JPS61209032A - Method and apparatus for mixing ultra-fine particles - Google Patents

Method and apparatus for mixing ultra-fine particles

Info

Publication number
JPS61209032A
JPS61209032A JP60047462A JP4746285A JPS61209032A JP S61209032 A JPS61209032 A JP S61209032A JP 60047462 A JP60047462 A JP 60047462A JP 4746285 A JP4746285 A JP 4746285A JP S61209032 A JPS61209032 A JP S61209032A
Authority
JP
Japan
Prior art keywords
chamber
pipe
transport
mixing
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60047462A
Other languages
Japanese (ja)
Other versions
JPS6411328B2 (en
Inventor
Hidetsugu Fuchida
英嗣 渕田
Seiichirou Kashiyuu
賀集 誠一郎
Chikara Hayashi
林 主税
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP60047462A priority Critical patent/JPS61209032A/en
Publication of JPS61209032A publication Critical patent/JPS61209032A/en
Publication of JPS6411328B2 publication Critical patent/JPS6411328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • B01F23/66Mixing solids with solids by evaporating or liquefying at least one of the components; using a fluid which is evaporated after mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes

Abstract

PURPOSE:To obtain a uniform mixture of ultra-fine particles with good efficiency, by respectively forming at least two kinds of ultra-fine particles in separate forming chambers and introducing the same into feed pipes by carrier gas to unite the feed tubes to meet the particle streams. CONSTITUTION:A material A (Ag) and a material B (Fe) are respectively prepared in a first forming chamber and a second forming chamber and, after evacuation, both materials A, B are evaporated under heating to form ultra-fine particles with a particle size of 100Angstrom . The formed ultra-fine particles are respectively introduced into feed pipes 21, 22 by carrier gas H2 and both particle streams are met at a forward area passing a double pipe part 24 in the same flow direction to be discharged to a discharge chamber 3 as an uniformly mixed feed stream. The inner diameter of the feed pipe 21 is 1.6mm and that of the feed pipe 22 is 4.5mm and the differential pressure between the first and second forming chambers is generally set to a range of 30-150 torr to obtain a good confluent mixture. By this method, even from metals or metal compounds capable of not being evaporated in the same evaporation chamber, an extremely uniform powdery mixture can be prepared.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粉末冶金、セラミックス、磁性膜等の分野に
使用できる2種以上の金属、非金属、化合物等の超微粒
子を均一に混合する方法及びその装置に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention is a method for uniformly mixing ultrafine particles of two or more types of metals, nonmetals, compounds, etc., which can be used in fields such as powder metallurgy, ceramics, and magnetic films. The present invention relates to a method and an apparatus thereof.

(従来の技術) 従来、2種の材料を1つの真空蒸発室内で加熱蒸発させ
基材面にその超微粒子を同時に蒸着してその混合蒸着膜
を生成することが行なわれている。
(Prior Art) Conventionally, two types of materials have been heated and evaporated in one vacuum evaporation chamber, and ultrafine particles thereof are simultaneously evaporated onto the surface of a substrate to produce a mixed evaporation film.

(発明が解決しようとする問題点) 上記の超微粒子の混合法は、AUとFeのような同一の
真空条件下で蒸発できる材料に限られ、蒸発条件が異な
る2種又はそれ以上の材料の混合超微粒子の同時蒸着膜
の生成は困難であり、又銀と鉄などの混合超微粒子の蒸
着膜の生成は可能であっても、生産速度がおそく、大量
生産は困難であり、従来の微粒子を原料とする焼結法や
溶解法により製造される構造材料となる所定組織をもつ
造塊物のような混合超微粒子の集塊物の製造は極めて困
難である。本願の発明は、先に、これに関連し、2種又
はそれ以上の超微粒子の混合した所定組織をもつ圧粉体
の製造法を提案した。(特願昭59−210366号)
(Problems to be Solved by the Invention) The method for mixing ultrafine particles described above is limited to materials that can be evaporated under the same vacuum conditions, such as AU and Fe; It is difficult to simultaneously deposit a film of mixed ultrafine particles, and even if it is possible to create a film of mixed ultrafine particles such as silver and iron, the production speed is slow and mass production is difficult. It is extremely difficult to manufacture an agglomerate of mixed ultrafine particles, such as an agglomerate with a predetermined structure, which is a structural material manufactured by a sintering method or a melting method using as a raw material. In connection with this, the invention of the present application has previously proposed a method for producing a green compact having a predetermined structure in which two or more types of ultrafine particles are mixed. (Patent Application No. 59-210366)
.

(発明が解決しようとする問題点) 本発明は、任意の材料を使用し、2種以上の超微粒子を
能率良く混合し大量生産に適し、而も前記提案の特願昭
59−210366号の発明の圧粉体の製造法の1例と
して提案した混合室を介し混合する超微粒子の混合装置
を使用する場合よりも、著しく均一に2種又はそれ以上
の超微粒子が混合し得られる方法を提案するもので、少
くとも2種の超微粒子を夫々の搬送管内にキャリヤガス
により搬送導入せしめると共にこれら搬送管を同じ搬送
方向に向けて重複又は合体させ、その重複部又は合体部
の先方においてその少くとも2種の超微粒子の搬送流を
同じ流れ方向として合流せしめて少くとも2種の超微粒
子を混合せしめるようにしたことを特徴とする。
(Problems to be Solved by the Invention) The present invention is suitable for mass production by efficiently mixing two or more types of ultrafine particles using arbitrary materials, and is also suitable for mass production, as proposed in Japanese Patent Application No. 59-210366. As an example of the method for manufacturing the green compact of the invention, we have proposed a method that allows two or more types of ultrafine particles to be mixed much more uniformly than when using an ultrafine particle mixing device that mixes through a mixing chamber. In this proposed method, at least two types of ultrafine particles are transported and introduced into each transport pipe using a carrier gas, these transport pipes are oriented in the same transport direction, overlapped or combined, and the The present invention is characterized in that the transport flows of at least two types of ultrafine particles are made to flow in the same flow direction and are merged to mix the at least two types of ultrafine particles.

更に本発明は、上記の方法を実施する混合装置を提案す
るもので、少くとも2個の超微粒子生成室を設けると共
にその各室に互いに異積の蒸発すべき材料を収容する容
器と、これら材料を加熱すべき加熱装置と、各該至内を
真空にすべき真空装置と、各室内に導入すべきキャリヤ
ーガス導入管と、各室から導出する搬送管とを設けると
共に、その夫々の生成室より導出の2本又はそれ以上の
搬送管を同じ搬送方向に向けて重複又は合体させその1
11部又は合体部の先端に延長して設けた少くとも2種
の超微粒子の混合した搬送管を混合超微粒子放出室内に
接続して成る。
Furthermore, the present invention proposes a mixing apparatus for carrying out the above method, which includes at least two ultrafine particle generation chambers, each of which contains a container containing a different amount of material to be evaporated; A heating device to heat the material, a vacuum device to evacuate each chamber, a carrier gas introduction pipe to be introduced into each chamber, and a conveyance pipe led out from each chamber are provided, and each generation Part 1: Overlapping or combining two or more transport pipes leading out from the chamber in the same transport direction.
A conveying pipe in which at least two types of ultrafine particles are mixed is connected to a mixed ultrafine particle discharge chamber, which is provided extending from the tip of the 11th part or the combined part.

次に本発明の実施例を添付図面につき説明する。Next, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、2種の材料の超微粒子を均一に混合する装置
の1例を示す。図面で(1)は第1超微粒子生成室、(
乃は第2超微粒子生成室、(3)は混合超微粒子放出室
を示し、該第1超微粒子生成室(1)(以下単に第1生
成室(1)と略称する)、該第2超微粒子生成室(乃(
以下第2生成室(つと略称する)及び該混合超微粒子放
出室(3)(以下放出室(3)と略称する)は夫々真空
ポンプ(4) (5) (6)に接続管(7) (8)
 (9)に接続している。(10ai+■は該接続管(
n (8) (9>に夫々介入した調節弁を示す。更に
、第1生成室(1)及び第2生成室(りは1端がガスボ
ンベなどのガス供給源(図示しない)に夫々接続するキ
ャリヤガス導入!’ (13(14を調節弁a9aeを
介して接続して備える。更に、該第1生成室(1)内に
はその下部に、加熱蒸発させる材料Aを収容するグラフ
ァイトるつぼ等から成る容器(17)とこれをタンクル
に一ターなどで間接加熱する加熱@置■とを備え、該第
2生成室(D内には、加熱蒸発させる材料Bを収容する
酸化アルミニウムなどの耐熱性コーティングのWバスケ
ット容器(19とこれを直接通電加熱する加熱装r11
■とを備える。■は、第1生成室(1)内の上方に1端
を開口しその1側壁を気密に貫通し外部に導出して設け
た第1搬送管、■は、第2生成室(D内の上方に1端を
開口しその1側を気密に貫通し外部に導出して設けた第
2搬送管を示す。本発明によれば、該第1搬送管■と該
第2搬送管のとを例えば次のように同じ方向に向けて2
重管部をもつように連接する。即ら、該第1搬送管■は
、内径1.6ms+とじた細管から成り、その導出部を
第2生成室(乃の上部の1側壁を気密に貫通して該第2
生成室(り内に導入すると共にその先端部(22a)を
内径4.5am+の前記第2搬送管■の基部(22b)
にその開口端より同心に挿入して、互に平行して同一方
向に延びる第1搬送管■の先端部(21a)と第2搬送
管■の基部(22a)とから成り且つその間に同心の円
筒状の間隙通路■の形成された2重管部[相]を構成す
る。該第211送管■の先端部(22a)は該放出室(
3)の上部1側壁を気密に貫通してその内部に開口する
ように構成する。該第2搬送管■の導入先端部(22a
)の先方には必要に応じ可動自在の基板■を設けること
ができる。又厚膜圧粉体を基板■上に形成する場合に、
先端部(22a)の開口を小さくすることを望む場合は
、その先端にこれより細径のスプレー用ノズルを取り付
けるか、その先端部をより細径に加工Jるようにする。
FIG. 1 shows an example of an apparatus for uniformly mixing ultrafine particles of two types of materials. In the drawing, (1) is the first ultrafine particle generation chamber, (
No indicates the second ultrafine particle generation chamber, (3) indicates the mixed ultrafine particle discharge chamber, the first ultrafine particle generation chamber (1) (hereinafter simply referred to as the first generation chamber (1)), the second ultrafine particle generation chamber (1) (hereinafter simply referred to as the first generation chamber (1)), Fine particle generation chamber (no)
The second generation chamber (hereinafter abbreviated as tsu) and the mixed ultrafine particle discharge chamber (3) (hereinafter abbreviated as discharge chamber (3)) are connected to vacuum pumps (4), (5), and (6) through pipes (7), respectively. (8)
(9) is connected. (10ai+■ is the connecting pipe (
n (8) shows the control valves inserted in (9) respectively.Furthermore, the first generation chamber (1) and the second generation chamber (one end of which is connected to a gas supply source (not shown) such as a gas cylinder, respectively) Introducing carrier gas!' (13 (14) are connected via the control valve a9ae. Furthermore, in the first generation chamber (1), a graphite crucible or the like containing the material A to be heated and evaporated is placed in the lower part of the first generation chamber (1). The second generation chamber (D contains a heat-resistant material such as aluminum oxide containing the material B to be heated and evaporated. Coating W basket container (19 and heating device r11 for directly heating it with electricity)
■Equipped with. ■ is a first conveying pipe which has one end opened above the first generation chamber (1), passes through its first side wall in an airtight manner, and is led out to the outside; A second conveying pipe is shown which has one end opened upward and is airtightly penetrated through the first side thereof and led out.According to the present invention, the first conveying pipe (1) and the second conveying pipe are separated from each other. For example, 2 points in the same direction as shown below.
Connect so that it has a heavy pipe section. That is, the first conveying pipe (2) is made of a narrow tube with an inner diameter of 1.6 ms + closed, and its outlet is airtightly passed through one side wall of the upper part of the second generation chamber (2).
Introduced into the production chamber, the tip (22a) is inserted into the base (22b) of the second conveying pipe (2) having an inner diameter of 4.5 am+.
It is inserted concentrically from the open end of the first conveying pipe (2) and consists of the tip (21a) of the first conveying pipe (21a) and the base (22a) of the second conveying pipe (2) extending parallel to each other in the same direction, and having a concentric It constitutes a double pipe part [phase] in which a cylindrical gap passage (2) is formed. The tip (22a) of the 211th feed pipe (2) is connected to the discharge chamber (
3) is constructed so as to airtightly penetrate the side wall of the upper part 1 and open therein. The introduction tip (22a
) can be provided with a movable substrate (2) as required. Also, when forming a thick film compact on a substrate ■,
If it is desired to make the opening of the tip (22a) smaller, a spray nozzle with a smaller diameter than this is attached to the tip, or the tip is processed to have a smaller diameter.

次に、上記の装置の作動を説明する。Next, the operation of the above device will be explained.

第1生成室(1)内の容器(+71内の材料AとしてA
(Jを用意し、第2生成室(2)内の容器a9内の材料
BとしてFeを用意する。真空ポンプ(4)、(5)、
(6)を作動せしめる1方ガス導入管a3、(llDよ
り夫々キャリヤーガスとしてH2を室(1)、(りに導
入し、加熱装置■及び■により夫々Ag及び「eを加熱
蒸発させる。このときの作動条件を下記表1に示す。
Container in the first generation chamber (1) (A as material A in +71
(Prepare J, and prepare Fe as material B in container a9 in second generation chamber (2). Vacuum pumps (4), (5),
H2 is introduced as a carrier gas into the chambers (1) and (2) from the one-way gas inlet pipes a3 and (11D), respectively, which operate the chambers (6), and Ag and e are heated and evaporated by the heating devices The operating conditions are shown in Table 1 below.

表1 かくして、第1生成室(1)内で蒸発生成の粒径100
0Å以下のAl)超微粒子は■2ガスにより搬送され上
方の第1搬送管■内にその基部(21b)より導入され
その搬送流は、その先端部(21a)より第2搬送管の
内に導入する1方、第2生成室(1)内で蒸発生成の粒
径1000Å以下のFe超微粒子は、■2ガスにより搬
送されその上方の第2搬送管■内に、その内部に挿入さ
れた第1搬送管■の先端部(21a)外周の間隙通路■
内に入り、そのFe搬送流は、その2重管部@をすぎた
その先方の搬送管■の中間部(22c)内で前記のA(
l搬送流と平行の流れで夫々所定の流速で合流する。然
るときは、A(l及びFeの均一に混合した搬送流とな
って該第2搬送管■の先端より放出室(3)内に放出す
る。
Table 1 Thus, the particle size of the evaporation product in the first generation chamber (1) is 100
Ultrafine particles (Al) of 0 Å or less are transported by the gas (2) and introduced into the upper first transport pipe (2) from its base (21b), and the transport flow flows into the second transport pipe from its tip (21a). On the other hand, the Fe ultrafine particles with a particle size of 1000 Å or less produced by evaporation in the second generation chamber (1) were transported by the gas and inserted into the second transport pipe above it. Gap passage around the tip (21a) of the first conveying pipe ■
The Fe transport flow passes through the double pipe part @ and passes through the intermediate part (22c) of the transport pipe (2).
1. The flow is parallel to the transport flow and joins each other at a predetermined flow velocity. In this case, a uniformly mixed transport flow of A(l and Fe) is released into the discharge chamber (3) from the tip of the second transport pipe (2).

放出後のガスは、真空ポンプaeにより徐々に排出され
る。かくして、放出室(3)内にAQ・Feの超微粒子
混合粉が漸次堆積して得られる。図で(3a)は遮蔽板
を示す。尚、前記放出流の流速は、例えば、14.8で
ある。必要に応じ、その前方に設けた基板■にスプレー
し、その混合圧粉体を得ることもできる。
The released gas is gradually exhausted by the vacuum pump ae. In this way, ultrafine mixed powder of AQ/Fe is gradually deposited in the discharge chamber (3). In the figure, (3a) shows a shielding plate. Note that the flow rate of the discharge stream is, for example, 14.8. If necessary, a mixed powder compact can be obtained by spraying it onto the substrate (2) provided in front of it.

尚、表1から明らかなように、第1生成室(1)と第2
生成室(り内の差圧を20Torrとしたが一般に30
〜150Torrの範囲がよく、これにより両搬送流の
合流混合が良好に得られる。このようにして得られた混
合粉を放出室(3)より取り出し、X−線マイクロ分析
(20kv、0.03/A、スポットサイズφ3虜)で
分析しそのAg−Fe分散混合度を調べた。
Furthermore, as is clear from Table 1, the first generation chamber (1) and the second
The differential pressure inside the generation chamber was set at 20 Torr, but it is generally 30 Torr.
A range of 150 Torr to 150 Torr is preferable, whereby good convergence mixing of both conveying streams can be obtained. The thus obtained mixed powder was taken out from the discharge chamber (3) and analyzed by X-ray microanalysis (20kV, 0.03/A, spot size φ3) to examine its Ag-Fe dispersion mixing degree. .

その結果は、第2図示に示す通りである。第2図示の左
側に示すようなFeAgの均一な分散度曲線を得た。そ
の右側には比較のため2元同時蒸着法によるFeAgの
混合膜の分析結果を示す。
The results are as shown in the second diagram. A uniform dispersity curve of FeAg as shown on the left side of the second diagram was obtained. On the right side, for comparison, the analysis results of a FeAg mixed film made by the dual simultaneous evaporation method are shown.

これから明らかなように、両者に差異は認められず、水
沫により得られた混合粉は、AgFeが極めて均一に混
合されていることが確認された。
As is clear from this, no difference was observed between the two, and it was confirmed that AgFe was mixed extremely uniformly in the mixed powder obtained by water spraying.

尚、比較のため、先に出願の前記特願昭59−2103
66号で開示した混合装置によりAgとFeとの混合粉
を製造し、その混合状態を同様に分析した結果を第3図
に示す。第2図及び第3図を対比し明らかなように、水
沫は、前記出願で開示した混合装置のように、夫々の生
成室から延びる搬送管の途中に混合室を設け、こ)で複
数種の超微粒子を混合する方法に比し、著しく漬れた均
一な混合が得られることが確認された。
For comparison, the above-mentioned patent application filed earlier in 1983-2103
A mixed powder of Ag and Fe was produced using the mixing apparatus disclosed in No. 66, and the mixed state was similarly analyzed. The results are shown in FIG. As is clear from comparing FIG. 2 and FIG. 3, water droplets can be mixed in multiple types by providing a mixing chamber in the middle of a conveying pipe extending from each generation chamber, as in the mixing device disclosed in the above-mentioned application. It was confirmed that a significantly more uniform mixture could be obtained compared to the method of mixing ultrafine particles.

第4図は、金属とセラミックスとの超微粒子を均一に混
合する方法を実施する装置の1例を示し、第1生成室(
1)内に蒸発材料AとしてNiを加熱蒸発するための酸
化アルミニウムなどの耐熱性コーティングのWバスケッ
ト容器(I9とこれを直接通電加熱する加熱装置とを備
えるようにし、第2生成室(2)内に、蒸発材料Bとし
て11を加熱蒸発するべくこれを収容する容器(2b)
とこれを加熱するための電子ビーム式加熱装置のとを備
え、そのガス導入sx、 IMからは、アンモニアガス
、窒素ガスなどのN系ガスを導入するようにする以外は
前記第1図の構成と同じである。
FIG. 4 shows an example of an apparatus for uniformly mixing ultrafine particles of metal and ceramics, and the first generation chamber (
1) A W basket container (I9) coated with a heat-resistant coating such as aluminum oxide for heating and evaporating Ni as the evaporation material A and a heating device for directly heating it with electricity is installed in the second generation chamber (2). a container (2b) containing 11 as evaporation material B for heating and evaporation;
and an electron beam type heating device for heating the same, and the configuration shown in FIG. is the same as

本装置は、例えば、下記表2の作動条件で作動せしめる
This device is operated, for example, under the operating conditions shown in Table 2 below.

表2 この実施のおいて、第2生成室(2)内では蒸発する超
微粒子Tiは導入されるNH3の1部と反応し、TiN
の窒化物の超微粒子となり第2搬送管■内にNH3ガス
により搬送されそのTiN )IR送流は第1搬送管■
との2重管部[相]間の間隙通路のを連通後、第1搬送
管■内の■2ガスで搬送されるXi超微粒子の搬送流と
同じ方向の平行の流れの状態で夫々の一定の流速で合流
しその旧・TiN混合搬送流として第2搬送管■の先端
より放出室(3)内に放出され、その放出室(3)内に
所定の割合で均一に混合したNi・TiNの混合粉が得
られる。
Table 2 In this implementation, the evaporated ultrafine Ti particles react with a part of the introduced NH3 in the second generation chamber (2), and the TiN
The TiN becomes ultrafine particles of nitride and is transported by NH3 gas into the second transport pipe.
After communicating the gap passage between the double pipe part [phase] with the first transport pipe (■), each of the They merge at a constant flow rate and are released into the discharge chamber (3) from the tip of the second conveyance pipe (3) as the old/TiN mixed conveyance flow, and Ni/TiN uniformly mixed at a predetermined ratio is discharged into the discharge chamber (3) from the tip of the second conveyance pipe (■). A mixed powder of TiN is obtained.

この実験例で得られたNi −TiHの混合粉体のX線
分析結果を第5図に示す。NiとTiNとの超微粒子混
合粉は2元同時蒸着法では得られないので対比して示す
ことができない。第6図は、先願の特許願で開示した混
合装置によりNi−TiNの超微粒子混合粉のX線分析
結果を示す。第5図及び第6図の対比より、水沫によれ
ばはるかに超微粒子Ni−TiNの均一な混合が得られ
ることが分る。
The results of X-ray analysis of the Ni-TiH mixed powder obtained in this experimental example are shown in FIG. Since the ultrafine mixed powder of Ni and TiN cannot be obtained by the two-component simultaneous vapor deposition method, it is not possible to provide a comparison. FIG. 6 shows the results of X-ray analysis of the Ni-TiN ultrafine particle mixed powder using the mixing device disclosed in the earlier patent application. From the comparison between FIG. 5 and FIG. 6, it can be seen that the use of water droplets allows for a much more uniform mixing of ultrafine Ni-TiN particles.

第7図は、3種の超微粒子の混合法を実施する混合装置
の1例を示し、例えば、^gFe及びCuの3種の超微
粒子の混合粉を得る場合を示し、第1生成室(1)、第
2生成室(2)、放出室(3)及びその付属設備は前記
第1図の実施例に示す構成と略同じであるが、その第2
生成室(2)と放出室(3)との間に第3超微粒子生成
室■(以下第3生成室■と略称する)を介在させ、その
内部下方には蒸発すべき材料Cとして例えばCuを収容
した容器■とこれを加熱し蒸発すべき加熱装置■を設け
、更にその室■に他端をガスボンベなどの供給源につら
なるガス導入管■の他端を調節弁■を介して接続せしめ
る。ガス導入管■からは■2やAr、などのキャリヤー
ガスを導入するようにし、その室■の上部にはその1側
壁を気密に貫通し導出する第3搬送管■を設け、その基
部(33b)内にその室■の対向する側壁を気密に貫通
して第2生成室(りより導出の第2搬送管■の先端部(
22a)を同心に挿入しその両管(33b) (22a
)との間に筒状の間隙通路■の形成された追加の2重管
部■を構成すると共に、その第3搬送管■の先端部(3
3a)を放出室(3)の側壁を気密に貫通して導入して
放出室(3)内に開口するようにする。この実施例にお
ける第1搬送管■、第2搬送管の及び第3搬送管■の夫
々の内径は、1.6麿、 4.5111. 7.7mと
した。
FIG. 7 shows an example of a mixing apparatus for carrying out a method of mixing three types of ultrafine particles. 1), the second generation chamber (2), the discharge chamber (3), and their attached equipment are approximately the same as those shown in the embodiment shown in FIG.
A third ultrafine particle generation chamber (hereinafter referred to as the third generation chamber) is interposed between the generation chamber (2) and the discharge chamber (3), and a material C to be evaporated, such as Cu, is placed in the lower part of the interior. A container ■ containing the gas and a heating device ■ to heat and evaporate it are provided, and the other end of the gas introduction pipe ■ whose other end is connected to a supply source such as a gas cylinder is connected to the chamber ■ via a control valve ■. . A carrier gas such as ■2 or Ar is introduced from the gas introduction pipe (■), and a third conveyance pipe (2) is provided at the upper part of the chamber (2) to airtightly penetrate the first side wall and lead out. ), airtightly penetrates the opposing side walls of the chamber (2), and inserts the tip (
22a) concentrically and both tubes (33b) (22a
) and an additional double pipe section (2) in which a cylindrical gap passage (2) is formed between the pipe (3) and the tip (3
3a) is introduced through the side wall of the discharge chamber (3) in a gas-tight manner so as to open into the discharge chamber (3). In this embodiment, the inner diameters of the first conveying pipe (2), the second conveying pipe (2), and the third conveying pipe (2) are 1.6 mm and 4.5111 mm, respectively. It was set to 7.7m.

上記の装置を下記表3に示す作動条件でA(] 。A() using the above device under the operating conditions shown in Table 3 below.

Fe 、Cuの蒸発生成の超微粒子をその各2重管部■
及び■を介して先づ^0とFeの同一方向における両搬
送流の合流混合、へg、Fe混合搬送流とCu搬送流と
の同様の合流混合を行ない第3搬送管■よりこれら3種
の混合した搬送流が放出室(3)内に得られるようにし
た。
The ultrafine particles produced by evaporation of Fe and Cu are separated into each double tube part■
Through the third conveying pipe (■), the two conveying flows of the first ^0 and Fe are mixed together in the same direction, and the Fe mixed conveying flow and the Cu conveying flow are similarly combined and mixed, and these three types are mixed from the third conveying pipe (■). such that a mixed carrier stream of 100% was obtained in the discharge chamber (3).

このようにして得られた混合粉のX線分析結果は、第8
図に示す通りである。これから明らかなように、3種の
混合成分が極めて良好に均一に混合していることが認め
られる。
The X-ray analysis results of the mixed powder thus obtained are as follows:
As shown in the figure. As is clear from this, it is recognized that the three mixed components are mixed extremely well and uniformly.

上記から分かるように、水沫によれば、2種又はそれ以
上の超微粒子の極めて良好な混合を得るには、その夫々
異なる超微粒子の搬送管をその途中で直接同じ方向に向
けてこれらの搬送流が合流するようにすることにより得
られ、上記の実施例の他に次のような変形例も可能であ
る。即ち、第9図示のように、例えば2本の第1、第2
搬送管■■を共通1木の搬送管a′)に合体させると共
にその2本の第1、第2搬送管QD■の開口端は同じ方
向に向きその相互の角度αは最大でも45°を越えない
ようにすることが好ましい。
As can be seen from the above, according to Mizutoshi, in order to obtain extremely good mixing of two or more types of ultrafine particles, the transport tubes for the different types of ultrafine particles are directed directly in the same direction midway through the transport tubes. This is achieved by merging the flows, and in addition to the above embodiments, the following modifications are also possible. That is, as shown in Figure 9, for example, two first and second
The transport pipes ■■ are combined into a common single-wood transport pipe a'), and the open ends of the two first and second transport pipes QD■ are oriented in the same direction and their mutual angle α is at most 45°. It is preferable not to exceed it.

第10図は、3種の超微粒子を混合する変形例を示し、
この場合は、搬送管区′)と追加の第3搬送管■とを同
様の条件で合体せしめその先端を3種混合の搬送管(3
3’)としたものである。
FIG. 10 shows a modification example in which three types of ultrafine particles are mixed,
In this case, the conveyance section') and the additional third conveyance tube
3').

尚、先の実施例に代え、3種又はそれ以上の混合におい
ては、例えば1箇所で少くとも3種を同時に混合するよ
うに、例えば第1、第2、第3搬送管@■■を第11図
示のように3重に互に平行に且つその間に間隙通路(3
4’)を存するように構成してもよ(、第12図示のよ
うにこれら搬送管f2D@@を1つの共通の搬送管(3
3’)に合体するようにしてもよい。
In addition, instead of the previous embodiment, when mixing three or more types, for example, the first, second, and third conveying pipes @ 11 As shown in the figure, the space passages (3
As shown in Figure 12, these transport pipes f2D@@ may be combined into one common transport pipe (3').
3').

尚、最終の放出室(3)は、第13図、第14図示のよ
うに、外部に突出する少くとも1本の細管■を設け、大
気中又は真空室■中に設けた基板■に所定の圧力でスプ
レーし適宜堆積の所要形状の圧粉体を付着生成するよう
にしてもよく、通常広幅の面又は帯状の圧粉体膜を形成
するには、複数本の細管を束状とした構成とする。
As shown in Figures 13 and 14, the final discharge chamber (3) is provided with at least one thin tube (2) projecting to the outside, and is placed in the atmosphere or on a substrate (3) provided in a vacuum chamber (2). The powder may be sprayed at a pressure of about 100 mL to form a powder compact in the desired shape.Usually, in order to form a wide surface or band-shaped compact film, a plurality of thin tubes are formed into a bundle. composition.

上記実施例において、放出室(3)内に放出されて大量
に蓄積されて得られる混合粉は、適宜外部に取り出し、
大気中で或は真空中で所定の加圧を加えるだけで1体的
な均一に混合された所定組織の固塊とし構造材料とし、
或は電子工業の磁性粉末などその他適宜の用途加工にこ
の混合粉を利用することができる。
In the above embodiment, the mixed powder obtained by being discharged into the discharge chamber (3) and accumulated in large quantities is taken out to the outside as appropriate.
By simply applying a predetermined pressure in the air or in a vacuum, it becomes a solid mass of a uniformly mixed predetermined structure as a structural material,
Alternatively, this mixed powder can be used for other appropriate applications such as magnetic powder in the electronics industry.

尚、本発明の混合法は、上記の実施例では、材料の蒸発
による超微粒子の生成を直接搬送管に導入し混合する場
合を示したが、予め、生成した夫々の超微粒子を夫々の
圧送容器内に用意しておいたものを搬送料として使用す
るようにしてもよい。
In the mixing method of the present invention, in the above embodiment, the ultrafine particles generated by evaporation of the material are directly introduced into the conveying pipe and mixed. However, in advance, each of the generated ultrafine particles is The material prepared in the container may be used as a transport material.

このように本発明によるときは、2種又はそれ以上の超
微粒子をキャリヤーガスにより搬送管内を搬送しその夫
々の搬送流を同一方向において合流させるようにしたの
で、極めて均一に混合された超微粒子の混合粉が得られ
る効果を有し、同一の蒸発室で蒸発できない金属と金属
、金属と金属化合物などの混合粉の製造が可能となり、
又搬送ガスによる超微粒子を搬送することにより混合粉
の生産性が向上する等の効果を有する。
In this way, according to the present invention, two or more types of ultrafine particles are conveyed through the conveyance pipe by a carrier gas, and their respective conveyance flows are merged in the same direction, so that the ultrafine particles are extremely uniformly mixed. It has the effect of producing a mixed powder of metals and metals that cannot be evaporated in the same evaporation chamber, and metals and metal compounds that cannot be evaporated in the same evaporation chamber.
Furthermore, by transporting the ultrafine particles using a carrier gas, the productivity of the mixed powder is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、水沫実施の1例の混合装置の1部截断側面線
図、第2図は水沫により製造した混合粉のXII分析に
よる混合成分の配合特性曲線図、第3図は、先行技術の
混合装置による混合粉のX線分析による同様の配合特性
曲線図、第4図は他の実施例の混合装置の側面線図、第
5図は、第4図の混合装置により得られた混合粉のX線
分析による配合特性曲線図、第6図は先行技術の混合装
置による混合粉の同様の配合特性曲線図、第7図は更に
他の実施例の混合装置の側面線図、第8図は第7図の装
置により得られた混合粉の配合特性曲線図、第9図乃至
第12図は混合法の変形例の各装置の1部の截断側面図
、第13図は放出室の変形例の側面図、第14図はその
上面図を示す。 (1)・・・第1超微粒子生成室 (2)・・・第2超微粒子生成室 (3)・・・放 出 室 (13(+41・・・キャリヤガス導入管■・・・第1
搬送管 ■・・・第2搬送管 [相]・・・2重管部 ■・・・第3超微粒子生成室 ■・・・第3搬送管 ■・・・2重管部 特 許 出 願 人 新技術開発事業回持  許  出
  願  人  渕   1)  英   嗣特  許
  出  願  人  賀  集  誠  −部菟1図 第3図 第2図 第5図 第6図
Fig. 1 is a partially cut-away side view of a mixing device as an example of water spraying, Fig. 2 is a blending characteristic curve of mixed components obtained by XII analysis of mixed powder produced by water spraying, and Fig. 3 is a prior art technique. 4 is a side view of the mixing device of another example, and FIG. 5 is a graph showing the mixture obtained by the mixing device of FIG. 4. 6 is a similar blending characteristic curve diagram of a mixed powder obtained by a prior art mixing device; FIG. 7 is a side view of a mixing device according to another embodiment; FIG. The figure is a blending characteristic curve of the mixed powder obtained by the apparatus shown in Figure 7, Figures 9 to 12 are cut-away side views of a part of each apparatus for modified examples of the mixing method, and Figure 13 is a diagram of the discharge chamber. A side view of the modified example, and FIG. 14 shows its top view. (1)...First ultrafine particle generation chamber (2)...Second ultrafine particle generation chamber (3)...Release chamber (13(+41...Carrier gas introduction pipe■...First
Conveying pipe■...Second conveying pipe [phase]...Double pipe section■...Third ultrafine particle generation chamber■...Third conveying pipe■...Double pipe section Patent application New Technology Development Project Renewal Permit Application Hitobuchi 1) Eiji Patent Application Hito Kashu Makoto - Department Figure 1 Figure 3 Figure 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、少くとも2種の超微粒子を夫々の搬送管内にキャリ
ヤガスにより搬送導入せしめると共にこれら搬送管を同
じ搬送方向に向けて重複又は合体させ、その重複部又は
合体部の先方においてその少くとも2種の超微粒子の搬
送流を同じ流れ方向として合流せしめて少くとも2種の
超微粒子を混合せしめるようにしたことを特徴とする超
微粒子の混合法。 2、少くとも2個の超微粒子生成室を設けると共にその
各室に互いに異種の蒸発すべき材料を収容する容器と、
これら材料を加熱すべき加熱装置と、各該室内を真空に
すべき真空装置と、各室内に導入すべきキャリヤーガス
導入管と、各室から導出する搬送管とを設けると共に、
その夫々の生成室より導出の2本又はそれ以上の搬送管
を同じ搬送方向に向けて重複又は合体させその重複部又
は合体部の先端に延長して設けた少くとも2種の超微粒
子の混合した搬送管を混合超微粒子放出室内に接続して
成る超微粒子の混合装置。 3、該重複部は、1本の搬送管内に少くとも1本の搬送
管が平行して延び且つ開口端を有するように構成して成
る特許請求の範囲(2)に記載の混合装置。 4、該重複部は、1本の搬送管内に少くとも1本の搬送
管が同心に延び且つ開口端を有するように構成して成る
特許請求の範囲(2)に記載の混合装置。 5、該合体部は、少くとも2本の搬送管を1本の混合搬
送管に合体し各搬送管相互のなす角度は45°以下であ
ることを特徴とする特許請求の範囲。 6、該放出室は、少くとも1本のノズル管を介して圧粉
体形成室に接続して成る特許請求の範囲(2)(4)(
5)のいづれか1つの項に記載の混合装置。
[Claims] 1. At least two types of ultrafine particles are transported and introduced into respective transport pipes using a carrier gas, and these transport pipes are oriented in the same transport direction and overlapped or combined, and the overlapped or combined parts are A method for mixing ultrafine particles, characterized in that the transport flows of the at least two types of ultrafine particles are merged in the same flow direction at the leading end to mix the at least two types of ultrafine particles. 2. A container that is provided with at least two ultrafine particle generation chambers and each chamber contains different types of materials to be evaporated;
In addition to providing a heating device to heat these materials, a vacuum device to evacuate each chamber, a carrier gas introduction pipe to be introduced into each chamber, and a conveyance pipe led out from each chamber,
Mixing of at least two types of ultrafine particles by overlapping or combining two or more transport pipes led out from the respective generation chambers facing the same transport direction and extending to the tip of the overlapping part or the combined part. An ultrafine particle mixing device consisting of a conveyor pipe connected to a mixed ultrafine particle discharge chamber. 3. The mixing device according to claim 2, wherein the overlapping portion is configured such that at least one conveying tube extends in parallel within one conveying tube and has an open end. 4. The mixing device according to claim 2, wherein the overlapping portion is configured such that at least one conveying tube extends concentrically within one conveying tube and has an open end. 5. Claims characterized in that the combined portion combines at least two transport pipes into one mixing transport pipe, and the angle between the transport pipes is 45° or less. 6. Claims (2), (4), in which the discharge chamber is connected to the green compact forming chamber through at least one nozzle pipe.
The mixing device according to any one of 5).
JP60047462A 1985-03-12 1985-03-12 Method and apparatus for mixing ultra-fine particles Granted JPS61209032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047462A JPS61209032A (en) 1985-03-12 1985-03-12 Method and apparatus for mixing ultra-fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047462A JPS61209032A (en) 1985-03-12 1985-03-12 Method and apparatus for mixing ultra-fine particles

Publications (2)

Publication Number Publication Date
JPS61209032A true JPS61209032A (en) 1986-09-17
JPS6411328B2 JPS6411328B2 (en) 1989-02-23

Family

ID=12775818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047462A Granted JPS61209032A (en) 1985-03-12 1985-03-12 Method and apparatus for mixing ultra-fine particles

Country Status (1)

Country Link
JP (1) JPS61209032A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009208A1 (en) * 1987-05-29 1988-12-01 Nordson Corporation Powder mixing method and apparatus
JP2001276594A (en) * 2000-04-04 2001-10-09 Kunio Kato Method for mixing fine particles with fluidized bed
US7175921B2 (en) 2000-10-23 2007-02-13 National Institute Of Advanced Industrial Science And Technology Composite structure body and method for manufacturing thereof
US7255934B2 (en) 2000-10-23 2007-08-14 National Institute Of Advanced Industrial Science And Technology Composite structure body and method and apparatus for manufacturing thereof
JP2010251757A (en) * 2009-04-13 2010-11-04 Korea Inst Of Mach & Materials Highly dense and nano crystal grained spinel negative temperature coefficient thermistor thick film and method for preparing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009208A1 (en) * 1987-05-29 1988-12-01 Nordson Corporation Powder mixing method and apparatus
JP2001276594A (en) * 2000-04-04 2001-10-09 Kunio Kato Method for mixing fine particles with fluidized bed
US7175921B2 (en) 2000-10-23 2007-02-13 National Institute Of Advanced Industrial Science And Technology Composite structure body and method for manufacturing thereof
US7255934B2 (en) 2000-10-23 2007-08-14 National Institute Of Advanced Industrial Science And Technology Composite structure body and method and apparatus for manufacturing thereof
US7318967B2 (en) 2000-10-23 2008-01-15 Toto Ltd. Composite structure body and method and apparatus for manufacturing thereof
US7338724B2 (en) 2000-10-23 2008-03-04 Toto Ltd. Composite structure body and method for manufacturing thereof
US7632353B2 (en) 2000-10-23 2009-12-15 Toto Ltd. Apparatus for forming a composite structure body
JP2010251757A (en) * 2009-04-13 2010-11-04 Korea Inst Of Mach & Materials Highly dense and nano crystal grained spinel negative temperature coefficient thermistor thick film and method for preparing the same

Also Published As

Publication number Publication date
JPS6411328B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
JPH0622641B2 (en) Generator of gas stream enriched with low volatile vapors
US6758911B2 (en) Apparatus and process of improving atomic layer deposition chamber performance
US6905547B1 (en) Method and apparatus for flexible atomic layer deposition
CN107254675B (en) A kind of continuous coating unit of nano particle space atomic layer deposition and method
JP4809313B2 (en) Container containing inlet plenum and method of dispensing from container
US20070207266A1 (en) Method and apparatus for coating particulates utilizing physical vapor deposition
Longrie et al. A rotary reactor for thermal and plasma-enhanced atomic layer deposition on powders and small objects
WO1996004410A1 (en) Industrial vapor conveyance and separation
US20050205696A1 (en) Deposition apparatus and method
JPS61209032A (en) Method and apparatus for mixing ultra-fine particles
EP0740710A1 (en) Magnetron sputtering apparatus for compound thin films
KR20030011399A (en) Plasma enhanced atomic layer deposition equipment and method of forming a thin film using the same
JPH02125866A (en) Device for applying alloy plating by vapor deposition
JP3179821B2 (en) Method and apparatus for producing particles whose surface is coated with ultrafine particles
US5620576A (en) Method of and apparatus for producing a thin layer of a material on a substrate
JP3824787B2 (en) Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film
TWI509107B (en) Verfahren und vorrichtung zur thermischen umsetzung metallischer precusorschichten in halbleitende schichten mit chalkogenquelle
JPH0285370A (en) Manufacture of thin oxide film
JP2780100B2 (en) Chemical vapor deposition method and apparatus mixed with magnetic minute objects
EP0642858A2 (en) Method and apparatus for production of composite ultrafine particles
WO1999020383A1 (en) Composite powder, preparation method and diffusion coating method using same
JPS5969494A (en) Reaction and treatment apparatus for low pressure gas or vapor
JP3154213B2 (en) Method of forming fine particle film by gas deposition method and its forming apparatus
JP2002285323A (en) Forming equipment and forming method for superfine particle film
JP2584448B2 (en) Manufacturing method of functionally graded material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees