JPS63190776A - Manufacture of interlayer bridging material - Google Patents

Manufacture of interlayer bridging material

Info

Publication number
JPS63190776A
JPS63190776A JP2281987A JP2281987A JPS63190776A JP S63190776 A JPS63190776 A JP S63190776A JP 2281987 A JP2281987 A JP 2281987A JP 2281987 A JP2281987 A JP 2281987A JP S63190776 A JPS63190776 A JP S63190776A
Authority
JP
Japan
Prior art keywords
smectite
inorganic particles
mineral
solution
interlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2281987A
Other languages
Japanese (ja)
Inventor
川瀬 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2281987A priority Critical patent/JPS63190776A/en
Priority to US07/151,980 priority patent/US4839318A/en
Publication of JPS63190776A publication Critical patent/JPS63190776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 a)技術分野 本発明はスメクタイト型鉱物の層間に無機物粒子を挿入
したのち、乾燥することによシ、種々の細孔径を有する
多孔質の層間架橋物の製法に関するものである。
Detailed Description of the Invention a) Technical Field The present invention relates to a method for producing porous interlayer cross-linked products having various pore sizes by inserting inorganic particles between the layers of a smectite mineral and then drying. It is.

b)従来の技術と問題点 従来、多孔材料の製造方法としてスメクタイト型鉱物と
金属塩を用いた方法が試みられてきた。
b) Conventional techniques and problems Conventionally, methods using smectite minerals and metal salts have been attempted as a method for producing porous materials.

スメクタイト型鉱物はモンモリロナイト、ベントナイト
、緑泥石、ヘクトライト、バイデライト、及び合成マイ
カがある。
Smectite-type minerals include montmorillonite, bentonite, chlorite, hectorite, beidellite, and synthetic mica.

これらはいずれも共通の性質があるが、その性質につい
てモンモリロナイトを例として説明する。
All of these have common properties, but these properties will be explained using montmorillonite as an example.

モンモリロナイトはけい酸4面体−アルミナ8面体−け
い酸4面体と三重構造に結晶が積み重なって一つの層に
なっている。
Montmorillonite has crystals stacked in a triple structure of silicic acid tetrahedrons, alumina octahedrons, and silicate tetrahedrons to form a single layer.

前記のアルミナ8面体結晶は一部のア/I/ミナが電荷
の小さいマグネシウムによって置換されて、層表面が負
電荷になっている。この負電荷に対応したがってモンモ
リロナイトは大きなカチオン型鉱物も同様な性質を有し
ている。
In the alumina octahedral crystal described above, part of the a/I/mina is replaced by magnesium, which has a small charge, so that the layer surface has a negative charge. In response to this negative charge, montmorillonite has similar properties to large cationic minerals.

この様な膨潤性を利用し、層間中に無機物粒子を導入す
る試みがなされている。例えば特開昭54−5884号
及び特開昭54−16886号ではスメクタイト型鉱物
を水及び無機物と混合し、層間に無機物を導入する製造
法がある。
Attempts have been made to utilize this swelling property to introduce inorganic particles between the layers. For example, in JP-A-54-5884 and JP-A-54-16886, there is a production method in which a smectite mineral is mixed with water and an inorganic substance, and the inorganic substance is introduced between the layers.

この製造法では層間距離がQ、4nmであるため、分離
、吸着剤あるいは触媒として用いる場合には間距離の多
孔体を得ている。
In this production method, the interlayer distance is Q, 4 nm, so when used for separation, adsorption, or catalyst, a porous material with a long interlayer distance is obtained.

しかし、次のような欠点がある。スメクタイト鉱物と無
機物粒子の表面は同じ負電荷であるためかりでなく、層
が重なってできた層粒子との間にも存在し、複雑な構造
を有する多孔体を形成する。
However, it has the following drawbacks. This is not only because the surfaces of smectite minerals and inorganic particles have the same negative charge, but also between the layered particles formed by overlapping layers, forming a porous body with a complex structure.

この様な構造の多孔体は層間距離も種々な大きさになり
、いわゆる細孔の分布が広く、特定の分子を分離或は生
成するような分離材料や触媒としては適さない。
Porous bodies with such a structure have various interlayer distances and a wide distribution of pores, making them unsuitable as separation materials or catalysts for separating or producing specific molecules.

更に、ポリマーを焼成して細孔を形成する方法を用いて
いるため、この多孔体の内部には、ポリマーの焼成残査
であるカーボンが多量に存在するので、この点からも触
媒として利用する場合には、触媒はカーボンがほとんど
の場合有害であるため、エステル化やガソリンなどの製
造においては十分な効果が期待できない。
Furthermore, since the method of firing the polymer to form pores is used, there is a large amount of carbon, which is the residue of firing the polymer, inside the porous body, so it is useful as a catalyst from this point of view as well. In some cases, catalysts cannot be expected to be sufficiently effective in esterification or production of gasoline, etc., because carbon is harmful in most cases.

C)発明の目的 本発明者らは前記欠点を解消する目的で鋭意研究した結
果、無機物粒子及び金属水酸化物、金属塩化物、金属硫
化物及び金属硝化物の少なくとも一種又は混合物を水溶
液状態で混合し、次いでスメクタイト鉱物をそのまま、
あるいは水で膨潤し乾燥すると、層間架橋した主に4n
m以上の細孔径を有する微細多孔体材料が得られること
を見い出した。
C) Purpose of the Invention As a result of intensive research aimed at solving the above-mentioned drawbacks, the present inventors have found that at least one or a mixture of inorganic particles and metal hydroxides, metal chlorides, metal sulfides, and metal nitrides can be prepared in an aqueous solution state. mixed, then the smectite mineral as is,
Alternatively, when swollen with water and dried, mainly 4n cross-linked between layers.
It has been found that a microporous material having a pore diameter of m or more can be obtained.

d)発明の構成 本発明におけるスメクタイト型鉱物は、モンモリロナイ
ト、ベントナイト、緑泥石、バイデライト、ヘクトライ
ト、合成マイカ及び置換せしめたこれらの類似体の1種
又は2種以上の混合物より選択することができる。
d) Structure of the Invention The smectite mineral in the present invention can be selected from montmorillonite, bentonite, chlorite, beidellite, hectorite, synthetic mica, and a mixture of one or more of these substituted analogs. .

無機物粒子はけい酸ナトリウムを強酸性イオン交換樹脂
で脱塩、必要ならば塩基性イオン交換樹脂で脱酸して生
成したけい酸が重合した微粒子(シリカコロイド)であ
る。その大きさは4〜50nmの微粒子である。
The inorganic particles are fine particles (silica colloid) in which silicic acid is polymerized by desalting sodium silicate with a strongly acidic ion exchange resin and, if necessary, deoxidizing with a basic ion exchange resin. The size of the particles is 4 to 50 nm.

本発明の製造に関しては、先ず、無機物粒子が分散して
いるシリカコロイド溶液は酸性状態(PH1〜7以下)
である。
Regarding the production of the present invention, first, the silica colloid solution in which inorganic particles are dispersed is in an acidic state (pH 1 to 7 or less).
It is.

この溶液の無機物粒子の表面は大部分がシラノ−ρ基で
、表面電荷が減少した状態である。このたスメクタイト
鉱物を添加し、攪拌混合したのち、カコロイド粒子は結
合しやすいため、これを防止すると同時に無機微粒子の
表面電荷の符号を変えるため、金属化合物を添加する。
The surface of the inorganic particles in this solution is mostly composed of silano-ρ groups and has a reduced surface charge. After adding the smectite mineral and stirring and mixing, since the cacolloid particles tend to bond, a metal compound is added to prevent this and at the same time to change the sign of the surface charge of the inorganic fine particles.

この金属化合物はシリカコロイドと反応してシリカコロ
イド表面電荷が陽イオンになる化合物が望ましい。即ち
、スメクタイト型鉱物の表面電荷は陽イオンになるので
、層間架橋反応を起こさせるためにはシリカコロイドの
表面電荷が陽イオンであるほうが望ましい。
This metal compound is preferably a compound that reacts with the silica colloid so that the surface charge of the silica colloid becomes a cation. That is, since the surface charge of the smectite mineral is a cation, it is desirable that the surface charge of the silica colloid be a cation in order to cause an interlayer crosslinking reaction.

この陽イオンのシリカコロイド溶液をスメクタイト鉱物
に加えるには、粉末状態でもよいし、水で膨潤させた場
合でもよい。スメクタイト鉱物にコロイド溶液を加えた
のち十分に攪拌してスメクタイト型鉱物の結晶層間に無
機物粒子が導入され、スメクタイト鉱物の表面の負電荷
と金属化合物を添加した正電荷無機物粒子が反応し、ス
メクタイト鉱物の層表面に無機微粒子が結合する。
This cationic silica colloid solution may be added to the smectite mineral either in a powdered state or after being swollen with water. After adding the colloidal solution to the smectite mineral and stirring thoroughly, inorganic particles are introduced between the crystal layers of the smectite mineral, and the negative charges on the surface of the smectite mineral react with the positively charged inorganic particles to which the metal compound has been added, resulting in the formation of the smectite mineral. Inorganic fine particles are bonded to the surface of the layer.

°″*B y 、< ’y p“v、*opmhmtv
□2:2′機粒子によって架橋された機成子なり、即ち
イト型鉱物は水によって層間が膨潤し層と層の間が広げ
られる。膨潤のための水の量は同鉱物1g当シ少なくと
もQ、4rnlが必要であり、また、上限は実用的には
30m1である。
°″*B y, <'yp"v, *opmhmtv
□2: The interlayers of the minerals crosslinked by the 2' particles, that is, the Ito-type minerals, are swollen by water and the spaces between the layers are widened. The amount of water required for swelling is at least Q,4rnl per gram of the same mineral, and the upper limit is practically 30ml.

無機物粒子はスメクタイト型鉱物に対して0.001〜
50%重量であることが好ましい。前記よシ少ない場合
にはスメクタイト鉱物の結晶層間に無機粒子が分配され
ないから全てを多孔体にすることができない。又、多い
場合にはスメクタイト鉱物の結晶層間に無機物粒子が全
て埋まってしまい多孔体を製造することができない。
Inorganic particles range from 0.001 to smectite minerals
Preferably it is 50% by weight. In the case where the amount is less than the above, inorganic particles are not distributed between the crystal layers of the smectite mineral, so it is not possible to make the entire body porous. In addition, if there is too much inorganic particles, all the inorganic particles are buried between the crystal layers of the smectite mineral, making it impossible to produce a porous body.

金属化合物はイオン交換樹脂によシ脱塩した(PH1〜
7以下)無機微粒子に対して0.0001〜10重量%
であることが好ましい。即ち、多量に金属化合物が存在
すると金属イオンがスメクタイト型鉱物の負電荷と反応
し金属スメクタイト鉱物になり膨潤していた層間は収縮
し、閉じるため、無機粒子が導入できなく、層間架橋物
は生成されない。
The metal compound was desalted using an ion exchange resin (PH1~
7 or less) 0.0001 to 10% by weight based on inorganic fine particles
It is preferable that In other words, when a large amount of metal compounds are present, metal ions react with the negative charge of smectite minerals, forming metal smectite minerals, and the swollen interlayers contract and close, making it impossible for inorganic particles to be introduced, and interlayer crosslinks are formed. Not done.

金属化合物が少ない場合にはこの無機粒子の表面が正電
荷に変わらないため、スメクタイト鉱物の負電荷との間
で反発しあい、層間に無機物粒子を導入されないため、
多孔体は生成されない。
When there are few metal compounds, the surface of these inorganic particles does not change to a positive charge, so they repel each other with the negative charge of the smectite mineral, and no inorganic particles are introduced between the layers.
No porous body is generated.

無機物粒子と金属化合物及びスメクタイト型鉱物を含有
する水溶液は30〜110°Cで乾燥し、必要ならば、
300〜600°Cで焼成する。これによシスメクタイ
ト型鉱物と無機物粒子を強固に結合すると共にスメクタ
イト型鉱物の吸水性をも除去した層間距離の大きい層間
架橋物の微細多孔材料が得られる。
The aqueous solution containing inorganic particles, metal compounds and smectite minerals is dried at 30-110°C, and if necessary,
Bake at 300-600°C. As a result, a microporous interlayer crosslinked material with a large interlayer distance, which firmly binds the sysmectite mineral and the inorganic particles and also eliminates the water absorption of the smectite mineral, can be obtained.

そして、この層間架橋物の微細多孔材料の製造は前記の
ような特別な方法によシ無機物であるシリカコロイドを
調製しているため、従来法に比較して無機物とスメクタ
イト鉱物が反応して、強固に結合しているから、無機物
粒子の大きさによって、目的に適した細孔径を有する多
孔体が均一に結果、lnm以上を有する微細多孔体であ
り、その全比表面積は約200〜500m’/gで、約
0.1〜0.36m1/gの窒素容量を有している。
In the production of this interlayer crosslinked microporous material, silica colloid, which is an inorganic substance, is prepared by the special method described above, so that the inorganic substance and smectite mineral react with each other, compared to the conventional method. Because of the strong bonding, a porous body with a pore size suitable for the purpose is uniformly produced depending on the size of the inorganic particles, resulting in a microporous body with a pore size of 1 nm or more, and its total specific surface area is about 200 to 500 m' /g, and has a nitrogen capacity of about 0.1-0.36 m1/g.

e)発明の作用 これらの微細多孔体材料は廉価であシ、しかも、比較的
、簡単に製造できるので、液体や気体の分離、吸着剤及
び触媒の担体に有用である。
e) Function of the Invention These microporous materials are inexpensive and relatively easy to produce, so they are useful for separation of liquids and gases, and as supports for adsorbents and catalysts.

r)発明の実施例 実施例18 3.0%けい酸ナトリウム溶液100m1に対して強酸
性のイオン交換樹脂(ダウエックス社製No。
r) Examples of the invention Example 18 Strongly acidic ion exchange resin (No. manufactured by DOWEX) was added to 100 ml of 3.0% sodium silicate solution.

5 Qwxl 2 )2.1 gヲm加L、fi拌、混
合シ、脱塩する。脱塩した溶液のpHは2.6であった
5 Qwxl 2 ) Add 2.1 g of L, stir, mix, and desalt. The pH of the desalted solution was 2.6.

この溶液を更に、弱塩基性のイオン交換樹脂で脱酸する
。この溶液はpHが4.2であった。
This solution is further deoxidized using a weakly basic ion exchange resin. This solution had a pH of 4.2.

このシリカコロイド溶液の10m1溶液にモンモリロナ
イト2g加えて攪拌混合したのち、52°Cの乾燥型中
で18時間放置乾燥した。生成物の広角X線解析の結果
は4,4nmで、また、比表面積、細孔径、窒素容量、
比容、空孔率を窒素吸脱着法で調べた結果、細孔径は平
均して4,4nm、比表面積は2nmの細孔径において
380rr?/gにまた、窒素容量は0.24m1/g
、比容はo、451/g、空孔率は0.53であった。
After adding 2 g of montmorillonite to 10 ml of this silica colloid solution and stirring and mixing, the mixture was left to dry in a drying mold at 52° C. for 18 hours. The results of wide-angle X-ray analysis of the product were 4.4 nm, and the specific surface area, pore diameter, nitrogen capacity,
As a result of examining the specific volume and porosity using the nitrogen adsorption/desorption method, the average pore diameter was 4.4 nm, and the specific surface area was 380 rr at a pore diameter of 2 nm. /g, and the nitrogen capacity is 0.24ml/g
The specific volume was o, 451/g, and the porosity was 0.53.

実施例2゜ 実施例1.で調製したシリカコロイド溶液の20m1溶
液にモンモリロナイト2gを加えて攪拌混合440i/
gにまた、窒素容量は0.29m1/g、比容は0.4
8 d / g、空孔率は0.60であった。
Example 2゜Example 1. Add 2 g of montmorillonite to 20 ml of the silica colloid solution prepared in step 1 and mix with stirring for 440 i/day.
In addition, the nitrogen capacity is 0.29 m1/g, and the specific volume is 0.4
8 d/g, and the porosity was 0.60.

実施例3゜ 実施例1.で調製したシリカコロイド溶液の5ml溶液
にモンモリロナイト2g、lXIえて攪拌混合した素吸
脱着法で調べた結果、細孔径は平均して4.4nm、比
表面積は2nmの細孔径において41〇−7gにまた、
窒素容量は0.28rrLI/g、  比容はo、45
d/g、空孔率は0.62であった。
Example 3゜Example 1. As a result of an investigation using the elementary adsorption/desorption method in which 2 g of montmorillonite was added to 5 ml of the silica colloid solution prepared in 1XI and mixed with stirring, the average pore diameter was 4.4 nm, and the specific surface area was 410-7 g at a pore diameter of 2 nm. Also,
Nitrogen capacity is 0.28rrLI/g, specific volume is o, 45
d/g, and the porosity was 0.62.

7g、比容は0.48d/g、空孔率は0.58であっ
た。
7 g, specific volume was 0.48 d/g, and porosity was 0.58.

実施例5゜ 3.0%けい酸ナトリウム溶液100m1に対して強酸
性のイオン交換樹脂(ダウエックス社製No、 5 Q
wx 12 ) 2.0 gを添加し、攪拌、混合し、
脱塩する。脱塩した溶液のpHは3.3であつた。この
溶液を更に14弱塩基性のイオン交換樹脂で脱酸する。
Example 5 Strongly acidic ion exchange resin (manufactured by DOWEX Co., Ltd. No. 5 Q) was added to 100 ml of 3.0% sodium silicate solution.
Add 2.0 g of wx 12), stir and mix,
Desalinate. The pH of the desalted solution was 3.3. This solution is further deoxidized using a weakly basic ion exchange resin.

この溶液はpHが5.6であった。このシリカコロイド
溶液の19ml溶液にモンモリロナイトの粉末2g加え
て攪拌混合したのち、50にまた、窒素容量は0.36
m1/g、比容は0.46cd/g、空孔率は0,78
であった。
This solution had a pH of 5.6. After adding 2 g of montmorillonite powder to 19 ml of this silica colloid solution and stirring and mixing, the nitrogen capacity was 0.36.
m1/g, specific volume 0.46 cd/g, porosity 0.78
Met.

実施例6゜ 3.0%けい酸ナトリウム溶液100m1に対して強酸
性のイオン交換樹脂(ダウエックス社製No。
Example 6 A strongly acidic ion exchange resin (No. manufactured by DOWEX) was added to 100 ml of a 3.0% sodium silicate solution.

50WX12)2.0gを添加し、攪はん、混合し、脱
塩する。脱塩した溶液のpHは2.5であった。
Add 2.0g of 50WX12), stir, mix, and desalt. The pH of the desalted solution was 2.5.

このシリカコロイド溶液の19ml溶液に合成マイカ(
トビーエ業製 NaTS )の粉末2g加は4.0nm
で、また、比表面積、細孔径、窒素容量、比容、空孔率
を窒素吸脱着法で調べた結果、細孔径は平均して4.4
nm、比表面積は2 nmの細孔径において380m”
7gにまた、窒素容量は0.35m1/g1比容はo、
4sd/g1 空孔率は0.73であった。
Synthetic mica (
Adding 2g of powder of NaTS (manufactured by Tobie Industries) is 4.0nm.
Also, as a result of examining the specific surface area, pore diameter, nitrogen capacity, specific volume, and porosity using the nitrogen adsorption/desorption method, the pore diameter was found to be 4.4 on average.
nm, the specific surface area is 380 m'' at a pore diameter of 2 nm.
7g, nitrogen capacity is 0.35m1/g1 specific volume is o,
4sd/g1 The porosity was 0.73.

指定代理人 工業技術院名古屋工業技術試験所長 長瀬俊治designated agent Director, Nagoya Industrial Technology Testing Institute, Agency of Industrial Science and Technology Shunji Nagase

Claims (3)

【特許請求の範囲】[Claims] (1)スメクタイト型鉱物、無機物粒子、金属化合物及
び水を混合したのち、乾燥することを特徴とする層間架
橋物による微細多孔体材料の製造法。
(1) A method for producing a microporous material using an interlayer crosslinked material, which comprises mixing a smectite mineral, an inorganic particle, a metal compound, and water, and then drying the mixture.
(2)スメクタイト型鉱物はモンモリロナイト、ベント
ナイト、バイデライト、ヘクトライト、合成マイカ及び
置換せしめた類似体、並びにそれらの混合物からなる群
より選択する、特許請求の範囲第一項記載の製造法。
(2) The method according to claim 1, wherein the smectite-type mineral is selected from the group consisting of montmorillonite, bentonite, beidellite, hectorite, synthetic mica and substituted analogs, and mixtures thereof.
(3)無機物粒子はけい酸ナトリウム溶液をイオン交換
樹脂より脱塩、脱酸したのち、熟成して、けい酸を重合
させた微粒子が分散したシリカコロイド、特許請求の範
囲第一項記載の製造法。
(3) The inorganic particles are a silica colloid in which fine particles of silicic acid polymerized by desalting and deoxidizing a sodium silicate solution using an ion exchange resin are aged, and are produced according to claim 1. Law.
JP2281987A 1987-02-03 1987-02-03 Manufacture of interlayer bridging material Pending JPS63190776A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2281987A JPS63190776A (en) 1987-02-03 1987-02-03 Manufacture of interlayer bridging material
US07/151,980 US4839318A (en) 1987-02-03 1988-02-03 Method for production of finely porous article using smectite mineral as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2281987A JPS63190776A (en) 1987-02-03 1987-02-03 Manufacture of interlayer bridging material

Publications (1)

Publication Number Publication Date
JPS63190776A true JPS63190776A (en) 1988-08-08

Family

ID=12093294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2281987A Pending JPS63190776A (en) 1987-02-03 1987-02-03 Manufacture of interlayer bridging material

Country Status (1)

Country Link
JP (1) JPS63190776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230580A (en) * 1987-03-17 1988-09-27 工業技術院長 Manufacture of porous body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215276A (en) * 1985-03-15 1986-09-25 松下電工株式会社 Manufacture of inorganic layer porous body
JPS62119182A (en) * 1985-11-15 1987-05-30 松下電工株式会社 Manufacture of inorganic layer porous body
JPS62123078A (en) * 1985-11-20 1987-06-04 松下電工株式会社 Manufacture of inorganic layered porous body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215276A (en) * 1985-03-15 1986-09-25 松下電工株式会社 Manufacture of inorganic layer porous body
JPS62119182A (en) * 1985-11-15 1987-05-30 松下電工株式会社 Manufacture of inorganic layer porous body
JPS62123078A (en) * 1985-11-20 1987-06-04 松下電工株式会社 Manufacture of inorganic layered porous body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230580A (en) * 1987-03-17 1988-09-27 工業技術院長 Manufacture of porous body

Similar Documents

Publication Publication Date Title
Greenland Adsorption of polyvinyl alcohols by montmorillonite
RU2154077C2 (en) Gel composition comprising carbonic compound
US5049365A (en) Process for treating air containing hydrocarbon vapor with a composite adsorbent material
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
US4929589A (en) Metal oxide/hydroxide particles coated with phosphate esters
WO2014003120A1 (en) Granulated substance, and production method therefor
JP3610665B2 (en) High density porous body and method for producing the same
JPS63190776A (en) Manufacture of interlayer bridging material
JP3629743B2 (en) Method for producing activated carbon
JPS61122173A (en) Inorganic porous body and manufacture
US4839318A (en) Method for production of finely porous article using smectite mineral as main component
JPH0576754A (en) Composite forming adsorbent and production thereof
JPH0678163B2 (en) Saturated clay suspension
JPS63190775A (en) Manufacture of interlayer bridging material
JPS63230580A (en) Manufacture of porous body
JPS63230579A (en) Manufacture of porous body
JP2881875B2 (en) High strength molded activated carbon
JPH11246214A (en) A-type zeolite bead compact and its production
KR100352108B1 (en) Process for Preparing Porous Pillared Clays
JPS62138316A (en) Production of fine porous separation material
JPH11246282A (en) X-zeolite bead compact and its production
JP2636183B2 (en) Synthetic method of interlayer cross-linked clay with improved hydrothermal stability
EP0029443A1 (en) Process for composite polymer beads.
JPS60131878A (en) Manufacture of microporous clay material
JPS60200822A (en) Microporous clayey material consisting of smectite type mineral, neutral polymer and silica and its production