JPH02197559A - Method and device for producing magnetite film - Google Patents

Method and device for producing magnetite film

Info

Publication number
JPH02197559A
JPH02197559A JP1643989A JP1643989A JPH02197559A JP H02197559 A JPH02197559 A JP H02197559A JP 1643989 A JP1643989 A JP 1643989A JP 1643989 A JP1643989 A JP 1643989A JP H02197559 A JPH02197559 A JP H02197559A
Authority
JP
Japan
Prior art keywords
substrate
iron
oxygen
film
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1643989A
Other languages
Japanese (ja)
Other versions
JP2811458B2 (en
Inventor
Yoshiaki Kitahara
北原 善見
Kenichi Yoda
賢一 依田
Yasushi Uno
宇野 泰史
Masataka Yamaguchi
政孝 山口
Munehito Goto
後藤 宗人
Akinori Sasaki
佐々木 秋典
Toshio Kubota
俊雄 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1016439A priority Critical patent/JP2811458B2/en
Publication of JPH02197559A publication Critical patent/JPH02197559A/en
Application granted granted Critical
Publication of JP2811458B2 publication Critical patent/JP2811458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Abstract

PURPOSE:To form a homogeneous magnetite film on the surface of a substrate by reactive sputtering by feeding a gaseous mixture into each vacuum chamber and exhausting it parallel to the transfer direction of the substrate in a film forming region. CONSTITUTION:Each vacuum chamber 10 is continuously evacuated, a gaseous Ar and O2 mixture is introduced from a feed member 14 and an RF magnetron cathode 13 is allowed to act to generate Ar ions. These Ar ions bombard the surface of an iron alloy target 2 to emit iron ions and these iron ions pass through an opening 16 in a correcting plate 15, approach a substrate 11 travelling through a pallet 12 and react with O2 to form a magnetite film on the surface of the substrate 11. The feed member 14 is composed of parallel broad upper and lower plates 30, 31, parallel low side plates 34, 35, a low side plate 33 on the upper stream side and a gas feed pipe 36 connected to the plate 33 so that the member 14 has an opening 32 on the down-stream side and gives a uniformly diffused flow. The gaseous mixture is fed into the film forming region and exhausted parallel to the transfer direction of the substrate 11 and uniform film formation is carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマグネタイト膜の製造方法および製造装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for manufacturing a magnetite film.

(従来技術) 金属、ガラスなどの非磁性基板の表面にマグネタイト或
いはγ酸化鉄等の磁性酸化鉄の膜を形成することにより
磁気記録媒体を製造するには種々の方法が提案されてい
るが、とりわけ成膜速度の速いRFマグネトロンスパッ
タ法が注目されている0代表的な方法は、真空中に低圧
のアルゴンと酸素を導入し、アルゴンをイオン化してそ
のイオンを鉄又は少量のCo等を含む鉄合金より成るタ
ーゲットに衝撃させ、スパッタされた鉄原子を基板の面
において酸素と反応させて基板の表面にα酸化鉄の膜を
形成させ、ついで水素等の還元性雰囲気中で中で基板を
熱処理してα酸化鉄をマグネタイト膜に変換し、更に酸
化性雰囲気中で熱処理してγ酸化鉄膜を得る。この方法
では一旦α酸化鉄を生成させる必要があり、これを更に
マグネタイトに還元する工程が必要となるなどの問題点
がある(特開昭62−943819号、米国特許第45
44612号等)、一方、マグネタイト膜をスパッタ法
により直接形成し次いで酸化性雰囲気で処理してγ酸化
鉄にすることも提案されているが、以下に述べるように
従来の方法では均質な(膜厚方向に)成膜ができない。
(Prior Art) Various methods have been proposed for manufacturing magnetic recording media by forming a film of magnetite or magnetic iron oxide such as gamma iron oxide on the surface of a nonmagnetic substrate such as metal or glass. In particular, the RF magnetron sputtering method, which has a fast film formation rate, is attracting attention. A typical method is to introduce low-pressure argon and oxygen into a vacuum, ionize the argon, and convert the ions to iron or a small amount of Co. A target made of an iron alloy is bombarded, and the sputtered iron atoms react with oxygen on the surface of the substrate to form a film of α-iron oxide on the surface of the substrate.Then, the substrate is heated in a reducing atmosphere such as hydrogen. Heat treatment is performed to convert α iron oxide into a magnetite film, and further heat treatment is performed in an oxidizing atmosphere to obtain a γ iron oxide film. This method has problems such as the need to generate α-iron oxide and then a step of reducing it to magnetite (Japanese Patent Application Laid-Open No. 62-943819, U.S. Patent No. 45
44612, etc.), on the other hand, it has also been proposed to directly form a magnetite film by sputtering and then treat it in an oxidizing atmosphere to form gamma iron oxide. However, as described below, the conventional method film cannot be formed (in the thickness direction).

RFマグネトロンスパッタ装置の典型例は第1図に示す
通りであり、トンネル状の真空室1に磁石5を配置し、
バッキングプレート7に支持させた鉄又は鉄合金から成
るターゲット2を配置し、それに対向させて定速で矢印
の方向に送られろ金属又はガラス基板3を位置づけ、ガ
ス導入口4から低圧のアルゴンおよび酸素ガスを導入し
、アースシールド電極6とターゲット2との間に加わる
RF電界と磁石5の磁界により発生拘束された電子によ
りアルゴンガスなイオン化し、RF電界によって負の強
電位にされているターゲット2を衝撃させ、叩き出され
た鉄又は鉄合金粒子を基板に差し向けその表面で酸素と
反応させてマグネタイトの膜を生成させる。なお、8は
補正用の開口を有する補正板であり基本的には重要でな
い、補正板8は支柱9により支持され、基板が矢印の方
向に送られながらスパッタを受ける場合にその移動方向
に対して横断方向に延び、中央で狭く外延に向けて広く
なっている細長い開口を有する。これは一般に、ターゲ
ット幅方向の中央部で叩き出される鉄原子が多いため、
その量を均一化させるために必要となる。
A typical example of an RF magnetron sputtering device is as shown in FIG. 1, in which a magnet 5 is placed in a tunnel-shaped vacuum chamber 1.
A target 2 made of iron or iron alloy supported by a backing plate 7 is placed, a metal or glass substrate 3 is positioned opposite to it and is fed at a constant speed in the direction of the arrow, and low-pressure argon and Oxygen gas is introduced, and the argon gas is ionized by electrons generated and restrained by the RF electric field applied between the earth shield electrode 6 and the target 2 and the magnetic field of the magnet 5, and the target is made to have a strong negative potential by the RF electric field. 2, and the iron or iron alloy particles that are knocked out are directed to the substrate and react with oxygen on the surface of the substrate to form a magnetite film. Note that 8 is a correction plate having an opening for correction, and is basically not important.The correction plate 8 is supported by a support 9, and when the substrate receives sputtering while being sent in the direction of the arrow, it It has an elongated opening that is narrow in the center and widens outwardly, extending in the transverse direction. This is because there are generally many iron atoms ejected from the center of the target in the width direction.
This is necessary to equalize the amount.

上記装置によりマグネタイトを直接成膜することを本発
明者は試み成功した0本発明は斯かる技術を用いるもの
であるが、得られたマグネタイトの膜を酸化雰囲気で熱
処理してγ酸化鉄に変換する場合に、表面層がバリヤー
となって厚さ方向の酸化が充分均一に行なわれず、磁気
特性が変動することが分かった。
The present inventor attempted to directly form a film of magnetite using the above-mentioned apparatus and was successful. The present invention uses such a technique, but the obtained magnetite film is heat-treated in an oxidizing atmosphere to convert it into gamma iron oxide. It has been found that in this case, the surface layer acts as a barrier and oxidation is not performed uniformly in the thickness direction, resulting in fluctuations in magnetic properties.

(発明の目的) 本発明は酸化性雰囲気により均一な膜質のγ酸化鉄に転
化し易いマグネタイト膜を製造できる方法及び装置、特
に反応性スパッタ方法及び装置を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a method and apparatus, particularly a reactive sputtering method and apparatus, capable of producing a magnetite film that is easily converted into gamma iron oxide of uniform film quality in an oxidizing atmosphere.

なお本明細書でマグネタイトとはマグネタイト(Fe3
04)のみならず、ウスタイト(Fed)とマグネタイ
ト(Fe304)の中間形態、並びにマグネタイト(F
e。
In this specification, magnetite refers to magnetite (Fe3
04), as well as intermediate forms between wustite (Fed) and magnetite (Fe304), as well as magnetite (F
e.

04)とγマグネタイト(γ−Few Os )の中間
形態、いわゆるベルトライド形態を含む。
04) and γ-magnetite (γ-Few Os), the so-called bertholed form.

(発明の概要) 本発明は、RFマグネトロンスパッタ法により鉄又は鉄
を主体とする合金より成るターゲットをアルゴン等のイ
オン形成ガスのイオンにより衝撃し、放出された鉄又は
合金の粒子な成膜領域を通して連続的に移送されている
基板に差し向けて、この鉄又は合金の粒子を基板の面で
酸素と反応させろことによりマグネタイト膜を基板上に
形成する方法において、前記成膜箇所への前記酸素又は
酸素−イオン形成ガス混合物の供給および前記成膜領域
の排気は、前記成膜領域に基板の移送方向に並流の酸素
流又は酸素−イオン形成ガス混合物流を生じる方向であ
ることを特徴とするマグネタイト膜の製造方法を提供す
る。
(Summary of the Invention) The present invention provides a film forming area in which iron or alloy particles are released by bombarding a target made of iron or an iron-based alloy with ions of an ion-forming gas such as argon by RF magnetron sputtering. In a method for forming a magnetite film on a substrate by directing the iron or alloy particles to a substrate being continuously transported through the substrate and reacting the iron or alloy particles with oxygen on the surface of the substrate, the oxygen to the deposition location is or the supply of the oxygen-ion-forming gas mixture and the evacuation of the deposition region are in a direction that produces a cocurrent flow of oxygen or oxygen-ion-forming gas mixture in the direction of transport of the substrate in the deposition region. The present invention provides a method for manufacturing a magnetite film.

本発明はまた、真空室と、前記室内に配置された鉄又は
鉄を主体とする合金とより成るターゲットと、前記ター
ゲットに対向して成膜領域を通して基板を連続的に移送
する移送手段と、アルゴン等のイオン形成ガスと酸素を
導入する導入口と、より成る装置において、前記基板の
軌跡に近接して基板の移送方向に並流の酸素流又は酸素
+アルゴン流を生じるように、前記導入口は前記成膜領
域の上流側に設けられ且つ真空室或いは前記成膜領域を
排気する手段は前記成膜領域の下流側に設けられたこと
を特徴とするマグネタイトの製造装置を提供する。
The present invention also provides a vacuum chamber, a target made of iron or an iron-based alloy disposed in the chamber, and a transfer means for continuously transferring a substrate through a film forming region opposite to the target. An apparatus comprising an inlet for introducing an ion-forming gas such as argon and oxygen, wherein the inlet is arranged so as to produce a cocurrent oxygen flow or an oxygen + argon flow in the substrate transport direction close to the trajectory of the substrate. A magnetite manufacturing apparatus is provided, wherein an opening is provided on the upstream side of the film forming region, and a vacuum chamber or a means for evacuating the film forming region is provided on the downstream side of the film forming region.

(効果の概要) 本発明によると、酸素が成膜領域を基板面に沿って基板
の移送方向と並流するため、基板面に成長するマグネタ
イト膜は基板に近い側で酸素濃度が高く、表面側で酸素
濃度が低くなり、このため引き続いて行なわれる酸化条
件下での熱処理工程により容易に厚さ方向に−様な酸化
を行なうことができ、均質なγ酸化鉄膜を得ることがで
きる。
(Summary of Effects) According to the present invention, oxygen flows through the film-forming region along the substrate surface in parallel with the substrate transport direction, so that the magnetite film grown on the substrate surface has a higher oxygen concentration on the side closer to the substrate, and the oxygen concentration on the surface is higher. The oxygen concentration is lower on the side, and therefore, by the subsequent heat treatment step under oxidizing conditions, -like oxidation can be easily performed in the thickness direction, and a homogeneous γ iron oxide film can be obtained.

(構成の具体的な説明) 以下、図面を参照して本発明の実施例に関連して本発明
の詳細な説明する。
(Specific Description of Configuration) Hereinafter, the present invention will be described in detail in connection with embodiments of the present invention with reference to the drawings.

の 本実施例は精密仕上したガラスの表面を化学的に強化し
た円板を基体として、1列の複数の基体のを成膜箇所に
送りこみ、それら基体の両面にマグネタイト膜を形成す
る磁気記録媒体の製造方法および製造装置について記載
するが、本発明は一般に金属基板又はガラス基板の片面
又は両面にマグネタイト膜を形成するとか、或いは同時
に2列以上の複数の基体に膜を形成する等の変形が可能
である。
In this example, a disk with a precisely finished glass surface chemically strengthened is used as a base, and a row of multiple bases is sent to a film forming location, and a magnetite film is formed on both sides of the bases. Although the manufacturing method and manufacturing apparatus of the medium will be described, the present invention generally applies to modifications such as forming a magnetite film on one or both sides of a metal substrate or glass substrate, or forming a film on two or more rows of multiple substrates at the same time. is possible.

第2図には本発明の実施例によるRFマグネトロンスパ
ッタ装置の要部を示す平面断面図である。第3図は第2
図の線■−mより見た基板を鎖線で示した拡大図である
FIG. 2 is a plan sectional view showing the main parts of an RF magnetron sputtering apparatus according to an embodiment of the present invention. Figure 3 is the second
FIG. 2 is an enlarged view of the substrate viewed from line 2-m in the figure, indicated by a chain line.

図に示すように、RFマグネトロンスパッタ装置は水平
に延びる真空室10と、金属又はガラス円板等の基板1
1を矢印の方向に移送するためのパレットないしホルダ
12と、基板11に対向して配置された鉄又は鉄合金の
ターゲット2を支持するRFマグネトロンカソード13
と、成膜領域において基板面に沿って基板の移送方向と
並流する酸素流を生成するための供給部材14(この構
造は後で詳しく記載する)および排気手段と、導入され
たアルゴンをイオン化しターゲットに衝撃させるための
RF電源(図示せず)とから基本的に構成される。
As shown in the figure, the RF magnetron sputtering apparatus includes a horizontally extending vacuum chamber 10 and a substrate 1 such as a metal or glass disk.
1, and an RF magnetron cathode 13 that supports an iron or iron alloy target 2 placed opposite to the substrate 11.
, a supply member 14 (this structure will be described in detail later) and an exhaust means for generating an oxygen flow parallel to the substrate transport direction along the substrate surface in the film forming region, and ionizing the introduced argon. It basically consists of an RF power source (not shown) for impacting the target.

マグネトロンカソード13は、磁石21と、ターゲット
2を支持するバッキングプレート22と、バッキングプ
レート22から離間してターゲットの周部近くに配置さ
れたアースシールド電極23とより構成されており、R
F電力はアースシールド電極とターゲットとの間に印加
され、電界によりターゲットの表面近傍に発生する電子
を磁石21の磁界によりターゲットの表面近傍に閉じ込
め、それによりアルゴンを効率的にイオン化する。また
RF’li磁界によりターゲット22は負の高電位にな
り、アルゴンイオンをターゲツト面に加速する。また、
マグネタイト膜の成長を均一化するために中央で狭く側
端部で広い上下方向に延びる同形の2つの開口16を備
えた補正板15を設ける。この補正板による補正効果は
従来と同様であるが2つの開口を設けた点で違う。
The magnetron cathode 13 is composed of a magnet 21, a backing plate 22 that supports the target 2, and an earth shield electrode 23 that is spaced apart from the backing plate 22 and placed near the periphery of the target.
F power is applied between the earth shield electrode and the target, and electrons generated near the surface of the target due to the electric field are confined near the surface of the target by the magnetic field of the magnet 21, thereby efficiently ionizing argon. The RF'li magnetic field also brings the target 22 to a high negative potential, accelerating argon ions toward the target surface. Also,
In order to make the growth of the magnetite film uniform, a correction plate 15 is provided with two openings 16 of the same shape, narrow at the center and wide at the side ends, extending in the vertical direction. The correction effect of this correction plate is similar to the conventional one, but the difference is that two apertures are provided.

更に、好ましくは補正板の中央部には支柱19により電
極20を設置する。この電極はマグネトロンカソード1
3の磁石21の中央部に対向してターゲット2に近接し
て設ける。電極20とターゲット2の間隔は5mm以下
とする。この間隔は最適化実験により容易に決定できる
。この間隔が広すぎると放電を起こし本発明が意図する
粒状酸化物の基板面への付着の抑制効果が減じる。また
電極20の面積は酸化鉄が堆積する領域部分のほぼ全部
を覆う様にする。この点も最適化実験により容易に決定
することができる。電極20は接地するか又はターゲッ
トに対して正電位にする0例えば接地する場合は補正板
15と支柱を導体で製作する。
Further, an electrode 20 is preferably installed in the center of the correction plate by a support 19. This electrode is magnetron cathode 1
The magnet 21 is provided close to the target 2 and facing the center of the magnet 21 of No. 3. The distance between the electrode 20 and the target 2 is 5 mm or less. This interval can be easily determined through optimization experiments. If this distance is too wide, discharge will occur and the effect of suppressing the adhesion of particulate oxides to the substrate surface as intended by the present invention will be reduced. Further, the area of the electrode 20 is set so as to cover almost the entire region where iron oxide is deposited. This point can also be easily determined through optimization experiments. The electrode 20 is grounded or has a positive potential with respect to the target. For example, if the electrode 20 is grounded, the correction plate 15 and the pillar are made of a conductor.

好ましくは、ターゲット2の周辺部は補正板15の開口
以外のすべての部分を囲壁24でほぼ完全に包囲する。
Preferably, all parts of the peripheral part of the target 2 other than the opening of the correction plate 15 are almost completely surrounded by the surrounding wall 24.

このため補正板15は囲壁24の頂部に密着させて固定
する。こうすることによりアルゴンイオンが生成され易
くなり、マグネタイトの生産性が向上する。
Therefore, the correction plate 15 is fixed in close contact with the top of the surrounding wall 24. This makes it easier to generate argon ions and improves the productivity of magnetite.

アルゴンと酸素の混合ガスの導入口又は供給部材14は
ターゲットから見て補正板の外側において基板に近接し
て且つ基板に平行な流れが生じる様に設けられる。これ
によりアルゴンが上記の様にターゲットの近傍で濃密な
アルゴンイオンを形成し易くなる一方、酸素は基板面で
優先的に鉄原子と反応してマグネタイトを生成し易くな
る。
An inlet or supply member 14 for a mixed gas of argon and oxygen is provided so as to create a flow close to and parallel to the substrate on the outside of the correction plate when viewed from the target. This makes it easier for argon to form dense argon ions near the target as described above, while oxygen tends to preferentially react with iron atoms on the substrate surface to generate magnetite.

好ましくは、ガス導入口は第5図の様に構成される。導
入口14は平行な幅広の上下板30.31、平行な低い
側板34.35及び上流側の低い側板33より構成され
下流側に開口32を形成した供給部材と、側板33に結
合された一個以上のガス導管36とより成る。開口の幅
W、高さh供給部材の長さβは均一な拡散流が得られる
最短長以上に定める。ガス導管幅Wを充分に大きく取り
たいときにはガス導管36の分岐数を増やす。
Preferably, the gas inlet is configured as shown in FIG. The inlet 14 is composed of parallel wide upper and lower plates 30, 31, parallel low side plates 34, 35, and an upstream low side plate 33, and includes a supply member with an opening 32 formed on the downstream side, and one piece connected to the side plate 33. It consists of the gas conduit 36 described above. The width W and height h of the opening and the length β of the supply member are determined to be at least the shortest length that allows a uniform diffusion flow to be obtained. When it is desired to make the gas conduit width W sufficiently large, the number of branches of the gas conduit 36 is increased.

マ   イト     ゛ 上記の構成のマグネタイト成膜装置を用いて本発明の成
膜方法を説明する。基板11は矢印の方向に一定速度で
移送されるものとする。鉄又は鉄合金のターゲット2を
所定の位置に取り付け、真空室10を連続的に排気し、
一方供給部材14から例えばアルゴン90%、酸素10
%程度の混合ガスを成膜領域に向は連続的に導入する。
The film forming method of the present invention will be explained using the magnetite film forming apparatus having the above configuration. It is assumed that the substrate 11 is transported at a constant speed in the direction of the arrow. A target 2 made of iron or iron alloy is attached to a predetermined position, the vacuum chamber 10 is continuously evacuated,
On the other hand, from the supply member 14, for example, argon 90%, oxygen 10%
% of the mixed gas is continuously introduced into the film forming region.

酸素は基板面に沿い基板の移動方向と同一方向(並流方
向)に流れる。排気はこの並流を実現するように行なう
、RFマグネトロンを作動させアルゴンイオンを形成す
る。アルゴンイオンはターゲット2の表面を衝撃して鉄
原子を放出させる。鉄原子は補正板15の開口16を通
って基体11の表面近くの酸素と反応してマグネタイト
として基体11の表面に付着しマグネタイト膜を成長さ
せる。
Oxygen flows along the substrate surface in the same direction as the substrate movement direction (cocurrent direction). Exhaust is performed to achieve this parallel flow, and an RF magnetron is activated to form argon ions. The argon ions bombard the surface of the target 2 to release iron atoms. The iron atoms pass through the opening 16 of the correction plate 15 and react with oxygen near the surface of the base 11, and adhere to the surface of the base 11 as magnetite to grow a magnetite film.

この成膜過程においては、電極20をターゲット2の表
面に近接して設けたことにより、ターゲツト面へ堆積し
た酸化物がアルゴンイオンに衝撃されて粒状酸化物とし
て基板に差し向けられ、マグネタイト膜に異物として点
々と付着して膜質な低下する可能性がなくなる。
In this film-forming process, by providing the electrode 20 close to the surface of the target 2, the oxide deposited on the target surface is bombarded by argon ions and directed to the substrate as particulate oxide, forming a magnetite film. There is no possibility that the film quality will deteriorate due to foreign matter adhering in spots.

以下の実施例に示すように本発明によると基板11の面
に形成されるマグネタイト膜は厚さ、膜質とも平面方向
には均質であり、厚さ方向には基体から表面にかけて順
次酸素濃度を減じる。またターゲット2に堆積する酸化
物に由来する酸化鉄粒子の付着がほとんど無い、第5図
に示す供給部材に導入されたガスは当初粘性のために層
流をなし一定の流れパターンを有するが、流れる内に幅
方向に拡散して行き遂には流路に垂直な断面内の方向に
均一化する。従って供給部材の長さ℃を充分に長(する
ことにより供給部材開口32においてほぼ完全に均一な
密度が得られる。こうして形成された均一流は上下板3
0.31に平行に且つ近接位置を移動しつつある基板の
表面に流れて面内方向の均一な酸化反応を行なう。
As shown in the following examples, according to the present invention, the magnetite film formed on the surface of the substrate 11 is uniform in both thickness and film quality in the plane direction, and the oxygen concentration is gradually reduced from the substrate to the surface in the thickness direction. . In addition, the gas introduced into the supply member shown in FIG. 5, which has almost no adhesion of iron oxide particles derived from the oxide deposited on the target 2, initially forms a laminar flow due to its viscosity and has a constant flow pattern. As it flows, it diffuses in the width direction and eventually becomes uniform in the direction within the cross section perpendicular to the flow path. Therefore, by making the length of the supply member sufficiently long (°C), an almost completely uniform density can be obtained in the supply member opening 32.
It flows to the surface of the substrate which is moving parallel to 0.31 and close to the surface, and performs a uniform oxidation reaction in the in-plane direction.

アルゴンと共に放出される酸素は基板に沿って流れる間
にスパッタされる鉄又は合金粒子と反応してマグネタイ
トを生成することにより酸素欠乏となり、従って基板は
移送されるにつれて最初は酸素濃度が高いマグネタイト
層を生成し、次第に酸素含有量を減じ、表面のマグネタ
イト層は酸素濃度が低くなる。したがって生成したマグ
ネタイト膜は下層はど酸素濃度が大きいものとなる。
The oxygen released with the argon becomes oxygen-depleted by reacting with the sputtered iron or alloy particles while flowing along the substrate to form magnetite, so that as the substrate is transported it initially becomes an oxygen-rich layer of magnetite. The oxygen content gradually decreases, and the magnetite layer on the surface has a low oxygen concentration. Therefore, the produced magnetite film has a high oxygen concentration in the lower layer.

なお、この例によるとマグネタイト膜の成膜効率は電極
20を用いない場合とほとんど変わらない、これはマグ
ネトロンの磁石磁界の強度分布が一般に第4図の様に双
子型をしているため、電極20が中央の弱い磁界の部分
に位置することになるからである。なおこの図は第3図
のABCの点に沿った磁束密度分布を示す。
According to this example, the deposition efficiency of the magnetite film is almost the same as when the electrode 20 is not used. This is because the strength distribution of the magnetron's magnetic field is generally twin-shaped as shown in Figure 4. This is because the magnetic field 20 is located in the central portion of the weak magnetic field. Note that this figure shows the magnetic flux density distribution along the point ABC in FIG. 3.

以下に実施例を述べる。Examples will be described below.

1鬼l 上に述べた装置及び方法を使用してマグネタイトの成膜
を実施した。純鉄ターゲットを基板の送り方向の長さ約
127mm、横断方向の長さ約381mmに製作し、こ
れをバッキングプレートの中心位置に支持させた。ター
ゲットの中央でその表面から5mmの位置に基板の送り
方向の長さ約35mm、横断方向の長さ270mmの電
極を配置し設置した。RF電源は13.56MHz。
1. Magnetite film formation was performed using the apparatus and method described above. A pure iron target was manufactured to have a length of approximately 127 mm in the substrate feeding direction and approximately 381 mm in the transverse direction, and was supported at the center of the backing plate. An electrode having a length of about 35 mm in the substrate feeding direction and a length of 270 mm in the transverse direction was arranged and installed at a position 5 mm from the surface at the center of the target. The RF power source is 13.56MHz.

7oo〜150oWとした。アルゴン90%、酸素10
%の混合ガスを30〜60SCCMの流量で導入し、動
作圧5X10−’Pa以下にした。直径約13.0cm
、厚さ1.9mmの超精密研摩した( R、、、約10
0μ)表面強化ガラス板をターゲツト面から約75mm
の距離のところを定速で送り約0.2μに連続成膜した
。なお成膜中基板の温度は100〜200℃でありた。
The power was 7oo to 150oW. 90% argon, 10% oxygen
% mixed gas was introduced at a flow rate of 30-60 SCCM, and the operating pressure was below 5×10 −′ Pa. Approximately 13.0cm in diameter
, 1.9mm thick ultra-precision polished (R,, approx. 10
0μ) Place the surface tempered glass plate approximately 75mm from the target surface.
A film was continuously formed at a distance of about 0.2 μm by feeding at a constant speed. Note that the temperature of the substrate during film formation was 100 to 200°C.

得られた膜は分析によりマグネタイト膜であることが確
認された。
Analysis confirmed that the obtained film was a magnetite film.

(具体的な作用効果) 得られた膜は分析により基板面と表面の酸素濃度の比が
1対0.8のマグネタイト膜であることが確認された。
(Specific Effects) Analysis confirmed that the obtained film was a magnetite film with a ratio of oxygen concentration between the substrate surface and the surface of the film of 1:0.8.

これを更に空気中で300℃に2時間加熱してγ酸化鉄
を得た。
This was further heated in air at 300°C for 2 hours to obtain γ iron oxide.

グネタイト成膜装置を示す断面図、第2図は本発明の実
施例によるマグネタイト成膜装置の平面断面図、第3図
は第2図の■−■より見た図、第4図はマグネトロンの
磁束密度分布を示すグラフ、及び第5図は反応ガス供給
装置の構造を示す斜視図である。
FIG. 2 is a cross-sectional plan view of a magnetite film forming apparatus according to an embodiment of the present invention, FIG. 3 is a view taken from ■-■ in FIG. 2, and FIG. A graph showing the magnetic flux density distribution and FIG. 5 are perspective views showing the structure of the reaction gas supply device.

4、    の   t′ B 第1図はRFマグネトロンスパッタ法によるマ第3図 第1図 ↑ Ar+024. t' B Figure 1 is a map created by RF magnetron sputtering Figure 3 Figure 1 ↑ Ar+02

Claims (1)

【特許請求の範囲】 1)反応性スパッタ法により鉄又は鉄を主体とする合金
より成るターゲットをアルゴン等のイオン形成ガスのイ
オンにより衝撃し、放出された鉄又は鉄合金の粒子を成
膜領域を通して連続的に移送されている基板に差し向け
て、この鉄又は合金の粒子を基板の面で酸素と反応させ
ることによりマグネタイト膜を基板上に形成する方法に
おいて、前記成膜箇所への前記酸素又は酸素−イオン形
成ガス混合物の供給および前記成膜領域の排気は、前記
成膜領域に基板の移送方向に並流の酸素流又は酸素−イ
オン形成ガス混合物流を生じるように行なわれることを
特徴とするマグネタイト膜の製造方法。 2)真空室と、前記室内に配置された鉄又は鉄を主体と
する合金とより成るターゲットと、前記ターゲットに対
向して成膜領域を通して基板を連続的に移送する移送手
段と、アルゴン等のイオン形成ガスと酸素を導入する導
入口と、より成る装置において、前記導入口と排気手段
は前記成膜領域に基板の移送方向に並流の酸素流又は酸
素−イオン形成ガス混合物流を生じるように配置されて
いることを特徴とするマグネタイトの製造装置。 3)導入口は出口端が開放した扁平且つ幅広の長い供給
部材であって前記供給部材の長さが出口全体においてほ
ぼ一定の拡散流が得られるに充分な長さおよび形状に定
められたものと、前記供給部材の上流端に開口した少な
くとも1つのガス供給管とより成ることを特徴とする前
記第2項記載の製造装置。 4)供給部材の扁平面は基板の面に平行に設けられてい
る前記第3項記載の金属酸化物膜の製造装置。
[Claims] 1) A target made of iron or an iron-based alloy is bombarded with ions of an ion-forming gas such as argon by reactive sputtering, and the released particles of iron or iron alloy are used in a film forming area. A method for forming a magnetite film on a substrate by reacting the iron or alloy particles with oxygen on the surface of the substrate by directing the iron or alloy particles to the substrate being continuously transported through the or the supply of the oxygen-ion-forming gas mixture and the evacuation of the deposition region are carried out in such a way as to produce a cocurrent flow of oxygen or oxygen-ion-forming gas mixture in the direction of transport of the substrate in the deposition region. A method for producing a magnetite film. 2) a vacuum chamber, a target made of iron or an iron-based alloy disposed in the chamber, a transfer means that faces the target and continuously transfers the substrate through a film forming region, and a vacuum chamber containing argon or the like. An apparatus comprising an inlet for introducing an ion-forming gas and oxygen, wherein the inlet and exhaust means produce a cocurrent flow of oxygen or an oxygen-ion-forming gas mixture in the direction of substrate transport in the deposition region. A magnetite production device characterized by being located at. 3) The inlet is a flat, wide, and long supply member with an open outlet end, and the length and shape of the supply member are determined to be sufficient to obtain a substantially constant diffusion flow throughout the outlet. and at least one gas supply pipe opened at the upstream end of the supply member. 4) The metal oxide film manufacturing apparatus according to item 3, wherein the flat surface of the supply member is provided parallel to the surface of the substrate.
JP1016439A 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film Expired - Fee Related JP2811458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016439A JP2811458B2 (en) 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016439A JP2811458B2 (en) 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film

Publications (2)

Publication Number Publication Date
JPH02197559A true JPH02197559A (en) 1990-08-06
JP2811458B2 JP2811458B2 (en) 1998-10-15

Family

ID=11916265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016439A Expired - Fee Related JP2811458B2 (en) 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film

Country Status (1)

Country Link
JP (1) JP2811458B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215025A (en) * 1983-05-21 1984-12-04 Ulvac Corp Manufacture of vertical magnetic recording body
JPS6194242A (en) * 1984-10-16 1986-05-13 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215025A (en) * 1983-05-21 1984-12-04 Ulvac Corp Manufacture of vertical magnetic recording body
JPS6194242A (en) * 1984-10-16 1986-05-13 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JP2811458B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US6455101B1 (en) Method for depositing a protective carbon coating on a data recording disk
JP3589467B2 (en) Apparatus and method for sputtering carbon
JPH03120362A (en) Apparatus and method for plasma treatment
EP2692898B1 (en) Plasma cvd apparatus and plasma cvd method
GB2355019A (en) High magnetic flux sputter targets with varied magnetic permeability in selected regions
JP3386175B2 (en) Method of forming compound thin film with gas cluster ion assist
JP2811458B2 (en) Method and apparatus for manufacturing magnetite film
WO2010044237A1 (en) Sputtering apparatus, thin film forming method and method for manufacturing field effect transistor
JP2001518686A (en) Dual-face showerhead electrode for magnetron plasma generator
JPH0380190A (en) Production of diamond-like thin film
JPH01223632A (en) Method and device for manufacturing magnetic recording medium
JP2811457B2 (en) Method and apparatus for manufacturing magnetite film
JPH05295538A (en) Film forming method and device by both side sputtering
JP2002133650A (en) Film forming device for magnetic recording disk
JP4521174B2 (en) Cluster manufacturing apparatus and cluster manufacturing method
JPH02197557A (en) Method and device for producing magnetite film
JP3213029B2 (en) Plasma processing apparatus for disk substrate and processing method thereof
JPH02197556A (en) Method and device for producing magnetite film
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
CN111549325A (en) Magnetron sputtering equipment
JPH06158331A (en) Coating film forming device
RU2059294C1 (en) Method for production of coating for magnetic record carriers
JPH01111876A (en) Thin film forming device by plasma treatment
JPH08264447A (en) Magnetron sputtering film formation system
JPH0328045B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees