5, p-(N-methylaki))-p'-
The amount of diphenylacetylene charged was 0.5g (Production Example 13)%, 1-Og (Production Example 14), 1.
5g (Production Example 15), 2.0g (Production Example 16), 2.5
g (Production Example 17), the same operation as in Production Example 7 was carried out, and polymer f! -Gain7'j.

5j!烏例1〜17 製造例1〜17で得られtポリマーをメチルイソブチル
ケトンに溶解し、5in2で導波路が形成されている基
板に塗布し、100℃で30分間N2気流中プリベーク
した。その後、加速電圧20KVの電子、線を照射して
パターンの焼きっけを行ない、メチルエチルケトンとイ
ノプロピルアルコールとのl:1混合溶媒で現像しtと
ころ、電子線照射部のポリマーは残存し、導波路の所望
の位置に膜厚20μm11 、長さ1lIIJの非線形
光学材料が形成できた。次に導波路を通して、波長1.
064μm。
5j! Examples 1 to 17 The t-polymers obtained in Production Examples 1 to 17 were dissolved in methyl isobutyl ketone, applied to a 5 in 2 substrate on which a waveguide was formed, and prebaked at 100° C. for 30 minutes in a N 2 stream. After that, the pattern was burnt by irradiating electrons and beams with an acceleration voltage of 20 KV, and was developed with a 1:1 mixed solvent of methyl ethyl ketone and inopropyl alcohol. However, the polymer in the area irradiated with the electron beam remained and the conductive material remained. A nonlinear optical material with a film thickness of 20 μm11 and a length of 1lIIJ was formed at the desired position of the wave path. Next, wavelength 1.
064 μm.

出力IKWのNd  : YAGレーザを非線形光学材
料に通し九ところ、第2高調波である波長0.532μ
mの光が観測され几。
Output IKW Nd: When the YAG laser is passed through a nonlinear optical material, the second harmonic wavelength is 0.532μ.
Light of m was observed.

表1にパターン形成に必要な電子線照射量および第2高
調波の出力を示す。但し、第2高調波の出力に、尿素の
粉末を同じ導波路に組み込んで行なつt場合との相対値
で示す。
Table 1 shows the electron beam irradiation amount and second harmonic output required for pattern formation. However, the output of the second harmonic is shown as a relative value to the case t when urea powder is incorporated into the same waveguide.

実権例18〜20 実施例5において、ポリマー主鎖上のR1が水素の代わ
りに、メチル基C実権例18)、塩素【実施例19)、
臭素C実施例20)を有する3種類のポリマーを用いて
、実施例1〜17と同様の光導波路t−8iO□上にパ
ターン化し、第2高調波の発生を観測し友。
Practical examples 18 to 20 In Example 5, R1 on the polymer main chain was replaced with hydrogen, methyl group C Practical example 18), chlorine [Example 19),
Three types of polymers containing bromine C (Example 20) were patterned onto the same optical waveguide t-8iO□ as in Examples 1 to 17, and the generation of the second harmonic was observed.

結果を表2に示す。The results are shown in Table 2.

表   2 実権例21〜23 実施例1において、電子線に代えて、xmr実施例21
)、遠紫外II(実施例22)、イオンビームC実権例
23)を用いて、実権例1と同様にパターンを形成し几
。この時、パターン形成に必要な高エネルギー線の照射
量は、表3に示す通)であった。
Table 2 Actual Examples 21 to 23 In Example 1, instead of the electron beam, xmr Example 21
), deep ultraviolet II (Example 22), and ion beam C (Example 23), a pattern was formed in the same manner as in Example 1. At this time, the irradiation amount of high-energy rays necessary for pattern formation was as shown in Table 3).

〔発明の効果] 以上説明したように、本発明によるパターニング可能な
非線形光学素子用材料は高エネルギー線に対し高い感度
を有し1従来のフアプリケーション技術により、短時間
で効率的に非線形光学材料をパターニングできる。
[Effects of the Invention] As explained above, the patternable material for nonlinear optical elements according to the present invention has high sensitivity to high-energy radiation. can be patterned.

しかも材料自体は、非線形性の非常に高いものであり、
しかも光損゛傷を受けに(く、機械的強度C:も優れて
いる。
Moreover, the material itself is highly nonlinear,
Furthermore, it is not susceptible to optical damage and has excellent mechanical strength C:.

よって、本発明の材料および製造法は導波路形非線形光
学素子、ひいては洸集積回路製造上、極めて大きな効果
を果たすものとなる。
Therefore, the material and manufacturing method of the present invention have an extremely large effect on the production of waveguide-type nonlinear optical elements and, ultimately, integrated circuits.

Claims (1)

【特許請求の範囲】 1)下記一般式 ▲数式、化学式、表等があります▼ 式中R_1は、水素、ハロゲン、またはメチル基、R_
2は、水素、芳香族基、またはアルキル基、R_3は芳
香族基、置換芳香族基、ピリジン塩基、ニトロ基、Ar
は、芳香族基、Xは、ハロゲン、またはハロゲン化アル
キル基を示し、lは、0または正の整数、m、nは正の
整数を示す。 で示されることを特徴とするパターニング可能な非線形
光学素子用材料。 2)基板上にパターニング可能な非線形光学材料を被覆
し、高エネルギー線をパターン照射した後、現像し、所
望の位置に所望の形状を有する非線形光学材料を基板上
に形成することによつて光導波路形の非線形光学素子を
作製する方法において、パターニング可能な非線形光学
材料として、下記一般式 ▲数式、化学式、表等があります▼ 式中R_1は、水素、ハロゲン、またはメチル基、R_
2は、水素、芳香族基、またはアルキル基、R_3は芳
香族基、置換芳香族基、ピリジン塩基、ニトロ基、Ar
は、芳香族基、Xは、ハロゲン、またはハロゲン化アル
キル基を示し、lは、0または正の整数、m、nは正の
整数を示す。 で示される材料を用いることを特徴とする非線形光学素
子の製造方法。 3)高エネルギー線として、遠紫外線、X線、電子線、
イオンビームを用いることを特徴とする特許請求の範囲
第2項記載の非線形光学素子の製造方法。
[Claims] 1) The following general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ In the formula, R_1 is hydrogen, halogen, or a methyl group, R_
2 is hydrogen, aromatic group, or alkyl group, R_3 is aromatic group, substituted aromatic group, pyridine base, nitro group, Ar
represents an aromatic group, X represents a halogen or a halogenated alkyl group, l represents 0 or a positive integer, and m and n represent positive integers. A patternable nonlinear optical element material characterized by: 2) A nonlinear optical material that can be patterned is coated on a substrate, irradiated with high-energy rays in a pattern, and then developed to form a nonlinear optical material having a desired shape at a desired position on the substrate. In the method of manufacturing a wave-shaped nonlinear optical element, the following general formula ▲ mathematical formula, chemical formula, table, etc. are used as patternable nonlinear optical materials ▼ In the formula, R_1 is hydrogen, halogen, or methyl group, R_
2 is hydrogen, aromatic group, or alkyl group, R_3 is aromatic group, substituted aromatic group, pyridine base, nitro group, Ar
represents an aromatic group, X represents a halogen or a halogenated alkyl group, l represents 0 or a positive integer, and m and n represent positive integers. A method for manufacturing a nonlinear optical element, characterized by using a material shown in . 3) As high-energy rays, far ultraviolet rays, X-rays, electron beams,
3. The method of manufacturing a nonlinear optical element according to claim 2, wherein an ion beam is used.
JP858685A 1985-01-21 1985-01-21 Production of material for non-linear optical element which can be patterned and non-linear optical element Pending JPS61167930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP858685A JPS61167930A (en) 1985-01-21 1985-01-21 Production of material for non-linear optical element which can be patterned and non-linear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP858685A JPS61167930A (en) 1985-01-21 1985-01-21 Production of material for non-linear optical element which can be patterned and non-linear optical element

Publications (1)

Publication Number Publication Date
JPS61167930A true JPS61167930A (en) 1986-07-29

Family

ID=11697099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP858685A Pending JPS61167930A (en) 1985-01-21 1985-01-21 Production of material for non-linear optical element which can be patterned and non-linear optical element

Country Status (1)

Country Link
JP (1) JPS61167930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944896A (en) * 1986-01-24 1990-07-31 Hoechst Celanese Corp. Side chain liquid crystalline polymers exhibiting nonlinear optical response
US4997595A (en) * 1988-01-27 1991-03-05 Nippon Telegraph And Telephone Corporation Organic nonlinear optical material and nonlinear optical device
US5376507A (en) * 1992-01-10 1994-12-27 Imm, Institut Fur Mikrotechnik Gmbh Method to produce nonlinear optical microcomponents

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944896A (en) * 1986-01-24 1990-07-31 Hoechst Celanese Corp. Side chain liquid crystalline polymers exhibiting nonlinear optical response
US4997595A (en) * 1988-01-27 1991-03-05 Nippon Telegraph And Telephone Corporation Organic nonlinear optical material and nonlinear optical device
US4999139A (en) * 1988-01-27 1991-03-12 Nippon Telegraph And Telephone Corporation Organic nonlinear optical material and nonlinear optical device
US5376507A (en) * 1992-01-10 1994-12-27 Imm, Institut Fur Mikrotechnik Gmbh Method to produce nonlinear optical microcomponents

Similar Documents

Publication Publication Date Title
Li et al. Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials
US4439514A (en) Photoresistive compositions
US4587205A (en) Method of using polysilane positive photoresist materials
US4581315A (en) Photoresistive compositions
KR850007488A (en) How to use photoresist material for polysilane type positive plate
US4649100A (en) Production of resist images, and a suitable dry film resist
JPH0348500B2 (en)
US5230985A (en) Negative-working radiation-sensitive mixtures, and radiation-sensitive recording material produced with these mixtures
JPH02972A (en) Photopolymerizing composition
Miller Polysilanes—a new look at some old materials
CA1158598A (en) Photoresistive compositions
JPS61167930A (en) Production of material for non-linear optical element which can be patterned and non-linear optical element
JP2826237B2 (en) Method for forming high molecular weight polymer film
JPS61148433A (en) Patternable material for nonlinear optical element and production of said element
JPS61137136A (en) Material for patternable nonlinear optical element and preparation of said element
JPH032869A (en) Manufacture of high heat-resistant relief structure
JPS61210332A (en) Material for nonlinear optical element and formation of pattern
JPH03223864A (en) Resist material
JPH02287516A (en) Organic nonlinear optical material
JPH03223862A (en) Resist material
JPH04163530A (en) Nonlinear optical material as well as nonlinear element and manufacture thereof
JPS55164825A (en) Polymer positive image forming method
JPH04318821A (en) Nonlinear optical material, nonlinear optical element, transparent optical material and thin film
JPH0738042B2 (en) Micro optical component material
JP4097314B2 (en) Polysilane photorefractive device with improved responsiveness