JPH0398026A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH0398026A
JPH0398026A JP23519389A JP23519389A JPH0398026A JP H0398026 A JPH0398026 A JP H0398026A JP 23519389 A JP23519389 A JP 23519389A JP 23519389 A JP23519389 A JP 23519389A JP H0398026 A JPH0398026 A JP H0398026A
Authority
JP
Japan
Prior art keywords
nonlinear optical
group
optical material
main chain
diacetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23519389A
Other languages
Japanese (ja)
Other versions
JPH0670697B2 (en
Inventor
Haruki Okawa
春樹 大川
Tatsuo Wada
達夫 和田
Toshiyuki Uryu
瓜生 敏之
Akira Yamada
瑛 山田
Hiroyuki Sasabe
博之 雀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP1235193A priority Critical patent/JPH0670697B2/en
Publication of JPH0398026A publication Critical patent/JPH0398026A/en
Publication of JPH0670697B2 publication Critical patent/JPH0670697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide a thin film which has excellent mechanical strength and exhibits a tertiary nonlinear optical effect by having a diacetylene group in the main chain and incorporating an alkyl group or alkylene group therein. CONSTITUTION:The high polymer having the diacetylene group in the main chain exhibits the nonlinear optical effect and is made soluble in org. solvents by introducing the alkyl group or alkylene group therein. Further, the nonlinear optical effect of such high polymer is improved by a heat treatment, photoirradiation or radiation irradiation. This material is, thereupon, so formed as to have the diacetylene group in the main chain and to contain the alkyl group or alkylene group. The thin film which has the excellent mechanical strength and exhibits the tertiary nonlinear optical effect is formed in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、光波数逓倍素子、光シャッター及びE○変換
器等に利用される非線形光学材料に関し、さらに詳しく
は、主鎮にジアセチレン基を持つ高分子からなる有機非
線形光学材料に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to nonlinear optical materials used in optical wave number multipliers, optical shutters, E○ converters, etc. This paper relates to organic nonlinear optical materials consisting of polymers with .

(従来技術) 従来から、非線形光学材料としてはリン酸二水素化カリ
ウム(KDP)や二オブ酸リチウム(L+NbOi)等
の無機強誘電体材料が光周波数逓倍素子として実用化さ
れている。一方、有機非線形光学材料はより大きめ)非
線形光学定数、より速い非線形光学応答や高い破壊しき
い値等の特徴を有し、従来のオブトエレクトロニクス分
野の基幹材料として注目されている。また、有機材料は
材料化手法の多様性及び分子修飾が可能といった利点も
有しているため、有機非線形光学材料に関する研究は精
力的に行われている。三次の非線形光学効果を示す材料
は、光強度による屈折率の変化を利用した素子への応用
が可能であり、光メモリーや光論理素子等への展開が期
待できる。
(Prior Art) Conventionally, as nonlinear optical materials, inorganic ferroelectric materials such as potassium dihydrogen phosphate (KDP) and lithium diobate (L+NbOi) have been put into practical use as optical frequency multipliers. On the other hand, organic nonlinear optical materials have characteristics such as larger nonlinear optical constants, faster nonlinear optical responses, and higher breakdown thresholds, and are attracting attention as key materials in the conventional field of electronics. In addition, organic materials have the advantage of having a variety of material preparation methods and the possibility of molecular modification, so research on organic nonlinear optical materials is being actively conducted. Materials that exhibit third-order nonlinear optical effects can be applied to devices that utilize changes in refractive index depending on light intensity, and are expected to be used in optical memories, optical logic devices, etc.

(発明が解決しようとする問題点) 大きな三次の非線形光学効果を示す有機材料としては、
π電子共役系を有するポリアセチレン、ポリジアセチレ
ンや金属フタロシアニンがよく知られている。しかしこ
れらの材料は融解しないだけでなく一般の有機溶剤に溶
解しないために、膜厚制御が困難であり機械的強度に優
れた薄膜を得ることが困難である。そのため光学素子へ
の展開に限度があるのが実状である。
(Problems to be solved by the invention) Organic materials that exhibit large third-order nonlinear optical effects include:
Polyacetylenes, polydiacetylenes, and metal phthalocyanines having a π-electron conjugated system are well known. However, since these materials not only do not melt but also do not dissolve in common organic solvents, it is difficult to control the film thickness and it is difficult to obtain a thin film with excellent mechanical strength. Therefore, the reality is that there are limits to its application to optical elements.

(問題点を解決するための手段) 本発明者らは、前記問題点に鑑みて鋭意検討した結果、
主鎮にジアセチレン基を持つ高分子が非線形光学効果を
示しアルキル基またはアルキレン基を導入することによ
り有機溶剤に可溶となることを明かにした。さらにこれ
ら高分子の非線形光学効果が熱処理、光照射、又は放射
線照射により向上することを見いだした。すなわち本発
明の一殻概念は、、主鎮にジアセチレン基を有し、且つ
アルキル基又はアルキレン基を含む高分子非線型光学材
料であって、換言すると 一般式 −+−CミC−R−CミC+r 〔式中、Rはアルキレン基あるいは、アルキルフェニレ
ン基またはアルコキシフェニレン基の如くアルキレン基
或いはアルキル基を含有する基である〕で現わされる主
鎮にジアセチレン基を持つ高分子からなる有機非線形光
学材料に関し、更には、これら高分子を熱処理、光照射
又は放射線照射して得られる有機非線形光学材料に関す
る。
(Means for solving the problems) As a result of intensive study in view of the above problems, the present inventors found that
It was revealed that polymers with diacetylene groups as the main chain exhibit nonlinear optical effects and become soluble in organic solvents by introducing alkyl or alkylene groups. Furthermore, we have found that the nonlinear optical effects of these polymers can be improved by heat treatment, light irradiation, or radiation irradiation. That is, one shell concept of the present invention is a polymeric nonlinear optical material which has a diacetylene group as a main group and also contains an alkyl group or an alkylene group, in other words, it has the general formula -+-C-R -CmiC+r [In the formula, R is an alkylene group or a group containing an alkylene group or an alkyl group such as an alkylphenylene group or an alkoxyphenylene group] A polymer having a diacetylene group as the main group Furthermore, the present invention relates to an organic nonlinear optical material obtained by heat treating, light irradiation, or radiation irradiation of these polymers.

上式の定義において、Rの例としてはヘキシレン基、p
−ジブトキシフエニレン基が挙げられる。
In the definition of the above formula, examples of R include hexylene group, p
-dibutoxyphenylene group.

これら高分子の内、Rがアルキレン基であるものは塩化
メチレン、テトラヒド口フラン等の一般の有機溶剤に可
溶であり、またp−ジブトキシフ工二レン基であるもの
は1.3−ジメチルイミダゾリジノンに可溶であった。
Among these polymers, those in which R is an alkylene group are soluble in general organic solvents such as methylene chloride and tetrahydrofuran, and those in which R is a p-dibutoxyfuran group are 1,3-dimethylimidazo It was soluble in lysinone.

これら高分子溶液から、スビンコートまたはキャスト法
によりボリマーフィルムが得られた。
Polymer films were obtained from these polymer solutions by subin coating or casting methods.

上記一般式で表される材料は、一般的には二つの末端ア
セチレン基を持つモノマーを酸素による酸化カップリン
グ重合して得られる。
The material represented by the above general formula is generally obtained by oxidative coupling polymerization using oxygen of a monomer having two terminal acetylene groups.

(発明の効果〉 従来から知られている三次の非線形光学効果を示す材料
では加工性に劣っており機械的強度に優れた薄膜が得ら
れていない。本発明の高分子は機械的強度に優れ三次の
非線形光学効果を示す薄膜を実現できる。また、薄膜形
或に際し簡便なキャスト法やスビンコート法が利用でき
るため膜厚の制御等が容易にでき、さらにこの高分子は
ジアセチレン基の固相反応を用いたフォトレジストであ
るためバターニングが可能であり、これを用いることに
より光集積回路等の実現が可能となる。
(Effects of the Invention) Conventionally known materials exhibiting third-order nonlinear optical effects have poor processability and cannot provide thin films with excellent mechanical strength.The polymer of the present invention has excellent mechanical strength. It is possible to realize a thin film that exhibits a third-order nonlinear optical effect.In addition, since a simple casting method or spin coating method can be used to form a thin film, the film thickness can be easily controlled. Since it is a photoresist that uses a reaction, it can be patterned, and by using it, it becomes possible to realize optical integrated circuits and the like.

(実施例〉 以下に本発明を実施例によりさらに具体的に説明する。(Example> The present invention will be explained in more detail below using Examples.

実施例l 塩化第一銅100■、N,N.N’ ,N’−テトラメ
チルエチレンジアミン1rnlをピリジン(20一)、
クロロベンゼン(80mjl!)の混合溶媒に溶解し、
酸素を15分間吹き込んで予備酸化した溶液に、モノマ
ーである1.9−デカジイン(5g)を加え酸素を吹き
込みながら60℃、5時間重合した。反応溶液を塩酸を
含んだメタノール500一に投入し、析出した沈澱をロ
過しメタノール、純粋、アセトンで洗浄後、減圧乾燥し
て白色のポリ (l,9−デカジイン〉を得た(4.2
g,収率84%)。
Example 1 Cuprous chloride 100cm, N,N. N',N'-tetramethylethylenediamine 1rnl to pyridine (201),
Dissolved in a mixed solvent of chlorobenzene (80 mjl!),
A monomer, 1.9-decadiine (5 g), was added to the solution that had been preoxidized by blowing oxygen in for 15 minutes, and polymerization was carried out at 60° C. for 5 hours while blowing oxygen. The reaction solution was poured into methanol 500ml containing hydrochloric acid, and the precipitate precipitated was filtered, washed with methanol, pure water, and acetone, and dried under reduced pressure to obtain white poly(l,9-decadiine) (4. 2
g, yield 84%).

この高分子(3g)を1.2−ジクロ口エタン(300
d>に溶解し、石英カラス上にキャストして高分子薄膜
を得た。さらに、この薄膜を150℃で48時間熱処理
した。第1図にこの高分子薄膜の熱処理前後での紫外可
視吸収スペクトルを示す。
This polymer (3 g) was mixed with 1,2-dichloroethane (300
d> and cast on quartz glass to obtain a polymer thin film. Furthermore, this thin film was heat-treated at 150° C. for 48 hours. FIG. 1 shows the ultraviolet-visible absorption spectra of this polymer thin film before and after heat treatment.

三次の非線形光学効果は、光第三次高調波発生(THG
)の測定によった。Nd:YAGレーザーの基本波長(
1064nm)の光を高圧水素セル中に通して得られる
ラマンシフト光(1907nm)を用いてTHGメーカ
ーフリンジ法を行った。測定は空気の影響を取り除くた
め減圧下で行った。
The third-order nonlinear optical effect is called third-order harmonic generation (THG).
) according to measurements. Fundamental wavelength of Nd:YAG laser (
The THG Maker fringe method was performed using Raman-shifted light (1907 nm) obtained by passing light (1064 nm) into a high-pressure hydrogen cell. Measurements were performed under reduced pressure to remove the influence of air.

石英基板及び熱処理ボIJ  (1.9−デカジイン)
/石英基板のTHGメーカーフリンジの測定結果を第2
図、第3図に示す。参照試料である石英基板のフリンジ
パターンより入射光強度を算出し、その強度から三次の
非線形感受率(χC3》)を計算した。その結果、ポリ
 (1,9−デカジイン)に対してl 2 X 1 0
 −”(esu)の値を得た。
Quartz substrate and heat-treated IJ (1.9-decadiyne)
/ Second measurement result of THG manufacturer fringe on quartz substrate
As shown in Fig. 3. The intensity of incident light was calculated from the fringe pattern of the quartz substrate, which was a reference sample, and the third-order nonlinear susceptibility (χC3) was calculated from the intensity. As a result, for poly(1,9-decadiyne), l 2
-” (esu) value was obtained.

石英基板上に作製した熱処理ポリ (1.9−デカジイ
ン)(厚さ1.7μm)について第4図に示される装置
を用いて光の導波を行った。この装置は、プリズム底面
で全反射してくる光を入射角度を変えて測定するもので
ある。光源にはHe−Neレーザー(633nm>を用
いた。光入射は、プリズム(材質: FD−1 1)を
カップリング法によりTEモードで行い、フィルム中に
入射されずにプリズムの底面で全反射した光の強度につ
いて測定した。第5図に、入射角度との反射光強度の関
係を示した。反射光強度は三つの角度、図中のa、b,
cで極小値をとりこれらの入射角度で高分子フィルム中
に入射され導波していることがわかった。
Light waveguiding was performed using the apparatus shown in FIG. 4 on heat-treated poly(1.9-decadiyne) (thickness 1.7 μm) fabricated on a quartz substrate. This device measures the light that is totally reflected at the bottom of the prism by changing the incident angle. A He-Ne laser (633 nm>) was used as the light source.The light was incident on a prism (material: FD-11) in TE mode using the coupling method, and was totally reflected at the bottom of the prism without entering the film. The intensity of the reflected light was measured. Figure 5 shows the relationship between the incident angle and the reflected light intensity. The reflected light intensity was measured at three angles, a, b, and
It was found that the light had a minimum value at c, and was incident on the polymer film at these incident angles and was guided.

実施例2 塩化第一銅5 0mg,N.N,N’ .N’−テトラ
メチルエチレンジアミン0. 5 ml!をビリジン(
10rnl)、クロロベンゼン(4(lml)の混合溶
媒に溶解し、酸素を15分間吹き込んで予備酸化した溶
液に、モノマーである1,4−ジエチニル−2,5−ジ
ブトキシベンゼン(500■)を加え酸素を吹き込みな
がら60℃、5時間重合した。反応溶液を塩酸を含んだ
メタノール300mi!に投入し、析出した沈澱をロ過
しメタノール、純粋、アセトンで洗浄後、減圧乾燥して
暗黄色のボ’J (1.  4ジxチ=ル−2.5−ジ
ブトキシベンゼン)PDBDBBを得たく420■、収
率84%〉。第6A図、第6B図にこの高分子(第6A
図はボリマー16B図はモノマー)の”C−NMRスペ
クトルを示す。
Example 2 Cuprous chloride 50 mg, N. N, N'. N'-tetramethylethylenediamine 0. 5ml! Viridine (
The monomer 1,4-diethynyl-2,5-dibutoxybenzene (500μ) was added to a solution dissolved in a mixed solvent of chlorobenzene (10rnl) and chlorobenzene (4 (lml)) and preoxidized by blowing oxygen for 15 minutes. Polymerization was carried out at 60°C for 5 hours while blowing oxygen.The reaction solution was poured into 300ml of methanol containing hydrochloric acid, and the precipitate was filtered, washed with methanol, pure water, and acetone, and dried under reduced pressure to form a dark yellow bottle. 'J (1.4 dix-thyl-2.5-dibutoxybenzene) PDBDBB was obtained with a yield of 420 cm and 84%. Figures 6A and 6B show the composition of this polymer (6A
The figure shows the C-NMR spectrum of Polymer 16B (monomer shown in the figure).

このPDBDBBを(100■)を1.3−ジメチルイ
ミダゾリジノン(100mf)に加え12.0tに加熱
して溶解させた。この溶液を石英基板上にキャストする
ことにより厚さ1.5μmの高分子フィルムを得た。第
7図にこのフィルムの紫外可視吸収スペクトルを示す。
This PDBDBB (100 ml) was added to 1,3-dimethylimidazolidinone (100 mf) and heated to 12.0 t to dissolve it. A polymer film with a thickness of 1.5 μm was obtained by casting this solution onto a quartz substrate. FIG. 7 shows the ultraviolet-visible absorption spectrum of this film.

三次の非線形光学効果は、光第三次高調波発生(THG
>の測定によった。Nd  :YAGレーザーの基本波
長(1064nm)の光を高圧水素セル中に通して得ら
れるラマンシフト光(1907nm)を用いてTHGメ
ーカーフリンジ法を行った。測定は空気の影響を取り除
くため減圧下で行った。
The third-order nonlinear optical effect is called third-order harmonic generation (THG).
> based on measurements. The THG Maker fringe method was performed using Raman shifted light (1907 nm) obtained by passing light at the fundamental wavelength (1064 nm) of an Nd:YAG laser into a high-pressure hydrogen cell. Measurements were performed under reduced pressure to remove the influence of air.

PDEDBB/石英基板のTHGメーカーフリンジの測
定結果を第8図に示す。参照試料である石英基板のフリ
ンジパターンより入射光強度を算出し、その強度から三
次の非線形感受率(χ(3I)を計算した。その結果、
PDI!DBBに対して9 X 10−” (esu)
の値を得た。
The measurement results of the THG manufacturer fringe of the PDEDBB/quartz substrate are shown in FIG. The incident light intensity was calculated from the fringe pattern of the quartz substrate, which was a reference sample, and the third-order nonlinear susceptibility (χ(3I)) was calculated from that intensity.As a result,
PDI! 9 x 10-” (esu) to DBB
obtained the value of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、石英基板上に作製したボIJ(1,9−デカ
ジイン〉フィルムの紫外可視吸収スペクトルを表す図面
である(A;熱処理前、B:熱処理後)。 第2図、第3図はそれぞれ石英基板、ポリ (1.9一
デカジイン)/石英基板のTHGメーカーフリンジの測
定結果を表す図面である。 第4A図、第4B図は、ポIJ(1.9〜デヵジイン)
の導波特性の測定に用いた装置の図面である。 第5図は、ボ!J  (1.9−デヵジイン)の導波特
性を表す図面である。 第6A図、第6B図は、PDEDBBのボリマー(第6
/l?l) 、%/7− (第6B図)(7)”C−N
MRスペクトルを表す図面である。 第7図は、P[lBO813の紫外可視吸収スペクトル
を表す図面である。 第8図は、PDE’DBB/石英基板のTHGメーカー
フリンジの測定結果を表す図面である。 和ヌ寸第3;欠高調波強度 ネ目ヌ4第3冫欠高言周5皮強度 反劃光弦度 ネ目ヌ寸第32欠高調波強度
FIG. 1 is a drawing showing the ultraviolet-visible absorption spectrum of a BoIJ (1,9-decadiyne) film produced on a quartz substrate (A: before heat treatment, B: after heat treatment). are drawings showing the measurement results of THG manufacturer fringe of quartz substrate and poly(1.9-decadiyne)/quartz substrate, respectively.
1 is a drawing of an apparatus used to measure the waveguide characteristics of Figure 5 shows Bo! It is a drawing showing the waveguide characteristics of J (1.9-decadiyne). Figures 6A and 6B show the PDEDBB polymer (6th
/l? l) ,%/7- (Figure 6B) (7)"C-N
It is a drawing showing an MR spectrum. FIG. 7 is a drawing showing the ultraviolet-visible absorption spectrum of P[lBO813. FIG. 8 is a drawing showing the measurement results of THG manufacturer fringe of PDE'DBB/quartz substrate. 3rd missing harmonic intensity 4th 3rd missing harmonic intensity 5th skin intensity

Claims (3)

【特許請求の範囲】[Claims] (1)主鎖にジアセチレン基を有し、且つアルキル基又
はアルキレン基を含む高分子非線型光学材料。
(1) A polymeric nonlinear optical material that has a diacetylene group in its main chain and also contains an alkyl group or an alkylene group.
(2)一般式 ▲数式、化学式、表等があります▼ [式中、Rはアルキレン基、アルキルフェニレン基、又
はアルコキシフェニレン基である]で現わされる主鎖に
ジアセチレン基を持つ高分子からなる有機非線形光学材
料。
(2) A polymer with a diacetylene group in the main chain represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ [In the formula, R is an alkylene group, an alkylphenylene group, or an alkoxyphenylene group] An organic nonlinear optical material consisting of
(3)請求項(1)から(2)記載の高分子非線型光学
材料を熱処理、光照射、又は放射線照射して得られる有
機非線形光学材料。
(3) An organic nonlinear optical material obtained by heat treating, light irradiation, or radiation irradiation the polymer nonlinear optical material according to claims (1) to (2).
JP1235193A 1989-09-11 1989-09-11 Organic nonlinear optical material Expired - Lifetime JPH0670697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235193A JPH0670697B2 (en) 1989-09-11 1989-09-11 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235193A JPH0670697B2 (en) 1989-09-11 1989-09-11 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH0398026A true JPH0398026A (en) 1991-04-23
JPH0670697B2 JPH0670697B2 (en) 1994-09-07

Family

ID=16982460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235193A Expired - Lifetime JPH0670697B2 (en) 1989-09-11 1989-09-11 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH0670697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475133A (en) * 1994-11-28 1995-12-12 The Regents Of The University Of California Bis-propargyl thermosets

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643220A (en) * 1979-06-25 1981-04-21 University Patents Inc Method of using novel nonlinear optical substance and diacetylenes
JPS6160638A (en) * 1984-08-31 1986-03-28 Nippon Telegr & Teleph Corp <Ntt> Organic nonlinear optical material
JPS61148432A (en) * 1984-12-21 1986-07-07 Agency Of Ind Science & Technol Optical treatment
JPS61210332A (en) * 1985-03-15 1986-09-18 Nippon Telegr & Teleph Corp <Ntt> Material for nonlinear optical element and formation of pattern
JPS6252505A (en) * 1985-09-02 1987-03-07 Nippon Telegr & Teleph Corp <Ntt> Formation of light guide using organic crystalline compound
JPS62255475A (en) * 1986-04-25 1987-11-07 Agency Of Ind Science & Technol Novel diacetylene compound polymerizable in solid phase
JPS6341515A (en) * 1986-08-07 1988-02-22 Agency Of Ind Science & Technol Molecule orientating thin film
JPS63175835A (en) * 1987-01-16 1988-07-20 Nippon Telegr & Teleph Corp <Ntt> Organic nonlinear optical material, optical device using the same and production thereof
JPS63279230A (en) * 1987-05-11 1988-11-16 Keisuke Sasaki Optical modulating element
JPH01188836A (en) * 1988-01-25 1989-07-28 Fujitsu Ltd Production of organic nonlinear optical film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643220A (en) * 1979-06-25 1981-04-21 University Patents Inc Method of using novel nonlinear optical substance and diacetylenes
JPS6160638A (en) * 1984-08-31 1986-03-28 Nippon Telegr & Teleph Corp <Ntt> Organic nonlinear optical material
JPS61148432A (en) * 1984-12-21 1986-07-07 Agency Of Ind Science & Technol Optical treatment
JPS61210332A (en) * 1985-03-15 1986-09-18 Nippon Telegr & Teleph Corp <Ntt> Material for nonlinear optical element and formation of pattern
JPS6252505A (en) * 1985-09-02 1987-03-07 Nippon Telegr & Teleph Corp <Ntt> Formation of light guide using organic crystalline compound
JPS62255475A (en) * 1986-04-25 1987-11-07 Agency Of Ind Science & Technol Novel diacetylene compound polymerizable in solid phase
JPS6341515A (en) * 1986-08-07 1988-02-22 Agency Of Ind Science & Technol Molecule orientating thin film
JPS63175835A (en) * 1987-01-16 1988-07-20 Nippon Telegr & Teleph Corp <Ntt> Organic nonlinear optical material, optical device using the same and production thereof
JPS63279230A (en) * 1987-05-11 1988-11-16 Keisuke Sasaki Optical modulating element
JPH01188836A (en) * 1988-01-25 1989-07-28 Fujitsu Ltd Production of organic nonlinear optical film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475133A (en) * 1994-11-28 1995-12-12 The Regents Of The University Of California Bis-propargyl thermosets

Also Published As

Publication number Publication date
JPH0670697B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
Kim et al. Photoinduced refractive index change of a photochromic diarylethene polymer
Spiridon et al. Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage
Chen et al. New polymers with large and stable second-order nonlinear optical effects
Habeeba et al. Nonlinear optical studies of conjugated organic dyes for optical limiting applications
JP2865917B2 (en) Nonlinear polymerization optical layer
JPH05502950A (en) Method for manufacturing optically active waveguides
WO1993011169A1 (en) Polymeric nitrones having a styrene-derived backbone chain
Kubheka et al. Optical limiting properties of 2, 6-dibromo-3, 5-distyrylBODIPY dyes at 532 nm
Chiriac et al. Electrochemically active polyimides containing hydroxyl-functionalized triphenylmethane as molecular sensors for fluoride anion detection
Kozanecka-Szmigiel et al. Photoinduced birefringence of novel azobenzene poly (esterimide) s; the effect of chromophore substituent and excitation conditions
De Boni et al. Nonlinear absorption spectrum in MEH-PPV/chloroform solution: A competition between two-photon and saturated absorption processes
Chen et al. Synthesis and third-order optical nonlinearities of hyperbranched metal phthalocyanines
Vaganova et al. Synthesis and characterization of novel polyhalogenaromatic polyimide material for electro-optic applications
Lee et al. Photochromic behavior of spiropyran in the photoreactive polymer containing chalcone moieties
Qin et al. Design and synthesis of a thermally stable second‐order nonlinear optical chromophore and its poled polymers
EP0402038A2 (en) Polymeric charge transfer complexes for nonlinear optical applications
Chae et al. A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups with reduced environmental impact
JPH0398026A (en) Organic nonlinear optical material
Chávez-Castillo et al. Third‐Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore
JPH03194521A (en) Nonlinear optical material
Sasabe et al. Molecular design of conjugated systems for nonlinear optics
Schellenberg et al. Two-photon-induced birefringence in polysilanes
Illescas et al. Preparation and optical characterization of two photoactive poly (bisphenol a ethoxylate diacrylate) copolymers containing designed amino‐nitro‐substituted azobenzene units, obtained via classical and frontal polymerization, using novel ionic liquids as initiators
Wu et al. Further Enhancement of the Second‐Order Nonlinear Optical (NLO) Coefficient and the Stability of NLO Polymers that Contain Isolation Chromophore Moieties by Using the “Suitable Isolation Group” Concept and the Ar/ArF Self‐Assembly Effect
Kolli et al. Click chemistry‐based synthesis of azo polymers for second‐order nonlinear optics