JP2811458B2 - Method and apparatus for manufacturing magnetite film - Google Patents

Method and apparatus for manufacturing magnetite film

Info

Publication number
JP2811458B2
JP2811458B2 JP1016439A JP1643989A JP2811458B2 JP 2811458 B2 JP2811458 B2 JP 2811458B2 JP 1016439 A JP1016439 A JP 1016439A JP 1643989 A JP1643989 A JP 1643989A JP 2811458 B2 JP2811458 B2 JP 2811458B2
Authority
JP
Japan
Prior art keywords
substrate
oxygen
iron
film
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1016439A
Other languages
Japanese (ja)
Other versions
JPH02197559A (en
Inventor
善見 北原
賢一 依田
泰史 宇野
政孝 山口
宗人 後藤
秋典 佐々木
俊雄 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1016439A priority Critical patent/JP2811458B2/en
Publication of JPH02197559A publication Critical patent/JPH02197559A/en
Application granted granted Critical
Publication of JP2811458B2 publication Critical patent/JP2811458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマグネタイト膜の製造方法および製造装置に
関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for producing a magnetite film.

(従来技術) 金属、ガラスなどの非磁性基板の表面にマグネタイト
或いはγ酸化鉄等の磁性酸化鉄の膜を形成することによ
り磁気記録媒体を製造するには種々の方法が提案されて
いるが、とりわけ成膜速度の速いRFマグネトロンスパッ
タ法が注目されている。代表的な方法は、真空中に低圧
のアルゴンと酸素を導入し、アルゴンをイオン化してそ
のイオンを鉄又は少量のCo等を含む鉄合金より成るター
ゲットに衝撃させ、スパッタされた鉄原子を基板の面に
おいて酸素と反応させて基板の表面にα酸化鉄の膜を形
成させ、ついで水素等の還元性雰囲気中で基板を熱処理
してα酸化鉄をマグネタイト膜に変換し、更に酸化性雰
囲気中で熱処理してγ酸化鉄膜を得る。この方法では一
旦α酸化鉄を生成させる必要があり、これを更にマグネ
タイトに還元する工程が必要となるなどの問題点がある
(特開昭62−943819号、米国特許第4544612号等)。一
方、マグネタイト膜をスパッタ法により直接形成し次い
で酸化性雰囲気で処理してγ酸化鉄にすることも提案さ
れているが、以下に述べるように従来の方法では均質な
(膜厚方向に)成膜ができない。
(Prior Art) Various methods have been proposed for manufacturing a magnetic recording medium by forming a film of magnetic iron oxide such as magnetite or gamma iron oxide on the surface of a nonmagnetic substrate such as metal or glass. In particular, the RF magnetron sputtering method, which has a high deposition rate, has attracted attention. A typical method is to introduce low-pressure argon and oxygen into a vacuum, ionize the argon, bombard the ions with a target made of iron or an iron alloy containing a small amount of Co, etc. Reacts with oxygen on the surface to form an α-iron oxide film on the surface of the substrate, and then heat-treats the substrate in a reducing atmosphere such as hydrogen to convert the α-iron oxide to a magnetite film. To obtain a gamma iron oxide film. In this method, it is necessary to once generate α-iron oxide, and there is a problem that a step of further reducing this to magnetite is required (JP-A-62-943819, US Pat. No. 4,446,612, etc.). On the other hand, it has also been proposed to directly form a magnetite film by a sputtering method and then treat the magnetite film in an oxidizing atmosphere to obtain γ-iron oxide. No film.

RFマグネトロンスパッタ装置の典型例は第1図に示す
通りであり、トンネル状の真空室1に磁石5を配置し、
バッキングプレート7に支持させた鉄又は鉄合金から成
るターゲット2を配置し、それに対向させて定速で矢印
の方向に送られる金属又はガラス基板3を位置づけ、ガ
ス導入口4から低圧のアルゴンおよび酸素ガスを導入
し、アースシールド電極6とターゲット2との間に加わ
るRF電界と磁石5の磁界により発生拘束された電子によ
りアルゴンガスをイオン化し、RF電界によって負の強電
位にされているターゲット2を衝撃させ、叩き出された
鉄又は鉄合金粒子を基板に差し向けその表面で酸素と反
応させてマグネタイトの膜を生成させる。なお、8は補
正用の開口を有する補正板であり基本的には重要でな
い。補正板8は支柱9により支持され、基板が矢印の方
向に送られながらスパッタを受ける場合にその移動方向
に対して横断方向に延び、中央で狭く外延に向けて広く
なっている細長い開口を有する。これは一般に、ターゲ
ット幅方向の中央部で叩き出される鉄原子が多いため、
その量を均一化させるために必要となる。
A typical example of the RF magnetron sputtering apparatus is as shown in FIG. 1, in which a magnet 5 is disposed in a tunnel-shaped vacuum chamber 1,
A target 2 made of iron or an iron alloy supported on a backing plate 7 is arranged, and a metal or glass substrate 3 fed in a direction of an arrow at a constant speed is positioned opposite thereto, and low-pressure argon and oxygen are supplied from a gas inlet 4. The gas is introduced, the argon gas is ionized by the RF electric field applied between the earth shield electrode 6 and the target 2 and the electrons generated and constrained by the magnetic field of the magnet 5, and the target 2 is set to a negative high potential by the RF electric field. To strike the blown-out iron or iron alloy particles to the substrate and react with oxygen on the surface to form a magnetite film. Reference numeral 8 denotes a correction plate having a correction opening, which is basically not important. The compensating plate 8 is supported by the columns 9 and has an elongated opening that extends transversely to the direction of movement when the substrate is sputtered while being sent in the direction of the arrow, and that is narrower at the center and wider toward the outside. . This is generally because many iron atoms are knocked out at the center in the target width direction,
It is necessary to make the amount uniform.

上記装置によりマグネタイトを直接成膜することを本
発明者は試み成功した。本発明は斯かる技術を用いるも
のであるが、得られたマグネタイトの膜を酸化雰囲気で
熱処理してγ酸化鉄に変換する場合に、表面層がバリヤ
ーとなって厚さ方向の酸化が充分均一に行なわれず、磁
気特性が変動することが分かった。
The inventor of the present invention has succeeded in directly forming a film of magnetite using the above-described apparatus. Although the present invention uses such a technique, when the obtained magnetite film is heat-treated in an oxidizing atmosphere to be converted to γ-iron oxide, the surface layer serves as a barrier and the oxidation in the thickness direction is sufficiently uniform. And the magnetic characteristics fluctuated.

(発明の目的) 本発明は酸化性雰囲気により均一な膜質のγ酸化鉄に
転化し易いマグネタイト膜を製造できる方法及び装置、
特に反応性スパッタ方法及び装置を提供することにあ
る。なお本明細書でマグネタイトとはマグネタイト(Fe
3O4)のみならず、ウスタイト(FeO)とマグネタイト
(Fe3O4)の中間形態、並びにマグネタイト(Fe3O4)と
γマグヘマイト(γ−Fe2O3)の中間形態、いわゆるベ
ルトライド形態を含む。
(Object of the Invention) The present invention provides a method and an apparatus capable of producing a magnetite film which is easily converted to γ-iron oxide of uniform film quality in an oxidizing atmosphere.
In particular, it is to provide a reactive sputtering method and apparatus. In this specification, magnetite means magnetite (Fe
Not only 3 O 4 ), but also intermediate form between wustite (FeO) and magnetite (Fe 3 O 4 ), and intermediate form between magnetite (Fe 3 O 4 ) and γ-maghemite (γ-Fe 2 O 3 ), so-called belt ride Including form.

(発明の概要) 本発明は、RFマグネトロンスパッタ法により鉄又は鉄
を主体とする合金より成るターゲットをアルゴン等のイ
オン形成ガスのイオンにより衝撃し、放出された鉄又は
合金の粒子を成膜領域を通して連続的に移送されている
基板に差し向けて、この鉄又は合金の粒子を基板の面で
酸素と反応させることによりマグネタイト膜を基板上に
形成する方法において、前記成膜箇所への前記酸素又は
酸素−イオン形成ガス混合物の供給および前記成膜領域
の排気は、前記成膜領域に基板の移送方向に並流の酸素
流の又は酸素−イオン形成ガス混合物流を生じる方向で
あることを特徴とするマグネタイト膜の製造方法を提供
する。ここに並流とは基板の移送方向と同一の方向の流
れをいう。
(Summary of the Invention) In the present invention, a target made of iron or an alloy mainly composed of iron is bombarded with ions of an ion-forming gas such as argon by RF magnetron sputtering, and the released iron or alloy particles are formed into a film forming region. A method of forming a magnetite film on a substrate by reacting the iron or alloy particles with oxygen on the surface of the substrate by directing the oxygen or oxygen to the film-forming portion. Alternatively, the supply of the oxygen-ion forming gas mixture and the evacuation of the film formation region are directions in which an oxygen flow or an oxygen-ion formation gas mixture flow co-current to the substrate transfer direction in the film formation region. And a method for producing a magnetite film. Here, the co-current refers to a flow in the same direction as the substrate transfer direction.

本発明はまた、真空室と、前記室内に配置された鉄又
は鉄を主体とする合金とより成るターゲットと、前記タ
ーゲットに対向して成膜領域を通して基板を連続的に移
送する移送手段と、アルゴン等のイオン形成ガスと酸素
を導入する導入口と、より成る装置において、前記基板
の軌跡に近接して基板の移送方向に並流の酸素流又は酸
素+アルゴン流を生じるように、前記導入口は前記成膜
領域の上流側に設けられ且つ真空室或いは前記成膜領域
を排気する手段は前記成膜領域の下流側に設けられたこ
とを特徴とするマグネタイトの製造装置を提供する。
The present invention also provides a vacuum chamber, a target made of iron or an iron-based alloy disposed in the chamber, and a transfer unit that continuously transfers a substrate through a film formation region in opposition to the target, An inlet for introducing an ion-forming gas such as argon and oxygen, and an inlet for introducing an oxygen flow or an oxygen + argon flow in parallel with the substrate in the transfer direction in the vicinity of the trajectory of the substrate. An opening is provided on the upstream side of the film formation region, and a means for exhausting the vacuum chamber or the film formation region is provided on the downstream side of the film formation region.

(効果の概要) 本発明によると、酸素が成膜領域を基板面に沿って基
板の移送方向と並流するため、基板面に成長するマグネ
タイト膜は基板に近い側で酸素濃度が高く、表面側で酸
素濃度が低くなり、このため引き続いて行なわれる酸化
条件下での熱処理工程により容易に厚さ方向に一様な酸
化を行なうことができ、均質なγ酸化鉄膜を得ることが
できる。
(Summary of Effect) According to the present invention, since oxygen flows in the film formation region along the substrate surface in parallel with the direction of transport of the substrate, the magnetite film grown on the substrate surface has a high oxygen concentration near the substrate and has a high oxygen concentration. The oxygen concentration decreases on the side, so that a uniform heat treatment can be easily performed in the thickness direction by a subsequent heat treatment process under oxidizing conditions, and a uniform γ-iron oxide film can be obtained.

(構成の具体的な説明) 以下、図面を参照して本発明の実施例に関連して本発
明を詳しく説明する。
(Specific Description of Configuration) Hereinafter, the present invention will be described in detail with reference to the drawings in relation to embodiments of the present invention.

酸化物膜の成膜装置 本実施例は精密仕上したガラスの表面を化学的に強化
した円板を基体として、1列の複数の基体を成膜箇所に
送りこみ、それら基体の両面にマグネタイト膜を形成す
る磁気記録媒体の製造方法および製造装置について記載
するが、本発明は一般人金属基板又はガラス基板の片面
又は両面にマグネタイト膜を形成するとか、或いは同時
に2列以上の複数の基体に膜を形成する等の変形が可能
である。
Oxide Film Deposition Apparatus In this example, a precision-finished glass surface is chemically strengthened and a disk is used as a substrate, and a plurality of substrates in a row are sent to a film-forming site, and a magnetite film is formed on both surfaces of the substrate. The present invention describes a method and apparatus for manufacturing a magnetic recording medium that forms a magnetite film on one or both sides of a general human metal substrate or a glass substrate, or simultaneously forms a film on a plurality of substrates in two or more rows. Deformation such as formation is possible.

第2図には本発明の実施例によるRFマグネトロンスパ
ッタ装置の要部を示す平面断面図である。第3図は第2
図の線III−IIIより見た基板を鎖線で示した拡大図であ
る。
FIG. 2 is a plan sectional view showing a main part of the RF magnetron sputtering apparatus according to the embodiment of the present invention. FIG. 3 shows the second
FIG. 3 is an enlarged view showing a substrate as viewed from a line III-III in the figure by a chain line.

図に示すように、RFマグネトロンスパッタ装置は水平
に延びる真空室10と、金属又はガラス円板等の基板11を
矢印の方向に移送するためのパレットないしホルダ12
と、基板11に対向して配置された鉄又は鉄合金ターゲッ
ト2を支持するRFマグネトロンカソード13と、成膜領域
において基板面に沿って基板の移送方向と並流する酸素
流を生成するための供給部材14(この構造は後で詳しく
記載する)および排気手段と、導入されたアルゴンをイ
オン化しターゲットに衝撃させるためのRF電源(図示せ
ず)とから基本的に構成される。
As shown in the figure, an RF magnetron sputtering apparatus includes a horizontally extending vacuum chamber 10 and a pallet or holder 12 for transferring a substrate 11 such as a metal or glass disk in the direction of an arrow.
An RF magnetron cathode 13 supporting an iron or iron alloy target 2 disposed opposite to the substrate 11, and an oxygen flow for generating an oxygen flow parallel to the substrate transfer direction along the substrate surface in the film formation region. It basically comprises a supply member 14 (this structure will be described in detail later), an exhaust means, and an RF power supply (not shown) for ionizing the introduced argon and bombarding the target.

マグネトロンカソード13は、磁石21と、ターゲット2
を支持するバッキングプレート22と、バッキングプレー
ト22から離間してターゲットの周部近くに配置されたア
ースシールド電極23とより構成されており、RF電力はア
ースシールド電極とターゲットとの間に印加され、電界
によりターゲットの表面近傍に発生する電子を磁石21の
磁界によりターゲットの表面近傍に閉じ込め、それによ
りアルゴンを効率的にイオン化する。またRF電磁界によ
りターゲット2は負の高電位になり、アルゴンイオンを
ターゲット面に加速する。また、マグネタイト膜の成長
を均一化するために中央で狭く側端部で広い上下方向に
延びる同形の2つの開口16を備えた補正板15を設ける。
この補正板による補正効果は従来と同様であるが2つの
開口を設けた点で違う。
The magnetron cathode 13 comprises a magnet 21 and a target 2
A backing plate 22 that supports the target and an earth shield electrode 23 that is arranged near the periphery of the target at a distance from the backing plate 22.RF power is applied between the earth shield electrode and the target, Electrons generated in the vicinity of the surface of the target by the electric field are confined in the vicinity of the surface of the target by the magnetic field of the magnet 21, thereby ionizing argon efficiently. Further, the target 2 becomes negative high potential by the RF electromagnetic field, and accelerates argon ions to the target surface. Further, in order to make the growth of the magnetite film uniform, a correction plate 15 provided with two openings 16 of the same shape extending in the vertical direction which is narrow at the center and wide at the side ends is provided.
The correction effect of this correction plate is the same as the conventional one, but differs in that two openings are provided.

更に、好ましくは補正板の中央部には支柱19により電
極20を設置する。この電極はマグネトロンカソード13の
磁石21の中央部に対向してターゲット2に近接して設け
る。電極20とターゲット2の間隔は5mm以下とする。こ
の間隔は最適化実験により容易に決定できる。この間隔
が広すぎると放電を起こし本発明が意図する粒状酸化物
の基板面への付着の抑制効果が減じる。また電極20の面
積は酸化鉄が堆積する領域部分のほぼ全部を覆う様にす
る。この点も最適化実験により容易に決定することがで
きる。電極20は接地するか又はターゲットに対して正電
位にする。例えば接地する場合は補正板15と支柱19を導
体で製作する。
Further, preferably, an electrode 20 is provided by a support 19 at the center of the correction plate. This electrode is provided close to the target 2 facing the center of the magnet 21 of the magnetron cathode 13. The distance between the electrode 20 and the target 2 is 5 mm or less. This interval can be easily determined by optimization experiments. If the interval is too wide, a discharge occurs, and the effect of the present invention of suppressing the attachment of the particulate oxide to the substrate surface is reduced. The area of the electrode 20 covers almost the entire area where the iron oxide is deposited. This point can also be easily determined by an optimization experiment. The electrode 20 is grounded or at a positive potential with respect to the target. For example, when grounding, the correction plate 15 and the support 19 are made of a conductor.

好ましくは、ターゲット2の周辺部は補正板15の開口
以外のすべての部分を囲壁24でほぼ完全に包囲する。こ
のため補正板15は囲壁24の頂部に密着させて固定する。
こうすることによりアルゴンイオンが生成され易くな
り、マグネタイトの生産性が向上する。
Preferably, the peripheral portion of the target 2 is almost completely surrounded by the surrounding wall 24 except for the opening of the correction plate 15. For this reason, the correction plate 15 is fixed in close contact with the top of the surrounding wall 24.
By doing so, argon ions are easily generated, and the productivity of magnetite is improved.

アルゴンと酸素の混合ガスの導入口又は供給部材14は
ターゲットから見て補正板の外側において基板に近接し
て且つ基板に平行な流れが生じる様に設けられる。これ
によりアルゴンが上記の様にターゲットの近傍で濃密な
アルゴンイオンを形成し易くなる一方、酸素は基板面で
優先的に鉄原子と反応してマグネタイトを生成し易くな
る。
The inlet or supply member 14 for the mixed gas of argon and oxygen is provided so as to be close to the substrate and parallel to the substrate outside the correction plate as viewed from the target. This makes it easier for argon to form dense argon ions near the target as described above, while oxygen tends to preferentially react with iron atoms on the substrate surface to generate magnetite.

好ましくは、ガス導入口は第5図の様に構成される。
導入口14は平行な幅広の上下板30、31、平行な低い側板
34、35及び上流側の低い側板33より構成され下流側に開
口32を形成した供給部材と、側板33に結合された一個以
上のガス導管36とより成る。開口の幅w、高さh供給部
材の長さlは均一な拡散流が得られる最短長以上に定め
る。ガス導管幅wを充分に大きく取りたいときにはガス
導管36の分岐数を増やす。
Preferably, the gas inlet is configured as shown in FIG.
Inlet 14 is parallel wide upper and lower plates 30, 31 and parallel low side plates
It comprises a supply member comprising 34, 35 and a lower side plate 33 on the upstream side and having an opening 32 formed on the downstream side, and one or more gas conduits 36 connected to the side plate 33. The width w of the opening and the height h The length l of the supply member is determined to be equal to or longer than the shortest length at which a uniform diffusion flow can be obtained. When it is desired to make the gas conduit width w sufficiently large, the number of branches of the gas conduit 36 is increased.

マグネタイト膜の成膜方法 上記の構成のマグネタイト成膜装置を用いて本発明の
成膜方法を説明する。基板11は矢印の方向に一定速度で
移送されるものとする。鉄又は鉄合金のターゲット2を
所定の位置に取り付け、真空室10を連続的に排気し、一
方供給部材14から例えばアルゴン90%、酸素10%程度の
混合ガスを成膜領域に向け連続的に導入する。酸素は基
板面に沿い基板の移動方向と同一方向(並流方向)に流
れる。排気はこの並流を実現するように行なう。RFマグ
ネトロンを作動させアルゴンイオンを形成する。アルゴ
ンイオンはターゲット2の表面を衝撃して鉄原子を放出
させる。鉄原子は補正板15の開口16を通って基体11の表
面近くの酸素と反応してマグネタイトとして基体11の表
面に付着しマグネタイト膜を成長させる。
Method for Forming a Magnetite Film A film forming method of the present invention will be described using the magnetite film forming apparatus having the above configuration. The substrate 11 is transferred at a constant speed in the direction of the arrow. The target 2 of iron or iron alloy is attached to a predetermined position, and the vacuum chamber 10 is continuously evacuated. Introduce. Oxygen flows along the substrate surface in the same direction (parallel flow direction) as the moving direction of the substrate. The exhaust is performed so as to realize this cocurrent. Activate the RF magnetron to form argon ions. The argon ions bombard the surface of the target 2 to release iron atoms. The iron atoms react with oxygen near the surface of the substrate 11 through the opening 16 of the correction plate 15 and adhere to the surface of the substrate 11 as magnetite to grow a magnetite film.

この成膜過程においては、電極20をターゲット2の表
面に近接して設けたことにより、ターゲット面へ堆積し
た酸化物がアルゴンイオンに衝撃されて粒状酸化物とし
て基板に差し向けられ、マグネタイト膜に異物として点
々と付着して膜質を低下する可能性がなくなる。
In this film formation process, the oxide deposited on the target surface is bombarded with argon ions and directed to the substrate as a granular oxide by providing the electrode 20 close to the surface of the target 2, and the oxide is deposited on the magnetite film. This eliminates the possibility that the film quality is degraded by adhering as a foreign matter.

以下の実施例に示すように本発明によると基板11の面
に形成されるマグネタイト膜は厚さ、膜質とも平面方向
には均質であり、厚さ方向には基体から表面にかけて順
次酸素濃度を減じる。またターゲット2に堆積する酸化
物に由来する酸化鉄粒子の付着がほとんど無い。第5図
に示す供給部材に導入されたガスは当初粘性のために層
流をなし一定の流れパターンを有するが、流れる内に幅
方向に拡散して行き遂には流路に垂直な断面内の方向に
均一化する。従って供給部材の長さlを充分に長くする
ことにより供給部材開口32においてほぼ完全に均一な密
度が得られる。こうして形成された均一流は上下板30、
31に平行に且つ近接位置を移動しつつある基板の表面に
流れて面内方向の均一な酸化反応を行なう。
As shown in the following examples, according to the present invention, the magnetite film formed on the surface of the substrate 11 is uniform in both thickness and film quality in the plane direction, and the oxygen concentration is gradually reduced from the substrate to the surface in the thickness direction. . Further, there is almost no adhesion of iron oxide particles derived from oxides deposited on the target 2. The gas introduced into the supply member shown in FIG. 5 initially forms a laminar flow due to viscosity, and has a constant flow pattern. Uniform in the direction. Therefore, by making the length l of the supply member sufficiently long, an almost completely uniform density can be obtained at the supply member opening 32. The uniform flow thus formed is the upper and lower plates 30,
It flows on the surface of the substrate that is moving parallel to and close to the surface of the substrate 31 to perform a uniform oxidation reaction in the in-plane direction.

アルゴンと共に放出される酸素は基板に沿って流れる
間にスパッタされる鉄又は合金粒子と反応してマグネタ
イトを生成することにより酸素欠乏となり、従って基板
は移送されるにつれて最初は酸素濃度が高いマグネタイ
ト層を生成し、次第に酸素含有量を減じ、表面のマグネ
タイト層は酸素濃度が低くなる。したがって生成したマ
グネタイト膜は下層ほど酸素濃度が大きいものとなる。
Oxygen released with the argon becomes oxygen deficient by reacting with the sputtered iron or alloy particles while flowing along the substrate to produce magnetite, thus the substrate is initially transported with a high oxygen concentration in the magnetite layer. And the oxygen content is gradually reduced, and the surface magnetite layer has a low oxygen concentration. Therefore, the generated magnetite film has a higher oxygen concentration in the lower layer.

なお、この例によるとマグネタイト膜の成膜効率は電
極20を用いない場合とほとんど変わらない。これはマグ
ネトロンの磁石磁界の強度分布が一般に第4図の様に双
子型をしているため、電極20が中央の弱い磁界の部分に
位置することになるからである。なおこの図は第3図の
ABCの点に沿った磁束密度分布を示す。
According to this example, the film formation efficiency of the magnetite film is almost the same as when the electrode 20 is not used. This is because the intensity distribution of the magnet magnetic field of the magnetron is generally of a twin type as shown in FIG. 4, so that the electrode 20 is located at the central weak magnetic field portion. Note that this figure is
7 shows a magnetic flux density distribution along a point ABC.

以下に実施例を述べる。 Examples will be described below.

実施例 上に述べた装置及び方法を使用してマグネタイトの成
膜を実施した。純鉄ターゲットを基板の送り方向の長さ
約127mm、横断方向の長さ約381mmに製作し、これをバッ
キングプレートの中心位置に支持させた。ターゲットの
中央でその表面から5mmの位置に基板の送り方向の長さ
約35mm、横断方向の長さ270mmの電極を配置し設置し
た。RF電源は13.56MHz、700〜1500Wとした。アルゴン90
%、酸素10%の混合ガスを30〜60SCCMの流量で導入し、
動作圧5×10-1Pa以下にした。直径約13.0cm、厚さ1.9m
mの超精密研摩した(Rmax約100μ)表面強化ガラス板を
ターゲット面から約75mmの距離のところを定速で送り約
0.2μに連続成膜した。なお成膜中基板の温度は100〜20
0℃であった。得られた膜は分析によりマグネタイト膜
であることが確認された。
Example A magnetite film was formed using the apparatus and method described above. A pure iron target was manufactured to have a length of about 127 mm in the feed direction of the substrate and a length of about 381 mm in the transverse direction, and this was supported at the center position of the backing plate. An electrode having a length of about 35 mm in the feed direction of the substrate and a length of 270 mm in the transverse direction was arranged and placed at a position 5 mm from the surface at the center of the target. The RF power supply was 13.56 MHz and 700-1500 W. Argon 90
%, Oxygen 10% mixed gas at a flow rate of 30-60 SCCM,
The operating pressure was set to 5 × 10 -1 Pa or less. Approximately 13.0cm in diameter, 1.9m in thickness
m ultra-precision polished (R max about 100μ) surface-reinforced glass plate at a constant speed of about 75mm from the target surface
A film was continuously formed at 0.2 μm. The temperature of the substrate during film formation is 100 to 20
It was 0 ° C. The obtained film was confirmed by analysis to be a magnetite film.

(具体的な作用効果) 得られた膜は分析により基板面と表面の酸素濃度の比
が1対0.8のマグネタイト膜であることが確認された。
これを更に空気中で300℃に2時間加熱してγ酸化鉄を
得た。
(Specific action and effect) It was confirmed by analysis that the obtained film was a magnetite film in which the ratio of the oxygen concentration between the substrate surface and the surface was 1: 0.8.
This was further heated in air at 300 ° C. for 2 hours to obtain γ iron oxide.

【図面の簡単な説明】[Brief description of the drawings]

第1図はRFマグネトロンスパッタ法によるマグネタイト
成膜装置を示す断面図、第2図は本発明の実施例による
マグネタイト成膜装置の平面断面図、第3図は第2図の
III−IIIより見た図、第4図はマグネトロンの磁束密度
分布を示すグラフ、及び第5図は反応ガス供給装置の構
造を示す斜視図である。
FIG. 1 is a sectional view showing a magnetite film forming apparatus by RF magnetron sputtering, FIG. 2 is a plan sectional view of a magnetite film forming apparatus according to an embodiment of the present invention, and FIG.
FIG. 4 is a graph showing the magnetic flux density distribution of the magnetron, and FIG. 5 is a perspective view showing the structure of the reaction gas supply device.

フロントページの続き (72)発明者 山口 政孝 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 後藤 宗人 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 佐々木 秋典 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 久保田 俊雄 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 昭60−237638(JP,A) 特開 昭58−199861(JP,A) 特開 昭61−94242(JP,A) 特開 昭59−215025(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 14/00 - 14/58Continuing on the front page (72) Inventor Masataka Yamaguchi 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Muneto Goto 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Akinori Sasaki 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation (72) Inventor Toshio Kubota 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (56 References JP-A-60-237638 (JP, A) JP-A-58-199861 (JP, A) JP-A-61-94242 (JP, A) JP-A-59-215025 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C23C 14/00-14/58

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応性スパッタ法により鉄又は鉄を主体と
する合金より成るターゲットをアルゴン等のイオン形成
ガスのイオンにより衝撃し、放出された鉄又は鉄合金の
粒子を成膜領域を通して連続的に移送されている基板に
差し向けて、この鉄又は合金の粒子を基板の面で酸素と
反応させることによりマグネタイト膜を基板上に形成す
る方法において、前記成膜領域への前記酸素又は酸素−
イオン形成ガス混合物の供給および前記成膜領域の排気
は、前記成膜領域に基板の移送方向に並流の酸素流又は
酸素−イオン形成ガス混合物流を生じるように行なわれ
ることを特徴とするマグネタイト膜の製造方法。
A target made of iron or an alloy mainly composed of iron is bombarded with ions of an ion-forming gas such as argon by a reactive sputtering method, and the released iron or iron alloy particles are continuously passed through a film formation region. In the method of forming a magnetite film on a substrate by reacting the iron or alloy particles with oxygen on the surface of the substrate toward the substrate being transferred to the substrate, the oxygen or oxygen-
The magnetite characterized in that the supply of the ion-forming gas mixture and the evacuation of the film-forming region are carried out in such a way that an oxygen flow or an oxygen-ion-forming gas mixture flow is produced in the film-forming region in the direction of transport of the substrate. Manufacturing method of membrane.
【請求項2】真空室と、前記室内に配置された鉄又は鉄
を主体とする合金とより成るターゲットと、前記ターゲ
ットに対向して成膜領域を通して基板を連続的に移送す
る移送手段と、アルゴン等のイオン形成ガスと酸素を導
入する導入口と、より成る装置において、前記導入口と
排気手段は前記成膜領域に基板の移送方向に並流の酸素
流又は酸素−イオン形成ガス混合物流を生じるように配
置されていることを特徴とするマグネタイトの製造装
置。
2. A vacuum chamber, a target made of iron or an iron-based alloy disposed in the chamber, and transfer means for continuously transferring a substrate through a film formation region in opposition to the target. In an apparatus comprising an ion-forming gas such as argon and an inlet for introducing oxygen, the inlet and the exhaust means are provided with an oxygen flow or an oxygen-ion-forming gas mixture flowing in the film formation region in the direction of transfer of the substrate. An apparatus for producing magnetite, characterized in that the apparatus is arranged so as to generate the following.
【請求項3】導入口は出口端が開放した扁平且つ幅広の
長い供給部材であって前記供給部材の長さが出口全体に
おいてほぼ一定の拡散流が得られるに充分な長さおよび
形状に定められたものと、前記供給部材の上流端に開口
した少なくとも1つのガス供給管とより成ることを特徴
とする前記第2項記載の製造装置。
3. The inlet is a flat, wide, and long supply member having an open outlet end, and the length of the supply member is set to a length and a shape sufficient to obtain a substantially constant diffusion flow throughout the outlet. 3. The manufacturing apparatus according to claim 2, further comprising: a gas supply pipe, and at least one gas supply pipe opened at an upstream end of the supply member.
【請求項4】供給部材の扁平面は基板の面に平行に設け
られている前記第3項記載の金属酸化物膜の製造装置。
4. The apparatus for manufacturing a metal oxide film according to claim 3, wherein the flat surface of the supply member is provided in parallel with the surface of the substrate.
JP1016439A 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film Expired - Fee Related JP2811458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016439A JP2811458B2 (en) 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016439A JP2811458B2 (en) 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film

Publications (2)

Publication Number Publication Date
JPH02197559A JPH02197559A (en) 1990-08-06
JP2811458B2 true JP2811458B2 (en) 1998-10-15

Family

ID=11916265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016439A Expired - Fee Related JP2811458B2 (en) 1989-01-27 1989-01-27 Method and apparatus for manufacturing magnetite film

Country Status (1)

Country Link
JP (1) JP2811458B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215025A (en) * 1983-05-21 1984-12-04 Ulvac Corp Manufacture of vertical magnetic recording body
JPS6194242A (en) * 1984-10-16 1986-05-13 Fuji Photo Film Co Ltd Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JPH02197559A (en) 1990-08-06

Similar Documents

Publication Publication Date Title
KR910001879B1 (en) Method and apparatus for sputtering film formation
JP3589467B2 (en) Apparatus and method for sputtering carbon
US6455101B1 (en) Method for depositing a protective carbon coating on a data recording disk
JPH03120362A (en) Apparatus and method for plasma treatment
EP2692898B1 (en) Plasma cvd apparatus and plasma cvd method
GB2355019A (en) High magnetic flux sputter targets with varied magnetic permeability in selected regions
JP2811458B2 (en) Method and apparatus for manufacturing magnetite film
WO2010044237A1 (en) Sputtering apparatus, thin film forming method and method for manufacturing field effect transistor
JP2811457B2 (en) Method and apparatus for manufacturing magnetite film
JPS6128029B2 (en)
JP2811456B2 (en) Method and apparatus for manufacturing magnetite film
JPH0770058B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH05295538A (en) Film forming method and device by both side sputtering
JP2002133650A (en) Film forming device for magnetic recording disk
JPS59173265A (en) Sputtering device
JPH02197557A (en) Method and device for producing magnetite film
JPH06158331A (en) Coating film forming device
JP4521174B2 (en) Cluster manufacturing apparatus and cluster manufacturing method
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JP2594935B2 (en) Sputter film forming method and apparatus
RU2059294C1 (en) Method for production of coating for magnetic record carriers
JPH04341558A (en) Article with diamondlike protective film and its production
JPH08264447A (en) Magnetron sputtering film formation system
JP3136664B2 (en) Magnetic recording medium and method of manufacturing the same
JPH01227220A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees