JPS61209971A - Manufacture of inorganic layer porous body - Google Patents

Manufacture of inorganic layer porous body

Info

Publication number
JPS61209971A
JPS61209971A JP5175685A JP5175685A JPS61209971A JP S61209971 A JPS61209971 A JP S61209971A JP 5175685 A JP5175685 A JP 5175685A JP 5175685 A JP5175685 A JP 5175685A JP S61209971 A JPS61209971 A JP S61209971A
Authority
JP
Japan
Prior art keywords
inorganic
compound
porous material
layers
layered porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5175685A
Other languages
Japanese (ja)
Inventor
平尾 正三
勝 横山
隆 岸本
孝一 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5175685A priority Critical patent/JPS61209971A/en
Publication of JPS61209971A publication Critical patent/JPS61209971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、断熱性に優れた無機層状多孔体およびその
製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an inorganic layered porous material with excellent heat insulation properties and a method for producing the same.

〔背景技術〕[Background technology]

空隙を有する層状多孔体として、膨潤性層状化合物の層
間に水酸化物等の異種物質を挿入反応させたインターカ
レーション物質がある。これは層間距離が4〜10人程
度と小さいため、層表面の吸着水の影響を受けやすいこ
とと、空隙に比べて固体部の割合が大きいことから、断
熱性の点であまりすぐれたものとは言えない。そのため
、断熱性の優れた層状多孔体が望まれている。
As a layered porous body having voids, there is an intercalation material in which a different substance such as a hydroxide is intercalated between layers of a swellable layered compound. This is because the interlayer distance is small, about 4 to 10 people, so it is easily affected by adsorbed water on the surface of the layer, and the proportion of solid parts is larger than the voids, so it is not considered to be very good in terms of insulation. I can't say that. Therefore, a layered porous body with excellent heat insulation properties is desired.

〔発明の目的〕[Purpose of the invention]

この発明は、このような現状に鑑みて、層間に比較的大
きな空隙を有して断熱効果に優れた無機層状多孔体の製
法を提供するものである。
In view of the current situation, the present invention provides a method for producing an inorganic layered porous body having relatively large voids between layers and having excellent heat insulation effects.

〔発明の開示〕[Disclosure of the invention]

上記目的を達成するため、発明者らは、膨潤性無機層状
化合物を膨潤させ、その層間に無機化合物を挿入固定さ
せることにより、層間距離が20〜600人の層状多孔
体を得るに至った。断熱性はこれによって飛躍的に高ま
った。しかし、つぎのような問題があることが分かった
。すなわち、層状化合物の端部は一般に正の電荷を帯び
、層面は負に帯電しているので、お互いに引きあいカー
ドハウスを形成して分離がしにくい状態であった。また
、層間に挿入される無機化合物の内で、負の電荷を帯び
ているようなものは端部と引きあい、層面と反発しあい
層間に挿入されにくいこともあり、断熱性の向上に限界
があった。そこで、さらに断熱効果の高い層状多孔体を
得るため考察を重ね、この発明を完成した。
In order to achieve the above object, the inventors swelled a swellable inorganic layered compound and inserted and fixed the inorganic compound between the layers to obtain a layered porous body with an interlayer distance of 20 to 600 people. This dramatically increased the insulation properties. However, the following problems were found. That is, since the ends of the layered compound are generally positively charged and the layer surfaces are negatively charged, they attract each other to form a house of cards, making it difficult to separate them. In addition, among the inorganic compounds inserted between the layers, those that are negatively charged attract the edges and repel the layer surfaces, making it difficult to insert between the layers, which limits the improvement of insulation properties. there were. Therefore, we conducted repeated studies to obtain a layered porous material with even higher heat insulation effects, and completed this invention.

すなわち、この発明は、層間に無機化合物を挿入して層
間隔を保持するようにした無機層状多孔体を得るにあた
り、膨潤性層状化合物を膨潤させるとともに、その層間
に無機化合物を挿入した後、乾燥を行う無機層状多孔体
の製法であって、前記膨潤から挿入に至るまでの適宜の
時期にこの処理系に対しアニオン性界面活性剤を添加す
ることを特徴とする無機層状多孔体の製法を要旨とする
。以下に、この発明を一実施例を表す図面に基づいて詳
しく説明する。
That is, in order to obtain an inorganic layered porous material in which the layer spacing is maintained by inserting an inorganic compound between the layers, the present invention swells the swellable layered compound, inserts the inorganic compound between the layers, and then dries it. Abstract: A method for producing an inorganic layered porous material, which is characterized in that an anionic surfactant is added to the treatment system at an appropriate time from the swelling to the insertion. shall be. The present invention will be explained in detail below based on the drawings showing one embodiment.

構造を模式化してあられした第1図にみるように、この
発明の無機層状多孔体の製法によって得られる無機層状
多孔体Aは、無機層状化合物の層1.1間に、無機化合
物2が挿入固定されている。そのため、その層間隔3が
20〜600人に保持されている。無機層状化合物とし
ては、Na −モンモリロナイト、3−八面体合成スメ
クタイト等が挙げられるが、膨潤性層状化合物であれば
、これらに限られるものではなく、たとえば、難膨潤性
層状化合物たるCa−モンモリロナイト、酸性白土のよ
うなものであってもよい。Ca−モンモリロナイトおよ
び酸性白土等のような難膨潤性層状化合物を主材として
用いる場合には、強い剪断力を加えないと膨潤しにくい
ので、膨潤時は混練する必要がある。無機化合物として
は、SiO2、A 1203 、  F e203等が
単独であるいは混合して用いられる。これらが、層間に
単独あるいは複数個積み重なって挿入され層間を20〜
600人に保持するのである。これらの粒子の形状、粒
径は挿入される層間隔を前記間隔に保持できるものであ
れば、特に限定されるものではないが、水に不溶な超微
粒子コロイドである方が好ましい。
As shown in FIG. 1, which schematically shows the structure, the inorganic layered porous material A obtained by the method for producing an inorganic layered porous material of the present invention has an inorganic compound 2 inserted between the layers 1.1 of the inorganic layered compound. Fixed. Therefore, the layer spacing 3 is maintained at 20 to 600 people. Examples of inorganic layered compounds include Na-montmorillonite and 3-octahedral synthetic smectite, but are not limited to these as long as they are swelling layered compounds. For example, Ca-montmorillonite, which is a hardly swelling layered compound, It may be something like acid clay. When a poorly swellable layered compound such as Ca-montmorillonite or acid clay is used as the main material, it is difficult to swell unless strong shearing force is applied, so it is necessary to knead it during swelling. As the inorganic compound, SiO2, A1203, Fe203, etc. are used alone or in combination. These are inserted between the layers singly or in a stack of 20~
The number will be kept at 600. The shape and particle size of these particles are not particularly limited as long as the spacing between the inserted layers can be maintained at the above-mentioned spacing, but ultrafine colloid particles that are insoluble in water are preferred.

つぎに、この発明の無機層状多孔体の製法について、そ
れを表す図面に基づいて詳しく説明する膨潤性粘土鉱物
のような物質は、第2図に示すように、膨潤性層状化合
物A、の集まりでできている。主材たるこの化合物A、
を水などの溶媒と混合(必要に応じ混練)して、第3図
に示すように層1,1間に溶媒4を含ませて膨潤させる
。この膨潤させた無機層状化合物A2に対し、ピラーに
なる無機化合物の水溶液とアニオン性界面活性剤、必要
に応じて水溶性高分子1層間のイオンと交換性を有する
イオンを含む塩類等の添加剤を加えて充分に混練を行い
、第4図に示すように、層1.1間に無機化合物2がピ
ラーとして挿入された無機層状化合物(インタカレーシ
ョン物質)A、のコロイド溶液を得る。アニオン性界面
活性剤は、層状化合物の端部の正電荷を柔らげて、無機
化合物の挿入を助ける役目を果している。
Next, the manufacturing method of the inorganic layered porous material of the present invention will be explained in detail based on drawings showing the process.The material such as the swellable clay mineral is a collection of the swellable layered compound A, as shown in FIG. made of. This compound A, which is the main material,
is mixed with a solvent such as water (kneaded if necessary), and the solvent 4 is impregnated between the layers 1 and 1 to cause swelling, as shown in FIG. To this swollen inorganic layered compound A2, an aqueous solution of an inorganic compound to become a pillar, an anionic surfactant, and optionally additives such as salts containing ions having exchangeability with ions between one layer of water-soluble polymer. is added and sufficiently kneaded to obtain a colloidal solution of an inorganic layered compound (intercalation material) A, in which the inorganic compound 2 is inserted as a pillar between layers 1 and 1, as shown in FIG. The anionic surfactant plays the role of softening the positive charges at the ends of the layered compound and aiding the insertion of the inorganic compound.

他の添加剤も、挿入をさらに容易にするために添加され
るものである。アニオン性界面活性剤としては、たとえ
ばラベリンFM(第1工業製薬■製ナフタレンスルホン
酸ソーダホルマリン縮合物)、テレフローE(チルナイ
ト側型)等が挙げられる。水溶性高分子としては、例え
ばポリビニルアルコール、ポリエチレンオキサイド、ポ
リエチレングリコール、ポリアクリル酸ナトリウム、カ
ルボキシルメチルセルロースなど、層間のイオンと交換
性を有するイオンを含む塩類としては、たとえばCa”
、AI’″″l B a ”、 M g 2+、 H、
Other additives may also be added to further facilitate insertion. Examples of the anionic surfactant include Lavelin FM (naphthalene sulfonic acid soda formalin condensate manufactured by Daiichi Kogyo Seiyaku ■), Teleflow E (Chillnight side type), and the like. Examples of water-soluble polymers include polyvinyl alcohol, polyethylene oxide, polyethylene glycol, sodium polyacrylate, and carboxymethyl cellulose. Examples of salts containing ions that have exchangeability with interlayer ions include Ca''
, AI'''''l B a '', M g 2+, H,
.

Se”、NHa” 、Sr”、Ce”°、Cs”などの
塩が挙げられる。これらを一種または混合で添加剤とし
て加える。第4図中、4は溶媒、5はアニオン性界面活
性剤をあられす。なお、膨潤、無機化合物の挿入および
アニオン性界面活性剤などの添加剤の添加を同時に行っ
てもよい。混練は、普通、万能ミキサー等の機械的な方
法を用いて行うが、よく混練できるようなものであれば
どんな方法であっても構わない。無機化合物が挿入され
た無機層状化合物A、のコロイド溶液を第6図のごとく
、ヘラで板状に延ばして配向させて多層化し、乾燥させ
る。乾燥により層間に浸入した水分を取り除くと、各層
はピラーが挿入された状態で閉じるので、ピラーが層間
に固定されるのである。これで、無機層状多孔体Aから
なる板状(箔状、フィルム状1層状を含む)成形体を得
ることができる。これを焼成すれば、層間の表面の変性
やピラーと層間で一部融着が起こることになり、ピラー
が層間に一層しっかりと固定され、耐湿性が良くなる。
Examples include salts such as Se", NHa", Sr", Ce"°, and Cs". These salts are added singly or as a mixture as additives. In Fig. 4, 4 is a solvent, and 5 is an anionic surfactant. Hail. Note that swelling, insertion of inorganic compounds, and addition of additives such as anionic surfactants may be performed simultaneously.Kneading is usually performed using a mechanical method such as a universal mixer, but Any method may be used as long as it can be kneaded.As shown in Figure 6, a colloidal solution of inorganic layered compound A into which an inorganic compound has been inserted is spread into a plate shape with a spatula and oriented to form a multilayer. , and then dried. When the moisture that has entered between the layers is removed by drying, each layer closes with the pillars inserted, so the pillars are fixed between the layers. With this, the plate-shaped inorganic layered porous material A ( It is possible to obtain a molded body (including foil-like and film-like single layer). If this is fired, the surface between the layers will be modified and some fusion will occur between the pillar and the layer, and the pillar will be more firmly interlayered between the layers. It is fixed and has better moisture resistance.

また、コロイド溶液を乾燥して第5図のごとき無機層状
多孔体Aの粉末を得る。この粉末を圧縮成形して所望の
形状にし、そののちに焼成を加えるようにしても構わな
い。前者の方法によれば、面に直行する方向(第1図矢
印B方向)の断熱性に優れたものが得られ、後者の方法
によれば、いろいろな形の成形体を得ることが可能であ
る。
Further, the colloidal solution is dried to obtain a powder of the inorganic layered porous material A as shown in FIG. This powder may be compressed into a desired shape and then fired. According to the former method, it is possible to obtain a product with excellent heat insulation properties in the direction perpendicular to the surface (direction of arrow B in Figure 1), and according to the latter method, it is possible to obtain molded products of various shapes. be.

以下に、実施例を述べる。Examples will be described below.

(実施例1) 主材たる膨潤性層状化合物としての粉末状のNa−モン
モリロナイトを水で膨潤させる。ソコへピラー分散液と
してのコロイダルシリカ(平均粒径130人、20wt
%水溶液)およびアニオン性界面活性剤としてのチルフ
ローE(■チルナイト製)を加え、混練して、無機層状
多孔体のコロイド溶液を得た。これをヘラで板状(層状
)に延ばし配向させ、半日自然乾燥した後、70℃で熱
風乾燥を行った。その後450℃で2時間焼成して無機
層状多孔体からなる厚み1朋程度の板状成形体試料を得
た。
(Example 1) Powdered Na-montmorillonite as the main material, a swellable layered compound, is swollen with water. Colloidal silica as a pillar dispersion (average particle size 130, 20wt)
% aqueous solution) and Chillflow E (manufactured by Chilnight) as an anionic surfactant were added and kneaded to obtain a colloidal solution of an inorganic layered porous material. This was stretched and oriented into a plate shape (layered shape) with a spatula, air-dried for half a day, and then hot-air dried at 70°C. Thereafter, it was fired at 450° C. for 2 hours to obtain a plate-shaped molded product sample having a thickness of about 1 mm and made of an inorganic layered porous material.

(実施例2) 実施例1の混練時に添加剤としてポリエチレンオキサイ
ド(分子量150万〜200万)を主材に対して重量比
で0.05添加した以外は、実施例1と同様にして成形
体試料を得た。
(Example 2) A molded body was produced in the same manner as in Example 1, except that 0.05 of polyethylene oxide (molecular weight 1.5 million to 2 million) was added as an additive at a weight ratio of 0.05 to the main material during kneading in Example 1. A sample was obtained.

(実施例3) 界面活性剤をチルフローEからラベリンFM(第1製薬
■製)に替え、その添加割合を主材に対して0602に
した以外は、実施例1と同様にして    ′成形体試
料を得た。
(Example 3) A molded body sample was prepared in the same manner as in Example 1, except that the surfactant was changed from Chillflow E to Lavelin FM (manufactured by Daiichi Pharmaceutical ■) and the addition ratio was 0602 to the main material. I got it.

(比較例1) アニオン性界面活性剤等の添加剤を加えず実施例1と同
様にして成形体試料を得た。
(Comparative Example 1) A molded body sample was obtained in the same manner as in Example 1 without adding additives such as anionic surfactants.

これら実施例で得られた成形体試料の熱伝導率および密
度を測定し、その結果を比較例1)石膏ボードおよび砂
の成形体の3つの比較例のそれと併せて第1表に示す。
The thermal conductivity and density of the molded body samples obtained in these Examples were measured, and the results are shown in Table 1 together with those of three comparative examples of Comparative Example 1) Gypsum board and sand molded bodies.

なお、熱伝導率の測定はキセノンフラッシュ法による熱
伝導率測定装置を用いた。第1表にみるように、実施例
は、比較例に比べて、いずれも熱伝導率の点で充分に優
れた性質をもっているが、実施例2.3すなわち添加剤
として水溶性高分子を併せて加えたものが、特に優れて
おり、コスト的に問題が無ければ添加剤を加えた方がよ
り好ましいといえる。
The thermal conductivity was measured using a thermal conductivity measuring device using a xenon flash method. As shown in Table 1, all of the Examples have sufficiently superior properties in terms of thermal conductivity compared to the Comparative Examples. It can be said that adding additives is particularly good, and if there is no cost problem, it is more preferable to add additives.

層間隔は、ピラーとなる無機化合物の種類1粒径などに
よって多少異なるが、公知のCI法で求めたところどの
実施例も20〜600人の範囲であった。
The layer spacing varies somewhat depending on the type and particle size of the inorganic compound forming the pillars, but it was determined by the known CI method that it was in the range of 20 to 600 people in all Examples.

(以 下 余 白) 第1表 〔発明の効果〕 この発明の無機層状多孔体の製法は、以上のような構成
になっているため、このようにして得られた無機層状多
孔体は、ピラーたる無機化合物によって層間隔が20〜
600人に保持されているので、断熱性に非常にすぐれ
、がっ、経年劣化も少ないので、断熱材として有用であ
る。
(Margins below) Table 1 [Effects of the Invention] Since the method for producing an inorganic layered porous material of the present invention has the above-mentioned structure, the inorganic layered porous material obtained in this way has a pillar structure. Depending on the inorganic compound, the layer spacing is 20~
600 people, it has very good insulation properties and does not deteriorate much over time, making it useful as a heat insulating material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無機層状多孔体の模式的側面図、第2図は膨潤
性層状化合物の模式的側面図、第3図はその膨潤に至る
状態を説明する説明図、第4図は溶液中における無機化
合物の挿入途中の状態を説明する説明図、第5図は挿入
乾燥終了時の状態を説明する説明図、第6図は無機層状
多孔体を配向させ板状にした状態を説明する説明図であ
る。 A・・・無機層状多孔体 A1・・・膨潤性無機層状化
合物 1・・・層 2・・・無機化合物 4・・・溶媒
 5・・・アニオン性界面活性剤 代理人 弁理士   松 本 武 彦 第1図 第2図 第3図 Δフ 第4図 第5図 手続補正書(膀 昭和60年、6月13日 特許庁長官 殿               パ!)
1、1q牛の耘 0?JI]6 0 り1牛¥ffi’fljAO517
56号3、補正をする者 事件との関係     特許出願人 件   所    大阪府門真市大字門真1048番地
名 称(583)松下電工株式会社 代表者  ((3%役藤井貞夫 4、代理人 な   し 6、補正の対象 明細書 7、補正の内容 (1)明細書第9頁第16行の「公知の」と「CI法」
の間に、「窒素吸着法における」を挿入する。
Fig. 1 is a schematic side view of an inorganic layered porous material, Fig. 2 is a schematic side view of a swellable layered compound, Fig. 3 is an explanatory diagram explaining the state leading to swelling, and Fig. 4 is a schematic side view of an inorganic layered porous material. An explanatory diagram illustrating the state during insertion of the inorganic compound, FIG. 5 an explanatory diagram illustrating the state at the end of insertion and drying, and FIG. 6 an explanatory diagram illustrating the state in which the inorganic layered porous material is oriented into a plate shape. It is. A... Inorganic layered porous material A1... Swellable inorganic layered compound 1... Layer 2... Inorganic compound 4... Solvent 5... Anionic surfactant agent Patent attorney Takehiko Matsumoto Figure 1 Figure 2 Figure 3 ΔF Figure 4 Figure 5 Procedural amendment (June 13, 1985, Commissioner of the Japan Patent Office, Pa!)
1, 1q of cows 0? JI] 6 0 ri 1 cow¥ffi'fljAO517
56 No. 3, Relationship with the case of the person making the amendment Patent applicant Address 1048 Kadoma, Kadoma City, Osaka Name (583) Representative of Matsushita Electric Works Co., Ltd. ((3% position Sadao Fujii 4, no agent 6, Specification subject to amendment 7, Contents of amendment (1) “Publicly known” and “CI method” in page 9, line 16 of the specification
Insert "in nitrogen adsorption method" between the two.

Claims (2)

【特許請求の範囲】[Claims] (1)層間に無機化合物を挿入して層間隔を保持するよ
うにした無機層状多孔体を得るにあたり、膨潤性層状化
合物を膨潤させるとともに、その層間に無機化合物を挿
入した後、乾燥を行う無機層状多孔体の製法であって、
前記膨潤から挿入に至るまでの適宜の時期にこの処理系
に対しアニオン性界面活性剤を添加することを特徴とす
る無機層状多孔体の製法。
(1) In order to obtain an inorganic layered porous material in which an inorganic compound is inserted between layers to maintain the interlayer spacing, a swellable layered compound is swollen, an inorganic compound is inserted between the layers, and then drying is performed. A method for producing a layered porous material,
A method for producing an inorganic layered porous material, characterized in that an anionic surfactant is added to the treatment system at an appropriate time from the swelling to the insertion.
(2)無機化合物が水に不溶の超微粒子コロイドである
特許請求の範囲第1項記載の無機層状多孔体の製法。
(2) The method for producing an inorganic layered porous material according to claim 1, wherein the inorganic compound is an ultrafine colloid insoluble in water.
JP5175685A 1985-03-14 1985-03-14 Manufacture of inorganic layer porous body Pending JPS61209971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5175685A JPS61209971A (en) 1985-03-14 1985-03-14 Manufacture of inorganic layer porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5175685A JPS61209971A (en) 1985-03-14 1985-03-14 Manufacture of inorganic layer porous body

Publications (1)

Publication Number Publication Date
JPS61209971A true JPS61209971A (en) 1986-09-18

Family

ID=12895780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5175685A Pending JPS61209971A (en) 1985-03-14 1985-03-14 Manufacture of inorganic layer porous body

Country Status (1)

Country Link
JP (1) JPS61209971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190775A (en) * 1987-02-03 1988-08-08 工業技術院長 Manufacture of interlayer bridging material
JPS63230579A (en) * 1987-03-17 1988-09-27 工業技術院長 Manufacture of porous body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190775A (en) * 1987-02-03 1988-08-08 工業技術院長 Manufacture of interlayer bridging material
JPS63230579A (en) * 1987-03-17 1988-09-27 工業技術院長 Manufacture of porous body

Similar Documents

Publication Publication Date Title
Stöter et al. Controlled exfoliation of layered silicate heterostructures into bilayers and their conversion into giant Janus platelets
JP3855004B2 (en) Clay film and method for producing the same
JPS61209971A (en) Manufacture of inorganic layer porous body
JPS61215276A (en) Manufacture of inorganic layer porous body
JPS63185871A (en) Manufacture of inorganic layered porous body
JPS61215274A (en) Manufacture of inorganic layer porous body
Alam et al. Significantly improved dielectric performance of bio-inspired gelatin/single-walled carbon nanotube nanocomposite
CN109294131B (en) Polyvinyl alcohol/graphene conductive nanocomposite and preparation and application thereof
JPS61215275A (en) Manufacture of inorganic layer porous body
KR102583814B1 (en) Preparing method of hydrogel
JP2000191820A (en) Microporous material and its production
JPS61209970A (en) Manufacture of inorganic layer porous body
JPS6385067A (en) Manufacture of inorganic layered porous body
JPS63159269A (en) Manufacture of inorganic porous body
JP2006291224A (en) Moisture absorbing formed article
JPS62241879A (en) Manufacture of inorganic layer porous body
JPS61266369A (en) Manufacture of inorganic layer-form porous body
JPS62278174A (en) Manufacture of inorganic layer porous body
JPS62176969A (en) Manufacture of inorganic layered porous body
JPS62176911A (en) Preparation of inorganic lamellar porous body
JPS6379773A (en) Manufacture of inorganic layered porous body
JPH11181119A (en) Ion exchange membrane and its production
JPS60195017A (en) Fine porous clay material composed of smectite ore, anionic high polymer and silica
JPS62176967A (en) Manufacture of inorganic layered porous body
JPS62176968A (en) Manufacture of inorganic layered porous body