JP3824787B2 - Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film - Google Patents

Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film Download PDF

Info

Publication number
JP3824787B2
JP3824787B2 JP25249498A JP25249498A JP3824787B2 JP 3824787 B2 JP3824787 B2 JP 3824787B2 JP 25249498 A JP25249498 A JP 25249498A JP 25249498 A JP25249498 A JP 25249498A JP 3824787 B2 JP3824787 B2 JP 3824787B2
Authority
JP
Japan
Prior art keywords
ultrafine particles
substrate
ultrafine
particle dispersion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25249498A
Other languages
Japanese (ja)
Other versions
JP2000087233A (en
Inventor
清 石井
裕貴 濱欠
兼治 隅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP25249498A priority Critical patent/JP3824787B2/en
Publication of JP2000087233A publication Critical patent/JP2000087233A/en
Application granted granted Critical
Publication of JP3824787B2 publication Critical patent/JP3824787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、金属,半導体,酸化物等の各種原料の超微粒子を異種物質に分散させた超微粒子分散膜を製造する方法及び装置に関する。
【0002】
【従来の技術】
Fe,Co等の超微粒子をAg,Cu,カーボン等に分散させた超微粒子分散膜は、相分離法や複合蒸着法等で製造されている。
相分離法では、相互に固溶量が少ない関係にある複数の物質からスパッタリング,融体急冷等によって強制固溶体を作製し、作製段階又は後続する熱処理段階で相分離を促進させることにより、超微粒子が分散した組織にしている。この方法では、分散媒に分散微粒子が固溶しないことが必要であるため、作製可能な超微粒子分散膜の種類に制約を受ける。また、分散微粒子の粒径と分散量とを独立して制御できない。
【0003】
これに対し、複合蒸着法は、ガス中蒸発法で用意された複数種の超微粒子を真空室に導入し、基板上に同時蒸着させている。蒸着物質に関する制約がないため、分散微粒子と分散媒との組合せを自由に選択でき、ニーズに合った微粒子分散体の作製に適している。
複合蒸着法では、図1に示すように蒸発室1及び蒸着室2に区分された真空室3を使用する。
蒸発室1は、雰囲気ガスの圧力が100Pa程度に維持され、蒸発源4を収容している。蒸着室2は、隔壁に設けた噴出孔5を介して蒸発室1に連通しており、蒸発室1からの超微粒子が蒸着される基板6を配置している。また、マトリックスとなる材料を基板6に蒸着させるため、第2の蒸発源7が蒸着室2に配置されている。蒸着室2は、蒸発室1との間に圧力差をつけるため、排気ポンプ8で1Pa程度の高真空に維持されている。
蒸発源4に配置された材料は、高周波加熱,アーク加熱,レーザ加熱,スパッタリング等によって蒸発し、超微粒子となって蒸発室1に充満する。そして、蒸発室1と蒸着室2との圧力差が駆動エネルギとなって超微粒子を蒸着室2に送り込み、基板6上に蒸着させる。このとき、蒸着室2で超微粒子と異なるマトリックス材料を蒸気化し、基板6上に同時蒸着させることにより超微粒子分散膜が作製される。
【0004】
【発明が解決しようとする課題】
蒸発室1から蒸着室2に超微粒子を送り込む駆動力は、蒸発室1と蒸着室2の圧力差に依っている。すなわち、蒸発室1が100Pa程度の圧力であるのに対し、蒸着室2の圧力を通常1Pa程度以下にする必要がある。このような差動排気の条件を保つため、排気能力の大きな排気ポンプ8の使用,噴出孔5の小口径化等が採用されている。
しかし、噴出孔5を小孔径化すると、噴出孔5の内壁に付着する超微粒子の影響が大きく現れ、蒸発室1から蒸着室2への超微粒子の流れが不安定になる。その結果、基板6への超微粒子供給量が変動し、安定した性質をもつ超微粒子分散膜が得られない。極端な場合には、付着した超微粒子で噴出孔5が詰まってしまい、運転不能に陥ることもある。他方、排気能力の大きな排気ポンプの使用は、設備負担を大きくし、実際的な解決策とはいえない。
【0005】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、同じ雰囲気中で超微粒子及び異種材料を蒸発し均質に混合した後で基板上に蒸着させることにより、安定条件下で蒸気流を基板上に供給し、品質が一定化した超微粒子分散膜を作製することを目的とする。
本発明の製造方法は、その目的を達成するため、同じ真空室に配置されている複数のスパッタ源から複数種の蒸気を発生させ、単数又は複数の第1の蒸気を筒状案内部を介して基板の表面に導く過程で超微粒子に凝縮させ、筒状案内部を送られてくる他の蒸気と相互に拡散混合し、拡散混合した超微粒子及び他の蒸気を基板表面に蒸着させ、他の蒸気から生成したマトリックスに超微粒子が均一分散した蒸着膜を基板表面に形成することを特徴とする。
この方法で使用される装置は、一つの真空室に配置され、独立して投入電力が制御される複数のスパッタ源と、第1のスパッタ源で発生した蒸気を超微粒子に凝縮させて同じ真空室に配置された基板に導くと共に、他のスパッタ源で発生した他の蒸気を同じ真空室に配置された前記基板に導く筒状案内部とを備えている。複数の蒸気が筒状案内部を通過する際、相互拡散により超微粒子と他の原子状蒸気が均質化されたガス流となって基板表面に導かれる。
【0006】
【実施の形態】
本発明では、真空室10に2個の排気系及び複数のスパッタ源をそれぞれ複数個付設している。
スパッタ源の個数は作製しようとする超微粒子分散膜に分散させる超微粒子に応じて定められるが、図2では2種の材料からなる超微粒子分散膜を作製することから2機のスパッタ源20,30を組み込んでいる。スパッタ源20,30としては、本発明を拘束するものではないが、具体的には内面がスパッタされるパイプ状のターゲットが装着されることが好ましい。
排気系には、高真空の予備排気系として油拡散ポンプ41と、低真空用の大容量排気系として油回転ポンプ42を使用している。
【0007】
超微粒子用の材料はスパッタ源20のターゲット21として配置され、マトリックス材料はスパッタ源30のターゲット31として配置される。超微粒子用の材料としては、本発明を拘束するものではないがFe,Co,Fe−Ni等の金属又は合金,半導体,Si等が使用される。マトリックス材料としては、同様に本発明を拘束するものではないがCu,Ag等の金属又は合金,Si半導体等が使用される。これら材料の組合せは、目標とする超微粒子分散膜の用途に応じて自由に選択される。
【0008】
各スパッタ源20,30には、Ar等のスパッタリングガスがガスボンベ22から流量調整弁23,33を経て供給される。スパッタ源20,30は、放電出力が独立して制御できるように、それぞれ個別の電源24,34に接続されている。
蒸着に際しては、先ず油拡散ポンプ41により十分な高真空まで真空室10を排気した後、スパッタリングガスを導入し、それぞれのスパッタ源20,30を稼動させる。このとき、スパッタ源20,30に投入する放電電力を調整することにより、ターゲット21,31から叩き出される物質の量が独立して制御される。なお、スパッタ源20,30の稼働中には油回転ポンプ42を駆動し、真空室10を排気する。
【0009】
スパッタリングによって放出された蒸気を含むガスは、筒状案内部11を経て基板Sに吹付けられる。スパッタ源20,30から送り出されたガスは、筒状案内部11を通過する際、相互拡散により十分混合され、均質な混合ガスとなって基板Sに供給される。
筒状案内部11としては、ガス流に対する抵抗が小さくなるように、たとえば内径数cm程度の円筒が使用される。筒状案内部11を介して蒸発域(スパッタ源20,30)と蒸着域(基板S)とが連通しているので、真空室10のどの部分でも圧力差がほとんど生じない。
【0010】
このように、同じ真空雰囲気下に維持された真空室10内で蒸着が進行するため、超微粒子等の蒸着材料は安定したガス流となって基板S上に供給される。しかも、超微粒子とマトリックス材料の蒸気が筒状案内部11で均一に混合された後、基板Sに供給される。したがって、ガス流の流動変動,組成変動等に起因する変質がなく、長期間にわたって品質が安定した超微粒子分散膜が基板S上に形成される。
また、超微粒子とマトリックスとの組合せ自由度も高いため、種々の用途に対応した機能薄膜が作製できる。たとえば、Fe,Co等の超微粒子をAg,Cu等のマトリックスに分散させると、巨大磁気抵抗効果を利用した磁界センサ用薄膜が得られる。また、Co,Fe−Pt合金等の超微粒子をカーボン質マトリックスに分散させた磁気記録媒体,Fe超微粒子をSiマトリックスに分散させた軟磁性薄膜材料等も製造される。
【0011】
【実施例】
超微粒子用のターゲット21としてFe,マトリックス用のターゲット31としてAgを使用した。真空室10を10-4Paまで排気した後、Arガスを供 給しながら、次の条件でターゲット21,31をスパッタリングした。スパッタリング中には、真空室10の雰囲気圧を260Paに維持した。
スパッタ源20では、内径6mm,長さ30mmのパイプ状Feターゲット21を用い、Arガスの流量を500SCCM,放電電力を一定値500Wに設定した。ターゲット21から放出されたFe蒸気は、Arガスで運ばれる途中で平均粒径6nmの超微粒子に凝縮した。
スパッタ源30では、内径20mm,長さ30mmのパイプ状Agターゲット31を用い、Arガスの流量を500SCCM,放電電力を30〜200W間の一定値に設定した。ターゲット31から放出されたAgは、原子状蒸気又はクラスタ状蒸気となってFe超微粒子と混合された。このとき、Ag蒸気に対するFe超微粒子の混合比は、放電電力を調整することにより変更できた。
【0012】
Fe超微粒子及びAg蒸気を浮遊させたArガスを内部断面積20cm2 の筒状案内部11を経て、流量1000SCCMで基板Sに供給した。
このようにして基板S上に膜厚0.3μmの超微粒子分散膜を蒸着させた。なお、製膜速度は組成に応じて変わるが、Fe超微粒子の分散量が40原子%である膜では0.1nm/秒の製膜速度であった。得られた超微粒子分散膜の断面を電子顕微鏡で観察したところ、図3に示すようにFe超微粒子がAgマトリックスに分散した組織になっていた。Fe超微粒子は、分散量18原子%で、粒径がほぼ6nmになっており、基板S上に堆積する前のクラスタ状微粒子の粒径に等しいことが判る。
次いで、スパッタ源30に投入する放電電力によりAgの蒸気密度を変化させ、種々の組成をもつ超微粒子分散膜を作製した。そして、組成変化、すなわちFe微粒子の分散量が超微粒子分散膜の磁化曲線に及ぼす影響を調査した。
超微粒子分散膜は、図4に示すようにFe微粒子の分散量に応じて異なる磁化曲線を示した。なかでも、Fe微粒子分散量が18原子%の超微粒子分散膜は、超常磁性を示しており、このことからもFe超微粒子が相互干渉せずに分散していることが判る。
【0013】
また、Fe超微粒子の分散量が40原子%以下の膜では粒子的な磁化機構が観察され、Fe超微粒子相互の集合合体が進行していないことが窺がわれる。球状粒子が平面上にランダム配置された状態を想定すると、理論的には粒子の面密度が平面の約40%を占めるようになると粒子が全体にわたって接触し始めるといえる。この点、Fe超微粒子の40原子%は、その閾値に近い値である。本実施例で作製された薄膜において、限界密度までFe超微粒子に合体成長がみられないことは、Fe超微粒子がランダムに基板上に堆積し、固定化されていることを示している。すなわち、本発明によるとき、超微粒子がマトリックス中にほぼ限界密度までランダムに分散することが確認される。
【0014】
【発明の効果】
以上に説明したように、本発明においては、同じ真空室に複数の蒸発域と蒸着域を設け、蒸発域で生成した複数の蒸気を筒状案内部を介して基板表面に導いている。筒状案内部を複数の蒸気が流動する段階で相互拡散するため、均質組成のガス流となって基板表面に供給される。そのため、超微粒子が均質分散した蒸着膜が基板上に堆積し、品質安定性に優れた超微粒子分散膜が得られる。
【図面の簡単な説明】
【図1】 真空室を蒸発室,蒸着室に区分した従来の真空蒸着装置
【図2】 本発明に従って蒸発域及び真空域を同じ雰囲気下に配置した真空蒸着装置
【図3】 本発明実施例で得られたFe超微粒子分散膜の電子顕微鏡写真
【図4】 Fe微粒子の分散量が超微粒子分散膜の磁化曲線に及ぼす影響を示したグラフ
【符号の説明】
10:真空室 11:筒状案内部
20:超微粒子用のスパッタ源 30:マトリックス用のスパッタ源
21,31:ターゲット 22:ガスボンベ 23,33:流量調整弁
24,34:電源
41:高真空用の油拡散ポンプ 42:低真空用の油回転ポンプ
S:基板
[0001]
[Industrial application fields]
The present invention relates to a method and an apparatus for producing an ultrafine particle dispersion film in which ultrafine particles of various raw materials such as metals, semiconductors and oxides are dispersed in different substances.
[0002]
[Prior art]
An ultrafine particle dispersion film in which ultrafine particles such as Fe and Co are dispersed in Ag, Cu, carbon and the like is manufactured by a phase separation method, a composite vapor deposition method, or the like.
In the phase separation method, a forced solid solution is produced by sputtering, melt quenching, etc. from a plurality of substances having a small amount of solid solution to each other, and the phase separation is promoted in the production stage or the subsequent heat treatment stage, thereby producing ultrafine particles. Has a decentralized organization. In this method, since it is necessary that the dispersed fine particles do not dissolve in the dispersion medium, the kind of ultrafine particle dispersed film that can be produced is limited. Further, the particle size and the amount of dispersion of the dispersed fine particles cannot be controlled independently.
[0003]
On the other hand, in the composite vapor deposition method, a plurality of types of ultrafine particles prepared by the gas evaporation method are introduced into a vacuum chamber and simultaneously vapor deposited on the substrate. Since there is no restriction on the vapor deposition material, the combination of the dispersed fine particles and the dispersion medium can be freely selected, which is suitable for the production of a fine particle dispersion meeting the needs.
In the composite vapor deposition method, a vacuum chamber 3 divided into an evaporation chamber 1 and a vapor deposition chamber 2 is used as shown in FIG.
The evaporation chamber 1 maintains the pressure of the atmospheric gas at about 100 Pa and accommodates the evaporation source 4. The vapor deposition chamber 2 communicates with the evaporation chamber 1 through an ejection hole 5 provided in the partition wall, and a substrate 6 on which ultrafine particles from the evaporation chamber 1 are deposited is disposed. In addition, a second evaporation source 7 is disposed in the vapor deposition chamber 2 in order to deposit a matrix material on the substrate 6. The vapor deposition chamber 2 is maintained at a high vacuum of about 1 Pa by the exhaust pump 8 in order to create a pressure difference with the evaporation chamber 1.
The material disposed in the evaporation source 4 evaporates by high-frequency heating, arc heating, laser heating, sputtering, or the like, and fills the evaporation chamber 1 as ultrafine particles. Then, the pressure difference between the evaporation chamber 1 and the vapor deposition chamber 2 becomes drive energy, and the ultrafine particles are sent into the vapor deposition chamber 2 to be vapor deposited on the substrate 6. At this time, a matrix material different from the ultrafine particles is vaporized in the vapor deposition chamber 2 and co-deposited on the substrate 6 to produce an ultrafine particle dispersed film.
[0004]
[Problems to be solved by the invention]
The driving force for sending ultrafine particles from the evaporation chamber 1 to the vapor deposition chamber 2 depends on the pressure difference between the evaporation chamber 1 and the vapor deposition chamber 2. That is, while the evaporation chamber 1 has a pressure of about 100 Pa, the pressure of the vapor deposition chamber 2 usually needs to be about 1 Pa or less. In order to maintain such differential exhaust conditions, use of the exhaust pump 8 having a large exhaust capacity, reduction in the diameter of the ejection hole 5, and the like are employed.
However, when the diameter of the ejection hole 5 is reduced, the influence of the ultrafine particles adhering to the inner wall of the ejection hole 5 appears greatly, and the flow of ultrafine particles from the evaporation chamber 1 to the vapor deposition chamber 2 becomes unstable. As a result, the amount of ultrafine particles supplied to the substrate 6 varies, and an ultrafine particle dispersed film having stable properties cannot be obtained. In an extreme case, the ejection holes 5 may be clogged with the adhering ultrafine particles, and the operation may be disabled. On the other hand, the use of an exhaust pump having a large exhaust capacity increases the equipment burden and is not a practical solution.
[0005]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and by evaporating ultrafine particles and different materials in the same atmosphere and mixing them uniformly, it is deposited on a substrate under stable conditions. An object is to produce an ultrafine particle dispersion film having a constant quality by supplying a vapor flow onto a substrate.
In order to achieve the object of the manufacturing method of the present invention, a plurality of types of steam are generated from a plurality of sputtering sources disposed in the same vacuum chamber, and the one or more first steams are passed through the cylindrical guide portion. In the process of leading to the surface of the substrate, it is condensed into ultrafine particles, diffused and mixed with other vapors sent through the cylindrical guide part, and the diffused and mixed ultrafine particles and other vapors are deposited on the substrate surface. A vapor-deposited film in which ultrafine particles are uniformly dispersed in a matrix generated from the above vapor is formed on the substrate surface.
The apparatus used in this method is arranged in a single vacuum chamber, and a plurality of sputtering sources whose input power is controlled independently, and vapor generated by the first sputtering source is condensed into ultrafine particles to form the same vacuum. And a cylindrical guide that guides the other vapor generated in another sputtering source to the substrate arranged in the same vacuum chamber . When a plurality of vapors pass through the cylindrical guide portion, the ultrafine particles and other atomic vapors are led to the substrate surface as a homogenized gas flow by mutual diffusion.
[0006]
Embodiment
In the present invention, the vacuum chamber 10 is provided with two exhaust systems and a plurality of sputtering sources.
The number of sputter sources is determined according to the ultrafine particles to be dispersed in the ultrafine particle dispersion film to be produced. In FIG. 2, since the ultrafine particle dispersion film made of two kinds of materials is produced, two sputter sources 20, 30 is incorporated. The sputter sources 20 and 30 are not limited to the present invention, but specifically, it is preferable to mount a pipe-like target whose inner surface is sputtered.
In the exhaust system, an oil diffusion pump 41 is used as a high vacuum preliminary exhaust system, and an oil rotary pump 42 is used as a large capacity exhaust system for low vacuum.
[0007]
The material for the ultrafine particles is arranged as the target 21 of the sputtering source 20, and the matrix material is arranged as the target 31 of the sputtering source 30. As the material for the ultrafine particles, although not restricting the present invention, a metal or alloy such as Fe, Co, Fe-Ni, a semiconductor, Si, or the like is used. As the matrix material, a metal or alloy such as Cu or Ag, an Si semiconductor, or the like is used although it does not restrict the present invention. The combination of these materials is freely selected according to the intended use of the ultrafine particle dispersion film.
[0008]
A sputtering gas such as Ar is supplied to each of the sputtering sources 20 and 30 from the gas cylinder 22 via the flow rate adjusting valves 23 and 33. The sputter sources 20 and 30 are connected to individual power sources 24 and 34, respectively, so that the discharge output can be controlled independently.
In vapor deposition, first, the vacuum chamber 10 is evacuated to a sufficiently high vacuum by the oil diffusion pump 41, and then a sputtering gas is introduced, and the respective sputtering sources 20 and 30 are operated. At this time, by adjusting the discharge power supplied to the sputtering sources 20 and 30, the amount of the material knocked out of the targets 21 and 31 is controlled independently. During the operation of the sputtering sources 20 and 30, the oil rotary pump 42 is driven to evacuate the vacuum chamber 10.
[0009]
A gas containing vapor released by sputtering is blown onto the substrate S through the cylindrical guide portion 11. When the gas sent from the sputter sources 20 and 30 passes through the cylindrical guide portion 11, the gas is sufficiently mixed by mutual diffusion to be supplied to the substrate S as a homogeneous mixed gas.
As the cylindrical guide portion 11, for example, a cylinder having an inner diameter of about several centimeters is used so that the resistance to the gas flow is reduced. Since the evaporation zone (sputter sources 20, 30) and the vapor deposition zone (substrate S) communicate with each other via the cylindrical guide portion 11, there is almost no pressure difference in any part of the vacuum chamber 10.
[0010]
As described above, since the vapor deposition proceeds in the vacuum chamber 10 maintained in the same vacuum atmosphere, the vapor deposition material such as ultrafine particles is supplied onto the substrate S in a stable gas flow. Moreover, the ultrafine particles and the vapor of the matrix material are uniformly mixed by the cylindrical guide portion 11 and then supplied to the substrate S. Therefore, an ultrafine particle dispersion film having no quality change due to gas flow fluctuation, composition fluctuation, or the like and having a stable quality over a long period of time is formed on the substrate S.
In addition, since the degree of freedom of combination of the ultrafine particles and the matrix is high, functional thin films corresponding to various applications can be produced. For example, when ultrafine particles such as Fe and Co are dispersed in a matrix such as Ag and Cu, a thin film for a magnetic field sensor utilizing a giant magnetoresistance effect is obtained. In addition, a magnetic recording medium in which ultrafine particles such as Co and Fe-Pt alloy are dispersed in a carbonaceous matrix, a soft magnetic thin film material in which Fe ultrafine particles are dispersed in a Si matrix, and the like are also manufactured.
[0011]
【Example】
Fe was used as the target 21 for ultrafine particles, and Ag was used as the target 31 for the matrix. After evacuating the vacuum chamber 10 to 10 −4 Pa, the targets 21 and 31 were sputtered under the following conditions while supplying Ar gas. During sputtering, the atmospheric pressure in the vacuum chamber 10 was maintained at 260 Pa.
In the sputtering source 20, a pipe-like Fe target 21 having an inner diameter of 6 mm and a length of 30 mm was used, the Ar gas flow rate was set to 500 SCCM, and the discharge power was set to a constant value of 500 W. The Fe vapor released from the target 21 was condensed into ultrafine particles having an average particle diameter of 6 nm while being transported by Ar gas.
In the sputtering source 30, a pipe-shaped Ag target 31 having an inner diameter of 20 mm and a length of 30 mm was used, the Ar gas flow rate was set to 500 SCCM, and the discharge power was set to a constant value between 30 and 200 W. Ag released from the target 31 was mixed with Fe ultrafine particles as atomic vapor or cluster vapor. At this time, the mixing ratio of Fe ultrafine particles to Ag vapor could be changed by adjusting the discharge power.
[0012]
Ar gas in which Fe ultrafine particles and Ag vapor were suspended was supplied to the substrate S at a flow rate of 1000 SCCM through the cylindrical guide portion 11 having an internal cross-sectional area of 20 cm 2 .
In this way, an ultrafine particle dispersion film having a film thickness of 0.3 μm was deposited on the substrate S. In addition, although the film forming speed varies depending on the composition, the film forming speed of 0.1 nm / sec was obtained in the film in which the amount of dispersion of the Fe ultrafine particles was 40 atomic%. When the cross section of the obtained ultrafine particle dispersion film was observed with an electron microscope, it was a structure in which Fe ultrafine particles were dispersed in an Ag matrix as shown in FIG. The Fe ultrafine particles have a dispersion amount of 18 atomic% and a particle size of approximately 6 nm, which is equal to the particle size of the cluster-like fine particles before being deposited on the substrate S.
Next, the vapor density of Ag was changed by the discharge power input to the sputtering source 30 to produce ultrafine particle dispersion films having various compositions. Then, the influence of the composition change, that is, the amount of dispersed Fe fine particles on the magnetization curve of the ultra fine particle dispersed film was investigated.
The ultrafine particle dispersion film exhibited different magnetization curves depending on the amount of Fe fine particles dispersed as shown in FIG. Especially, the ultrafine particle dispersion film in which the Fe fine particle dispersion amount is 18 atomic% shows superparamagnetism, and it can be seen from this that the Fe ultrafine particles are dispersed without mutual interference.
[0013]
Further, in a film in which the dispersion amount of Fe ultrafine particles is 40 atomic% or less, a particle-like magnetization mechanism is observed, which suggests that aggregation and aggregation of Fe ultrafine particles are not progressing. Assuming a state in which spherical particles are randomly arranged on a plane, it can theoretically be said that when the surface density of the particles occupies about 40% of the plane, the particles start to contact all over. In this regard, 40 atomic% of the ultrafine Fe particles is close to the threshold value. In the thin film produced in this example, the fact that coalescence growth is not observed in the Fe ultrafine particles up to the limit density indicates that the Fe ultrafine particles are randomly deposited and immobilized on the substrate. That is, according to the present invention, it is confirmed that the ultrafine particles are randomly dispersed in the matrix to almost the limit density.
[0014]
【The invention's effect】
As described above, in the present invention, a plurality of evaporation zones and vapor deposition zones are provided in the same vacuum chamber, and a plurality of vapors generated in the evaporation zone are guided to the substrate surface via the cylindrical guide portion. Since a plurality of vapors flow through the cylindrical guide portion at the stage where they flow, they are supplied to the substrate surface as a gas flow having a homogeneous composition. Therefore, a vapor deposition film in which ultrafine particles are uniformly dispersed is deposited on the substrate, and an ultrafine particle dispersed film having excellent quality stability can be obtained.
[Brief description of the drawings]
FIG. 1 shows a conventional vacuum deposition apparatus in which a vacuum chamber is divided into an evaporation chamber and a deposition chamber. FIG. 2 shows a vacuum deposition apparatus in which an evaporation zone and a vacuum zone are arranged in the same atmosphere according to the present invention. Electron micrograph of Fe ultrafine particle dispersion film obtained in Fig. 4 [Figure 4] Graph showing the effect of the amount of Fe fine particle dispersion on the magnetization curve of the ultrafine particle dispersion film
10: Vacuum chamber 11: Cylindrical guide part 20: Sputter source for ultrafine particles 30: Sputter source for matrix 21, 31: Target 22: Gas cylinder 23, 33: Flow control valve 24, 34: Power supply 41: For high vacuum Oil diffusion pump 42: Oil rotary pump for low vacuum S: Substrate

Claims (2)

同じ真空室に配置されている複数のスパッタ源から複数種の蒸気を発生させ、単数又は複数の第1の蒸気を筒状案内部を介して基板の表面に導く過程で超微粒子に凝縮させ、筒状案内部を送られてくる他の蒸気と相互に拡散混合し、拡散混合した超微粒子及び他の蒸気を基板表面に蒸着させ、他の蒸気から生成したマトリックスに超微粒子が均一分散した蒸着膜を基板表面に形成することを特徴とする超微粒子分散膜の製造方法。A plurality of types of vapor are generated from a plurality of sputter sources arranged in the same vacuum chamber, and the single or plural first vapors are condensed into ultrafine particles in the process of guiding them to the surface of the substrate through the cylindrical guide part, Vaporized and mixed with other vapors sent through the cylindrical guide, and the ultrafine particles and other vapors that have been mixed by diffusion are deposited on the surface of the substrate, and the ultrafine particles are uniformly dispersed in the matrix generated from the other vapors. A method for producing an ultrafine particle dispersion film, comprising forming a film on a substrate surface. 一つの真空室に配置され、独立して投入電力が制御される複数のスパッタ源と、第1のスパッタ源で発生した蒸気を超微粒子に凝縮させて同じ真空室に配置された基板に導くと共に、他のスパッタ源で発生した他の蒸気を同じ真空室に配置された前記基板に導く筒状案内部とを備え、超微粒子及び他の蒸気が筒状案内部を通過する際に相互に拡散混合することを特徴とする超微粒子分散膜の製造装置。A plurality of sputtering sources that are arranged in one vacuum chamber and whose input power is controlled independently, and vapor generated in the first sputtering source is condensed into ultrafine particles and led to a substrate arranged in the same vacuum chamber. A cylindrical guide that guides other vapor generated by other sputtering sources to the substrate disposed in the same vacuum chamber, and the ultrafine particles and other vapors diffuse to each other when passing through the cylindrical guide. An apparatus for producing an ultrafine particle dispersion film, characterized by mixing.
JP25249498A 1998-09-07 1998-09-07 Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film Expired - Lifetime JP3824787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25249498A JP3824787B2 (en) 1998-09-07 1998-09-07 Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25249498A JP3824787B2 (en) 1998-09-07 1998-09-07 Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film

Publications (2)

Publication Number Publication Date
JP2000087233A JP2000087233A (en) 2000-03-28
JP3824787B2 true JP3824787B2 (en) 2006-09-20

Family

ID=17238163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25249498A Expired - Lifetime JP3824787B2 (en) 1998-09-07 1998-09-07 Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film

Country Status (1)

Country Link
JP (1) JP3824787B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910466B2 (en) 2002-02-26 2007-04-25 独立行政法人科学技術振興機構 Manufacturing method and manufacturing apparatus of semiconductor or insulator / metal / layered composite cluster
JP4056817B2 (en) * 2002-07-23 2008-03-05 光正 小柳 Method for manufacturing nonvolatile semiconductor memory element
JP4734635B2 (en) * 2005-10-03 2011-07-27 国立大学法人信州大学 Method for forming magnetic thin film
WO2016021205A1 (en) * 2014-08-07 2016-02-11 Okinawa Institute Of Science And Technology School Corporation Gas phase synthesis of stable soft magnetic alloy nanoparticles

Also Published As

Publication number Publication date
JP2000087233A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US5851365A (en) Low pressure reactive magnetron sputtering apparatus and method
US5158933A (en) Phase separated composite materials
US4833319A (en) Carrier gas cluster source for thermally conditioned clusters
JP3824787B2 (en) Manufacturing method and manufacturing apparatus of ultrafine particle dispersion film
US6106890A (en) Method for forming a thin film of ultra-fine particles and an apparatus for the same
US7155115B2 (en) Method and device for vacuum sputtering
EP1486583B1 (en) Method and device for manufacturing semiconductor or insulator/metallic laminar composite cluster
JP4716510B2 (en) Cluster manufacturing apparatus and cluster manufacturing method
JPS6228487B2 (en)
JP3751767B2 (en) Method for producing layered cluster
AT514955B1 (en) Method for producing a two-substance plain bearing
JPH01223632A (en) Method and device for manufacturing magnetic recording medium
JP4521174B2 (en) Cluster manufacturing apparatus and cluster manufacturing method
JP4485164B2 (en) Method and apparatus for producing soft magnetic material
JPS5987622A (en) Magnetic recording body and its production
JPS6411328B2 (en)
JP2005036276A (en) Method and system for producing composite-structural film
JPH02259079A (en) Method and apparatus for forming thick film of high temperature superconductor
JPH0328045B2 (en)
SUZUKI et al. CHANGES IN THE COMPOSITION OF SPUTTERED BARIUM FERRITE FILMS AS A RESULT OF SCATTERING DUE TO THE COLLISION OF SPUTTERED PARTICLES AND SPUTTERING GAS
JPH07192259A (en) Production of magnetic recording medium
KR20220128184A (en) Apparatus for pre-oxided porous metal thin film, method for manufacturing porous metal oxide thin film and porous metal oxide thin film manufactured thereby
JP4371881B2 (en) Magnetic recording medium manufacturing apparatus and manufacturing method
JPH02197559A (en) Method and device for producing magnetite film
Mori et al. Design of an atom‐cluster generator for a transmission electron microscope and in situ observation of the deposition process of large atom clusters

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4