JPS63190775A - Manufacture of interlayer bridging material - Google Patents

Manufacture of interlayer bridging material

Info

Publication number
JPS63190775A
JPS63190775A JP2281887A JP2281887A JPS63190775A JP S63190775 A JPS63190775 A JP S63190775A JP 2281887 A JP2281887 A JP 2281887A JP 2281887 A JP2281887 A JP 2281887A JP S63190775 A JPS63190775 A JP S63190775A
Authority
JP
Japan
Prior art keywords
smectite
inorganic particles
solution
silica colloid
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2281887A
Other languages
Japanese (ja)
Inventor
川瀬 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2281887A priority Critical patent/JPS63190775A/en
Priority to US07/151,980 priority patent/US4839318A/en
Publication of JPS63190775A publication Critical patent/JPS63190775A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 a)技術分野 本発明はスメクタイト型鉱物の層間に無機物粒子を挿入
したのち、乾燥することによシ、種々の細孔径を有する
多孔質の層間架橋物の製法に関するものである。
Detailed Description of the Invention a) Technical Field The present invention relates to a method for producing porous interlayer cross-linked products having various pore sizes by inserting inorganic particles between the layers of a smectite mineral and then drying. It is.

b)従来の技術と問題点 従来、多孔材料の製造方法としてスメクタイト型鉱物と
金属塩を用いた方法が試みられてきた。
b) Conventional techniques and problems Conventionally, methods using smectite minerals and metal salts have been attempted as a method for producing porous materials.

スメクタイト型鉱物はモンモリロナイト、ベントナイト
、緑泥石、ヘクトライト、バイデライト、及び合成マイ
カがある。
Smectite-type minerals include montmorillonite, bentonite, chlorite, hectorite, beidellite, and synthetic mica.

これらはいずれも共通の性質があるが、その性質につい
てモンモリロナイトを例として説明する。
All of these have common properties, but these properties will be explained using montmorillonite as an example.

モンモリロナイトはけい酸4面体−アルミナ8面体−け
い酸4面体と三重構造に結晶が積み重なって一つの層に
なっている。
Montmorillonite has crystals stacked in a triple structure of silicic acid tetrahedrons, alumina octahedrons, and silicate tetrahedrons to form a single layer.

前記のアルミナ8面体結晶は一部のアルミナが電荷の小
さいマグネシウムによって置換されて、層表面が負電荷
になっている。この負電荷に対応したアルカリ金属イオ
ン(Na”)が三重結晶構造の層と層の間に介在して層
表面の電荷を中和している。
In the alumina octahedral crystal, part of the alumina is replaced by magnesium, which has a small charge, so that the layer surface has a negative charge. Alkali metal ions (Na'') corresponding to this negative charge are interposed between the layers of the triple crystal structure to neutralize the charge on the layer surface.

したがってモンモリロナイトは大きなカチオン交換能を
有する。また、この層間はNa+の水和反応により多量
の水を吸収し、層と層の間が著しく広がって、層間が膨
潤する。他のスメクタイト型鉱物も同様な性質を有して
いる。
Therefore, montmorillonite has a large cation exchange capacity. In addition, the interlayer absorbs a large amount of water due to the hydration reaction of Na+, and the interlayer becomes significantly wider and swells. Other smectite minerals have similar properties.

この様な膨潤性を利用し、層間中に無機物粒子を導入す
る試みがなされている。例えば特開昭54−5884号
及び特開昭54−16886号ではスメクタイト型鉱物
を水及び無機物と混合し、層間に無機物を導入する製造
法がある。
Attempts have been made to utilize this swelling property to introduce inorganic particles between the layers. For example, in JP-A-54-5884 and JP-A-54-16886, there is a production method in which a smectite mineral is mixed with water and an inorganic substance, and the inorganic substance is introduced between the layers.

この製造法では層間距離がQ、4nmであるため、分離
、吸着剤あるいは触媒として用いる場合には間距離の多
孔体を得ている。
In this production method, the interlayer distance is Q, 4 nm, so when used for separation, adsorption, or catalyst, a porous material with a long interlayer distance is obtained.

しかし、次のような欠点がある。スメクタイト鉱物と無
機物粒子の表面は同じ負電荷であるため反発し相スメク
タイト鉱物の末端と正電荷と無機物の負電荷が反応する
ため、無機物粒子が層間ばかりでなく、層が重なってで
きた層粒子との間にも存在し、複雑な構造を有する多孔
体を形成する。
However, it has the following drawbacks. The surfaces of the smectite mineral and the inorganic particles have the same negative charge, so they repel each other, and the terminals of the phase smectite mineral react with the positive charge and the negative charge of the inorganic material, so the inorganic particles are not only interlayers, but layer particles formed by overlapping layers. It also exists between the two, forming a porous body with a complex structure.

この様な構造の多孔体は層間距離も種々な大きさになり
、いわゆる細孔の分布が広く、特定の分子を分離或は生
成するような分離材料や触媒としては適さない。
Porous bodies with such a structure have various interlayer distances and a wide distribution of pores, making them unsuitable as separation materials or catalysts for separating or producing specific molecules.

更に、ポリマーを焼成して細孔を形成する方法を用いて
いるため、この多孔体の内部には、ポリマーの焼成残査
であるカーボンが多量に存在するので、この点からも触
媒として利用する場合には、触媒はカーボンがほとんど
の場合有害であるため、エステル化やガソリンなどの製
造においては十分な効果が期待できない。
Furthermore, since the method of firing the polymer to form pores is used, there is a large amount of carbon, which is the residue of firing the polymer, inside the porous body, so it is useful as a catalyst from this point of view as well. In some cases, catalysts cannot be expected to be sufficiently effective in esterification or production of gasoline, etc., because carbon is harmful in most cases.

C)発明の目的 本発明者らは前記欠点を解消する目的で鋭意研究した結
果、無機物粒子を水溶液状態で混合し、次いでスメクタ
イト鉱物をそのまま、あるいは水で膨潤したスメクタイ
ト鉱物を添加し、攪拌混合したのち、乾燥すると、層間
架橋した主に4 nm以上の細孔径を有する微細多孔材
料が得られることを見い出した。
C) Purpose of the invention As a result of intensive research aimed at solving the above-mentioned drawbacks, the present inventors found that inorganic particles are mixed in an aqueous solution state, then smectite minerals are added as they are or smectite minerals swollen with water are added, and the mixture is stirred. It has been found that when the material is then dried, a microporous material with interlayer crosslinking and mainly having pore diameters of 4 nm or more can be obtained.

d)発明の構成 本発明におけるスメクタイト型鉱物は、モンモリロナイ
ト、ベントナイト、緑泥石、バイデライト、ヘクトライ
ト、合成マイカ及び置換せしめたこれらの類似体の1種
又は2種以上の混合物より選択することができる。
d) Structure of the Invention The smectite mineral in the present invention can be selected from montmorillonite, bentonite, chlorite, beidellite, hectorite, synthetic mica, and a mixture of one or more of these substituted analogs. .

無機粒子はけい酸が重合した微粒子(シリカコロイド)
である。通常シリカコロイド溶液は水酸化ナトリウムま
たはアンモニアを添加したアルカリ性および酢酸又は塩
酸などを添加した酸性である。その大きさは4〜5 Q
 nmの微粒子である。
Inorganic particles are fine particles made of polymerized silicic acid (silica colloid)
It is. Usually, the silica colloid solution is alkaline by adding sodium hydroxide or ammonia, and acidic by adding acetic acid or hydrochloric acid. Its size is 4~5 Q
They are nanoparticles.

本発明の製造に関しては、先ず、無機物粒子が分散して
いるシリカコロイド溶液は安定なコロイド状態を得るた
めにシリカコロイドの負電荷に相当する量のアルカリ又
は酸が加えられている。
Regarding the production of the present invention, first, an amount of alkali or acid corresponding to the negative charge of the silica colloid is added to a silica colloid solution in which inorganic particles are dispersed in order to obtain a stable colloidal state.

このアルカリ又は酸を、強酸性又は強塩基性のイオン交
換樹脂で脱塩又は脱酸すると、アルカリ性の場合にはP
H1〜7以下に、酸性の場合にはpH7〜9以下になシ
、脱塩脱酸される。
When this alkali or acid is desalted or deoxidized with a strongly acidic or strongly basic ion exchange resin, if it is alkaline, P
It is desalted and deoxidized to a pH of 1 to 7 or less, and in the case of acidic, a pH of 7 to 9 or less.

更に必要ならば、脱塩した場合には弱塩基イオン交換樹
脂で処理すると4〜7以下になるし、脱酸した場合には
弱酸性イオン交換樹脂で脱塩するとpH4〜7になる。
Furthermore, if necessary, if desalted, treatment with a weakly basic ion exchange resin will bring the pH to 4 to 7 or less, and if deoxidized, desalted with a weakly acidic ion exchange resin will bring the pH to 4 to 7.

この溶液の無機物粒子の表面は大部分がンラノール基で
、表面電荷が減少した状態である。このように表面電荷
が非常に少なくなった状態のシリカコロイド粒子は結合
しやすいため、これを防止するには冷所に貯蔵する。
The surface of the inorganic particles in this solution is mostly composed of nranol groups, and the surface charge is reduced. Silica colloid particles with very low surface charge are likely to bond, so to prevent this, store them in a cool place.

このシリカコロイド溶液をスメクタイト鉱物に加えるに
は、粉末状態でもよいし、水で膨潤させた場合でもよい
。スメクタイト鉱物にコロイド溶液を加えたのち十分に
攪拌してスメクタイト型鉱物の結晶層間に無機物粒子が
導入され、スメクタイト鉱物はシリカコロイド溶液の中
のH+のため水素スメクタイト鉱物により層間が閉じる
と同時に無機物粒子が層間に挾まれて、無機粒子によっ
て架橋された構成になシ、層間架橋構造物が形成され、
多孔体が生成する。
When adding this silica colloid solution to the smectite mineral, it may be in a powdered state or it may be swollen with water. After adding the colloidal solution to the smectite mineral and stirring thoroughly, inorganic particles are introduced between the crystal layers of the smectite mineral, and the smectite mineral closes the interlayers due to the hydrogen smectite mineral due to H+ in the silica colloidal solution. is sandwiched between layers and crosslinked by inorganic particles, an interlayer crosslinked structure is formed,
A porous body is generated.

スメクタイト型鉱物は水によって層間が膨潤し層と層の
間が広げられる。膨潤のための水の量は同鉱物1g轟シ
少なくとも0.4mlが必要であシ、また、上限は実用
的には30m1である。
In smectite minerals, water swells the interlayers and widens the space between the layers. The amount of water required for swelling is at least 0.4 ml per gram of the same mineral, and the upper limit is practically 30 ml.

無機物粒子はスメクタイト型鉱物に対して0.001〜
50%重量であることが好ましい。前記より少ない場合
にはスメクタイト鉱物の結晶層間に無機粒子が分配され
ないから全てを多孔体にすることができない。又、多い
場合にはスメクタイト鉱物の結晶層間に無機物粒子が全
て埋まってしまい多孔体を製造することができない。
Inorganic particles range from 0.001 to smectite minerals
Preferably it is 50% by weight. If the amount is less than the above, the inorganic particles will not be distributed between the crystal layers of the smectite mineral, making it impossible to make the entire body porous. In addition, if there is too much inorganic particles, all the inorganic particles are buried between the crystal layers of the smectite mineral, making it impossible to produce a porous body.

無機物粒子及びスメクタイト型鉱物を含有するして無機
物とスメクタイト鉱物が反応して、強固に結合している
から、無機物粒子の大きさによって、目的に適した細孔
径を有する多孔体が均一に結果、4 nm以上を有する
微細多孔体であり、その全比表面積は約200〜500
ty//gで、約0.1〜0.36m1/gの窒素容量
を有している。
Containing inorganic particles and smectite minerals, the inorganic substances and smectite minerals react and are strongly bonded, so depending on the size of the inorganic particles, a porous body with a pore diameter suitable for the purpose is uniformly produced. It is a microporous material with a diameter of 4 nm or more, and its total specific surface area is approximately 200 to 500 nm.
ty//g, and has a nitrogen capacity of about 0.1 to 0.36 m1/g.

e)発明の作用 これらの微細多孔体材料は廉価であシ、しかも、比較的
、簡単に製造できるので、液体や気体の分離、吸着剤及
び触媒の担体に有用である。
e) Function of the Invention These microporous materials are inexpensive and relatively easy to produce, so they are useful for separation of liquids and gases, and as supports for adsorbents and catalysts.

f)発明の実施例 9.5gを添加し、攪拌、混合し、脱塩する。脱塩した
溶液のpHは3.3であった。この溶液を更に、弱塩基
性のイオン交換樹脂で脱酸する。この溶液はpHが4.
8であった。
f) Add 9.5 g of the inventive example, stir, mix and desalt. The pH of the desalted solution was 3.3. This solution is further deoxidized using a weakly basic ion exchange resin. This solution has a pH of 4.
It was 8.

このシリカコロイド溶液のl Q ml溶液にモンモリ
ロナイトの粉末2gを加えて攪拌混合したのtr?/g
にまた、窒素容量は0.28 ml 7g、比容は0.
44d/g、空孔率は0.64であった。
Did you add 2 g of montmorillonite powder to 1 Q ml of this silica colloid solution and stir and mix? /g
Also, the nitrogen capacity is 0.28 ml 7g, and the specific volume is 0.
44 d/g, and the porosity was 0.64.

実施例2゜ 実施例1で調製したシリカコロイド溶液の20m1溶f
fにモンモリロナイト2gを加えて攪拌混均して4,4
nm、比表面積は2 nmの細孔径において300ぜ7
gにまた、窒素容量は0.30m1/g、比容は0.4
5d/g、空孔率は0.67であった。
Example 2゜20ml solution of the silica colloid solution prepared in Example 1
Add 2 g of montmorillonite to f, mix and mix 4,4
nm, and the specific surface area is 300 cm at a pore diameter of 2 nm.
In addition, the nitrogen capacity is 0.30 m1/g, and the specific volume is 0.4
5 d/g, and the porosity was 0.67.

実施例3゜ 実施例1.で調製したシリカコロイド溶液の50m11
fl液にモンモリロナイト2g加えて攪拌混合て4.4
 nmk比表面積は2nmの細孔径において330m’
/gにまた、窒素容量は0.32 ml 7g。
Example 3゜Example 1. 50ml of silica colloid solution prepared in
Add 2g of montmorillonite to the fl solution and mix with stirring 4.4
The nmk specific surface area is 330 m' at a pore size of 2 nm.
/g, and the nitrogen capacity is 0.32 ml 7g.

比容は0.48 d / g 、空孔率は0.67であ
った。
The specific volume was 0.48 d/g and the porosity was 0.67.

実施例4゜ 実施例1.で調製したシリカコロイド溶液の5ml溶液
にモンモリロナイ1−2g加えて攪拌混合て4.4nm
、比表面積は2 nmの細孔径において270rr?/
gにまた、窒素容量は0.28m1/g、比容は0.4
2 cd / g、空孔率は0.67であった。
Example 4゜Example 1. Add 1-2 g of montmorillonite to 5 ml of the silica colloid solution prepared above and mix with stirring to obtain a 4.4 nm
, the specific surface area is 270rr at a pore diameter of 2 nm? /
In addition, the nitrogen capacity is 0.28 m1/g, and the specific volume is 0.4
2 cd/g, and the porosity was 0.67.

実施例5゜ 3.2%シリカコロイド溶液(触媒化成、No。Example 5゜ 3.2% silica colloid solution (Catalyst Kasei, No.

8I−350)100mlに対して強酸性のイオン交換
樹脂(ダウエックス社製No、50wx 12)2.0
g″tfA加し、攪拌、混合し、脱塩する。脱塩した溶
液のpHは2.6であった。この溶液を更に、弱塩基性
のイオン交換樹脂で脱酸する。この溶液はpHが4.2
であった。
8I-350) Strongly acidic ion exchange resin (Dowex No. 50wx 12) 2.0 per 100ml
g″tfA is added, stirred, mixed, and desalted. The pH of the desalted solution was 2.6. This solution was further deoxidized with a weakly basic ion exchange resin. This solution was is 4.2
Met.

このシリカコロイド溶液の10 ml溶液にモンモリロ
ナイトの粉末2gを加えて攪拌混合したのnm、比表面
積は2 nmの細孔径において320m1/gにまた、
窒素容量は0.36m1/g、比容は0.51i/g、
空孔率は0.71であった。
2 g of montmorillonite powder was added to 10 ml of this silica colloid solution and mixed with stirring.The specific surface area was 320 m1/g at a pore diameter of 2 nm.
Nitrogen capacity is 0.36 m1/g, specific volume is 0.51 i/g,
The porosity was 0.71.

実施例6. 3.2%シリカコロイド溶液(触媒化成、No、 S 
I−l−500)100に対して強酸性のイオン交換樹
脂(ダウエックス社製No、 5 owx 12 )9
.5gを添加し、攪拌、混合し、脱塩する。脱塩した溶
液のPHは3.3であった。この溶液を更に、弱塩基性
のイオン交換樹脂で脱酸する。この溶液はpHが4.8
であった。
Example 6. 3.2% silica colloid solution (Catalyst Kasei, No, S
Strongly acidic ion exchange resin (manufactured by DOWEX Co., Ltd. No. 5 owx 12) 9
.. Add 5g, stir, mix and desalt. The pH of the desalted solution was 3.3. This solution is further deoxidized using a weakly basic ion exchange resin. This solution has a pH of 4.8
Met.

このシリカコロイド溶液のl Q ml溶液に合成マイ
カ(トピー工業製 NaTS )の粉末2gを加えて攪
拌混合したのち、50°Cの乾燥語中で16時間放置乾
燥した。生成物の広角X線解析の結果0.29m1/g
、比容は0.48c4/g、空孔率は0.60であった
2 g of synthetic mica powder (NaTS manufactured by Topy Industries) was added to 1 Q ml of this silica colloid solution, mixed with stirring, and then left to dry in a dry oven at 50° C. for 16 hours. Results of wide-angle X-ray analysis of the product: 0.29 m1/g
The specific volume was 0.48c4/g, and the porosity was 0.60.

Claims (3)

【特許請求の範囲】[Claims] (1)スメクタイト型鉱物、無機物粒子、及び水を混合
したのち、乾燥することを特徴とする層間架橋物による
微細多孔体材料の製造法。
(1) A method for producing a microporous material using an interlayer crosslinked material, which comprises mixing a smectite mineral, inorganic particles, and water and then drying the mixture.
(2)スメクタイト型鉱物はモンモリロナイト、ベント
ナイト、バイデライト、ヘクトライト、合成マイカ及び
置換せしめた類似体、並びにそれらの混合物からなる群
より選択する、特許請求の範囲第一項記載の製造法。
(2) The method according to claim 1, wherein the smectite-type mineral is selected from the group consisting of montmorillonite, bentonite, beidellite, hectorite, synthetic mica and substituted analogs, and mixtures thereof.
(3)該無機物粒子はけい酸を重合させた微粒子が分散
したシリカコロイド溶液にイオン交換樹脂で、脱塩、脱
酸した、特許請求の範囲第一項記載の製造法。
(3) The production method according to claim 1, wherein the inorganic particles are desalted and deoxidized using an ion exchange resin in a silica colloid solution in which fine particles of polymerized silicic acid are dispersed.
JP2281887A 1987-02-03 1987-02-03 Manufacture of interlayer bridging material Pending JPS63190775A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2281887A JPS63190775A (en) 1987-02-03 1987-02-03 Manufacture of interlayer bridging material
US07/151,980 US4839318A (en) 1987-02-03 1988-02-03 Method for production of finely porous article using smectite mineral as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2281887A JPS63190775A (en) 1987-02-03 1987-02-03 Manufacture of interlayer bridging material

Publications (1)

Publication Number Publication Date
JPS63190775A true JPS63190775A (en) 1988-08-08

Family

ID=12093267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2281887A Pending JPS63190775A (en) 1987-02-03 1987-02-03 Manufacture of interlayer bridging material

Country Status (1)

Country Link
JP (1) JPS63190775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247720A (en) * 2007-03-30 2008-10-16 Nichias Corp Monolithic refractory forming material and monolithic refractory formed body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209971A (en) * 1985-03-14 1986-09-18 松下電工株式会社 Manufacture of inorganic layer porous body
JPS61215276A (en) * 1985-03-15 1986-09-25 松下電工株式会社 Manufacture of inorganic layer porous body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209971A (en) * 1985-03-14 1986-09-18 松下電工株式会社 Manufacture of inorganic layer porous body
JPS61215276A (en) * 1985-03-15 1986-09-25 松下電工株式会社 Manufacture of inorganic layer porous body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247720A (en) * 2007-03-30 2008-10-16 Nichias Corp Monolithic refractory forming material and monolithic refractory formed body

Similar Documents

Publication Publication Date Title
Papa et al. Zeolite-geopolymer composite materials: Production and characterization
Greenland Adsorption of polyvinyl alcohols by montmorillonite
US4629713A (en) Finely porous clay formed preponderantly of spectite type mineral and method for manufacture of said clay
JP4145956B2 (en) Gel composition containing carbonaceous compound
Theng Interactions between montmorillonite and fulvic acid
US5049365A (en) Process for treating air containing hydrocarbon vapor with a composite adsorbent material
US4981825A (en) Dried metal oxide and clay particle compositions and method for the preparation thereof
Bergaya et al. Clays and clay minerals as layered nanofillers for (bio) polymers
JPH05508342A (en) Alumina-containing acid adsorbent and its manufacturing method
Bugosh et al. A novel fine alumina powder, fibrillar boehmite
JPH05507463A (en) Ethylene adsorbent material
JPS63190775A (en) Manufacture of interlayer bridging material
JPH0576754A (en) Composite forming adsorbent and production thereof
JPS6246489B2 (en)
JPS63190776A (en) Manufacture of interlayer bridging material
Huang et al. Sorption of 2, 4-dichlorophenol onto organobentonites: influence of organic cation structure and bentonite layer charge
JPS6250407B2 (en)
JPS63230580A (en) Manufacture of porous body
JPS6250406B2 (en)
JPS60131878A (en) Manufacture of microporous clay material
JPS62138316A (en) Production of fine porous separation material
JPS63230579A (en) Manufacture of porous body
KR100352108B1 (en) Process for Preparing Porous Pillared Clays
JPH0667762B2 (en) Clay derivative with porous structure
JPS6243926B2 (en)