JPS61208830A - Charged beam exposure method - Google Patents

Charged beam exposure method

Info

Publication number
JPS61208830A
JPS61208830A JP60049302A JP4930285A JPS61208830A JP S61208830 A JPS61208830 A JP S61208830A JP 60049302 A JP60049302 A JP 60049302A JP 4930285 A JP4930285 A JP 4930285A JP S61208830 A JPS61208830 A JP S61208830A
Authority
JP
Japan
Prior art keywords
pattern
charged beam
exposure
resist layer
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60049302A
Other languages
Japanese (ja)
Other versions
JP2607460B2 (en
Inventor
Eiji Nishimura
英二 西村
Tadahiro Takigawa
忠宏 滝川
Yoshihide Kato
加藤 芳秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60049302A priority Critical patent/JP2607460B2/en
Publication of JPS61208830A publication Critical patent/JPS61208830A/en
Application granted granted Critical
Publication of JP2607460B2 publication Critical patent/JP2607460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To perform readily and accurately drawing in case of EB direct drawing that a primary material is formed of various types of materials by accurately forming the size of a pattern on an irregular surface even if a material having a large reflecting electron coefficient is presented on the raised portion of a silicon substrate. CONSTITUTION:A tantalum layer (Ta) 102 is formed on a silicon substrate 101, and an irregular surface is formed on the substrate. A positive type resist layer 103 made of PMMA (polymethylmethacrylate) is coated to bury a recess, baked, and an electron beam is emitted. Then, the entire PMMA layer 203 is coated, baked, and an electron beam is emitted. Further, a resist is selectively exposed with a beam 204, an image is drawn, and a resist pattern 303 is formed by developing.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、反射電子係数の異なる凹凸部を有する基板に
塗布したレジストへ光する荷電ビーム露光方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of exposing a resist with a charged beam to a resist coated on a substrate having uneven parts having different reflected electron coefficients.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、LSIデバイスの微細化傾向が進んでおり、近い
将来0.5(師)更に、0.25.ccm(μm:]寸
法のデバイスが出現しようとしている。このような微細
デバイスは従来の光ステッパを用いる方法では製作が困
難であり、その為新しいリングラフィが切望されている
。その中でも電子ビーム・リソグラフィは最肩力なもの
として広く認識されている。
In recent years, the trend of miniaturization of LSI devices has progressed, and in the near future it will be 0.5 (teacher) and even 0.25. Devices with ccm (μm:) dimensions are about to appear. It is difficult to fabricate such fine devices using conventional methods using optical steppers, and therefore new phosphorography is desperately needed. Among these, electron beam and Lithography is widely recognized as the most powerful technology.

しかしながら、第6図に示すように従来の電子ビーム・
リングラフィ技術に於いてはシリコン基板601上に、
反射電子係数が大きい材料、例えばタングステンの配線
による凸部602がある場合、凸部のレジスト603が
過剰に露光されるので凹凸部のレジストでパターンの解
像度が異なりパターンを正確に形成出来ないと云う問題
点がある。
However, as shown in Figure 6, the conventional electron beam
In phosphorography technology, on the silicon substrate 601,
If there is a convex portion 602 made of wiring made of a material with a large reflected electron coefficient, for example tungsten, the resist 603 on the convex portion will be exposed excessively, and the pattern resolution will differ in the resist on the concave and convex portion, making it impossible to form a pattern accurately. There is a problem.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、簡易な方法で基板表面に反射電子係数
の異なる凹凸部がある場合のパターン寸法誤差の低減を
はかることができ、LSIデバイスの超微細化に対応し
得る何間ビーム露光方法を提供することにある。
An object of the present invention is to provide a multi-beam exposure method that can reduce pattern dimensional errors when the substrate surface has uneven parts with different reflected electron coefficients in a simple manner, and that can cope with ultra-fine miniaturization of LSI devices. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、表面に凹凸を有し、凹部より反射電子係数の
大きい材料で凸部が形成された基板上にレジスト膜を形
成した後、前記基板の凹部に第1のレジスト層を埋め込
み露光に必要な照射量より少い照射量で少くとも前記第
1のレジスト層に対してエネルギービームを照射すると
共に前記第1のレジスト層上から前記凸部上に及ぶ全面
に第2のレジスト層を塗布して露光に必要な照射量でエ
ネルギービーム選択的に照射して露光するものである。
In the present invention, after a resist film is formed on a substrate having an uneven surface and convex portions formed of a material having a larger reflected electron coefficient than the concave portions, a first resist layer is buried in the concave portions of the substrate and exposed to light. Irradiating at least the first resist layer with an energy beam at a dose lower than the necessary dose, and applying a second resist layer over the entire surface extending from above the first resist layer to above the convex portions. In this method, the energy beam is selectively irradiated with the required irradiation amount for exposure.

露光に於ける近接効果を防止する為、前記荷電ビーム露
光方法は、好ましくは第2のレジスト層の全面に露光に
必要な照射量より少い照射量でエネルギービームを照射
する工程を含むことが望ま画等により行われ得る。この
場合、近接効果を有効に抑えるには、電子ビームの加速
電圧が40KV以上であることが望ましい。
In order to prevent the proximity effect during exposure, the charged beam exposure method preferably includes a step of irradiating the entire surface of the second resist layer with an energy beam at a dose lower than the dose required for exposure. This can be done by a desired drawing or the like. In this case, in order to effectively suppress the proximity effect, it is desirable that the acceleration voltage of the electron beam be 40 KV or higher.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、反射電子係数が大きい材料がシリコン
基板の凸部に存在しても、凹凸部でのパターンの寸法は
精度よく形成される。これにより、下地の材料が種々異
なる材料からなる様なEB直描の場合に、容易に正確な
描画を行うことができ、実用的利点が大である。
According to the present invention, even if a material with a large reflected electron coefficient is present in the convex portions of the silicon substrate, the dimensions of the pattern in the concave and convex portions can be formed with high precision. As a result, in the case of EB direct drawing where the underlying material is made of various different materials, accurate drawing can be easily performed, which is a great practical advantage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

まづ、第1図に示す如く、シリコン基板(ウェー/’ 
) 101上にタンタル層(Ta) 102を厚さ30
00A形成し基板に凹凸を形成する。図では省略されて
いるが、通常集積回路ではこの上に酸化膜等が被覆され
る。その後、PMMA (ポリメチルメタクリレート)
からなるポジ型レジスト層103 全2800久の厚さ
に凹部を埋込むように塗布してベークし、試料とし、こ
の試料上に、電子ビーム露光に必要な照射−[60μC
/mlの5%の補正量のビーム104で試料全面に電子
ビームを照射する。その後、第2図に示す如く、PMM
Aの層203を1/jmの厚さで全面に塗布してベーク
し、電子ビーム露光に必要な照射量即ち、60μC/d
の15%の補正量のビーム205で試料全面VC電子ビ
ーム照射する。更に加速電圧50KVで60μC/dの
照射量のビーム204でレレジストを選択的に露光して
描画を行い、現像処理によシレジストパターンを形成す
る。K3図は以上の方法で凹凸を有する基板上にレジス
トパターン303を形成した状態を示す平面図である。
First, as shown in Figure 1, a silicon substrate (wafer/'
) Tantalum layer (Ta) 102 on 101 with a thickness of 30 mm
00A is formed to form irregularities on the substrate. Although not shown in the figure, an oxide film or the like is usually coated on this in integrated circuits. Then PMMA (polymethyl methacrylate)
A positive resist layer 103 is applied to a total thickness of 2,800 μC so as to fill the recesses and baked to prepare a sample.
The entire surface of the sample is irradiated with an electron beam using a beam 104 with a correction amount of 5% of /ml. After that, as shown in Figure 2, PMM
A layer 203 is applied to the entire surface with a thickness of 1/jm and baked, and the irradiation amount required for electron beam exposure is 60 μC/d.
The entire surface of the sample is irradiated with a VC electron beam using a beam 205 with a correction amount of 15%. Further, the resist is selectively exposed to a beam 204 with an irradiation dose of 60 μC/d at an acceleration voltage of 50 KV to perform drawing, and a resist pattern is formed by development processing. Figure K3 is a plan view showing a resist pattern 303 formed on a substrate having unevenness by the above method.

描画パターンとして、例えば第4図に示す如く2つの大
面積パターン400及びこれらのパターンを貫通した2
本の0.5μmラインパターン401を形成した。大面
積パターン400の長さは4oottm@wは任意とし
た。ただし第4図の(a)は断面図(b)は平面図であ
る。
As a drawing pattern, for example, as shown in FIG. 4, two large-area patterns 400 and two
A 0.5 μm line pattern 401 was formed. The length of the large area pattern 400 was set to be 4oottm@w. However, FIG. 4(a) is a sectional view and FIG. 4(b) is a plan view.

このようにして描画形成したパターンの寸法変動量、特
に0.5μmラインの寸法変動量は、第5図に示す如く
、同一現像条件化でSt上(曲線1)とTa上(曲線2
)のいずれにおいてもほぼ同一寸法で形成され、P−P
(lio、06μm以内であった。
As shown in FIG. 5, the amount of dimensional variation of the pattern drawn and formed in this way, especially the dimensional variation of the 0.5 μm line, is on St (curve 1) and on Ta (curve 2) under the same development conditions.
) are formed with almost the same dimensions, P-P
(lio, within 0.6 μm.

即ち、近接効果によるパターン寸法の変動量を0.5μ
mパターンの±lOチ以内(±0.03μm)にするこ
とができた。
In other words, the amount of variation in pattern dimensions due to the proximity effect is reduced to 0.5μ.
It was possible to make the pattern within ±10° (±0.03 μm) of the m pattern.

なお、第5図において、横軸は、大面積パターンの幅W
、縦軸は0.5μmラインの設計パターンからの寸法差
ΔSを示している。
In addition, in FIG. 5, the horizontal axis represents the width W of the large area pattern.
, the vertical axis indicates the dimensional difference ΔS from the design pattern of the 0.5 μm line.

これに対し、従来方法では、第6図(a) 、 (b)
 K 断面及び平面図を示す如く、露光に必要な照射量
のビーに604でパターンを選択的に描画露光し、補正
のための照射をしない場合には、第7図に示す如く近接
効果によるパターンの寸法変動量は、0.25#mもお
り、巣に同一現像下で、Si基板上のパターン寸法(曲
線1)とTa基板上でのノくターン寸法(曲線2)の麦
は、0.1μm6す、0.5μmz<ターンの±10チ
以内と云う寸法変動の許容値±0.05μm以内を満足
できなかった。
In contrast, in the conventional method, Fig. 6(a) and (b)
K As shown in the cross-sectional and plan views, if a pattern is selectively drawn and exposed at 604 on the beam with the dose necessary for exposure, and irradiation for correction is not performed, the pattern will be formed due to the proximity effect as shown in Figure 7. The amount of dimensional variation is as much as 0.25 #m, and under the same development, the pattern size on the Si substrate (curve 1) and the pattern size on the Ta substrate (curve 2) are 0. It was not possible to satisfy the permissible value of dimensional variation within ±0.05 μm: 0.1 μm, 0.5 μm, <±10 inches of turn.

このように、本災施例方法によれば、反射電子係数の異
なる凹凸基板上での寸法変動及び、近接効果に起因する
パターン寸法の変動量を従来の0.35μmから3.0
5μm以内(±0.03pm)と著しく少なくすること
ができる。このため、サブミクロンパターンのデバイス
形成に十分に対処することができ、その有用性は絶大で
ある。また凹部を第1のレジスト層103で埋込んでベ
ークした後第2.0レジスト層203を塗布しているの
で第2のレジス) 層203の表面の平担性がよく結像
のぼけが少い。なお、上述した実施例においては、上層
の11trn厚のPMMAレジスト層203の露光に対
し近接効果を抑える為に、全面−律補正を用いているが
、本発明の効果は、全面−律補正に限らず、非パターン
部の補正又は、全面−律補正と非パターン補正を組み合
わせた補正でも、同様の結果が得られている。但し、ス
ループットの観点からは全面−律補正の方がより適して
いる。露光のための荷電ビームとしては電子ビームの他
にイオンビームがあり、又、補正照射のためのエネルギ
ービームとしては、電子ビーム以外に光、X線等を用い
てもよい。荷電ビームやエネルギービームの照射は描画
方式の他にパターン投影(転写)であってもよい。
As described above, according to the method used in this disaster, the amount of pattern size variation due to the dimensional variation on the uneven substrate with different reflected electron coefficients and the proximity effect was reduced from the conventional 0.35 μm to 3.0 μm.
It can be significantly reduced to within 5 μm (±0.03 pm). Therefore, it can sufficiently handle the formation of devices with submicron patterns, and its usefulness is tremendous. In addition, since the concave portion is filled with the first resist layer 103 and baked, and then the second resist layer 203 is applied, the surface of the second resist layer 203 has good flatness and less blur in the image formation. stomach. Note that in the above-mentioned embodiment, full-surface correction is used in order to suppress the proximity effect when exposing the upper PMMA resist layer 203 with a thickness of 11 trn, but the effect of the present invention is due to the full-surface correction. However, similar results have been obtained by correction of non-pattern portions or by a combination of full-scale correction and non-pattern correction. However, from the viewpoint of throughput, full-temperature correction is more suitable. In addition to electron beams, ion beams can be used as charged beams for exposure, and as energy beams for corrective irradiation, light, X-rays, etc. may be used in addition to electron beams. Irradiation with a charged beam or an energy beam may be performed by pattern projection (transfer) in addition to the drawing method.

近接効果を小ざくするのに荷電ビーム露光を40 KV
以上の加速電圧で行うことが望ましい。
Charged beam exposure at 40 KV to reduce the proximity effect
It is desirable to perform this at a higher acceleration voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明する為の工程断
面図、第3図は本発明の実施例で得られた試料のパター
ン形成状態を示す平面図、第4図は本発明の効果を確認
するため裏作した試料のパターン形状を示す図、第5図
は、大面積ノくターンの幅Wに対する露光パターンと設
計パターンの寸法差△So変化を示す特性図、第6図は
、従来方法によるパターン形成工程を示す説明図、第7
図は、従来方法におけるパターンの幅Wに対する寸法差
ΔSの変化を示す特性図である。 101.601− Stウェーハ、102,602− 
Ta。 103.203,303,603・・・レジスト(PM
MA )、104 、205・・・全面露光用の電子ビ
ーム、204 、604・・・EB描画の電子ビーム。 (7317)弁理士  則近憲佑 (ほか1名) 第1図 第2図 1Oン 第3図 第  4 図     −;4 ・05J”9   第
5図 第  6 図
1 and 2 are process sectional views for explaining the present invention in detail, FIG. 3 is a plan view showing the state of pattern formation of a sample obtained in an example of the present invention, and FIG. 4 is a process sectional view for explaining the present invention in detail. Fig. 5 is a characteristic diagram showing the dimensional difference △So between the exposed pattern and the designed pattern with respect to the width W of the large-area turn. , Explanatory diagram showing the pattern forming process by the conventional method, No. 7
The figure is a characteristic diagram showing the change in the dimensional difference ΔS with respect to the pattern width W in the conventional method. 101.601- St wafer, 102,602-
Ta. 103.203,303,603...Resist (PM
MA ), 104 , 205 . . . electron beam for full-surface exposure, 204 , 604 . . . electron beam for EB drawing. (7317) Patent attorney Kensuke Norichika (and 1 other person) Figure 1 Figure 2 Figure 1O Figure 3 Figure 4 -;4 ・05J”9 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)表面に凹凸を有し、凹部より反射電子係数の大き
い材料で凸部が形成された基板上にレジスト膜を形成し
て該レジスト膜に荷電ビームを照射して選択的に露光を
行う荷電ビーム露光方法であって、 前記基板の凹部に第1のレジスト層を埋め込み露光に必
要な照射量より少い照射量で少くとも前記第1のレジス
ト層に対してエネルギービームを照射する工程と、前記
第1のレジスト層上から前記凸部上に及ぶ全面に第2の
レジスト層を塗布して露光に必要な照射量で荷電ビーム
を選択的に照射して露光する工程を含むことを特徴とす
る荷電ビーム露光方法。
(1) A resist film is formed on a substrate with an uneven surface and a convex part made of a material with a larger reflected electron coefficient than the concave parts, and selective exposure is performed by irradiating the resist film with a charged beam. A charged beam exposure method, comprising the step of embedding a first resist layer in a recessed portion of the substrate and irradiating at least the first resist layer with an energy beam at a dose lower than the dose required for exposure. , comprising the step of applying a second resist layer to the entire surface extending from above the first resist layer to above the convex portion, and selectively irradiating and exposing it with a charged beam at a dose necessary for exposure. A charged beam exposure method that uses
(2)前記荷電ビーム露光方法は、第2のレジスト層の
全面に露光に必要な照射量より少い照射量でエネルギー
ビームを照射する工程を含むことを特徴とする特許請求
の範囲第1項記載の荷電ビーム露光方法。
(2) The charged beam exposure method includes a step of irradiating the entire surface of the second resist layer with an energy beam at a dose smaller than the dose required for exposure. Charged beam exposure method described.
(3)荷電ビームによる選択的な露光は電子ビーム描画
により行われることを特徴とする特許請求の範囲第1項
に記載の荷電ビーム露光方法。
(3) The charged beam exposure method according to claim 1, wherein the selective exposure with the charged beam is performed by electron beam lithography.
(4)電子ビームの加速電圧は40KV以上であること
を特徴とする特許請求の範囲第3項に記載の荷電ビーム
露光方法。
(4) The charged beam exposure method according to claim 3, wherein the acceleration voltage of the electron beam is 40 KV or more.
JP60049302A 1985-03-14 1985-03-14 Exposure method Expired - Lifetime JP2607460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60049302A JP2607460B2 (en) 1985-03-14 1985-03-14 Exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049302A JP2607460B2 (en) 1985-03-14 1985-03-14 Exposure method

Publications (2)

Publication Number Publication Date
JPS61208830A true JPS61208830A (en) 1986-09-17
JP2607460B2 JP2607460B2 (en) 1997-05-07

Family

ID=12827138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049302A Expired - Lifetime JP2607460B2 (en) 1985-03-14 1985-03-14 Exposure method

Country Status (1)

Country Link
JP (1) JP2607460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038204B2 (en) 2004-05-26 2006-05-02 International Business Machines Corporation Method for reducing proximity effects in electron beam lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038204B2 (en) 2004-05-26 2006-05-02 International Business Machines Corporation Method for reducing proximity effects in electron beam lithography

Also Published As

Publication number Publication date
JP2607460B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US5994009A (en) Interlayer method utilizing CAD for process-induced proximity effect correction
JP2004134553A (en) Process for forming resist pattern and process for fabricating semiconductor device
US6165652A (en) Pattern forming method and pattern forming apparatus
JPH07134395A (en) Formation of mask pattern and minute pattern using mask pattern
US4612275A (en) Multilayer resists with improved sensitivity and reduced proximity effect
US4349621A (en) Process for X-ray microlithography using thin film eutectic masks
JPH0219970B2 (en)
JPS61208830A (en) Charged beam exposure method
US4745044A (en) Multilayer resists with improved sensitivity and reduced proximity effect
US6841316B2 (en) Method for producing a phase shift mask
JP3395102B2 (en) Stencil mask for electron beam drawing
JP2002303966A (en) Method for producing mask
McCord et al. Effect of mask absorber thickness on x‐ray exposure latitude and resolution
JPS60196941A (en) Electron beam exposure
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JPH0778756A (en) Formation of fine pattern
EP1041441A2 (en) Device manufacturing method
JPS6358829A (en) Pattern formation using electron beam
JPS5893327A (en) Minute processing method
JPH01185632A (en) Mask for transfer and exposing transfer method using said mask for transfer
JP3161416B2 (en) Pattern drawing method
JPH06101422B2 (en) Resist pattern formation method
JP3114286B2 (en) X-ray exposure mask and method of manufacturing the same
JPS5934632A (en) Manufacture of x-ray mask
JP3251230B2 (en) X-ray exposure apparatus and its exposure method