JPS61206562A - R beveling method using plasma - Google Patents

R beveling method using plasma

Info

Publication number
JPS61206562A
JPS61206562A JP4484385A JP4484385A JPS61206562A JP S61206562 A JPS61206562 A JP S61206562A JP 4484385 A JP4484385 A JP 4484385A JP 4484385 A JP4484385 A JP 4484385A JP S61206562 A JPS61206562 A JP S61206562A
Authority
JP
Japan
Prior art keywords
plasma
torch
melting
cutting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4484385A
Other languages
Japanese (ja)
Inventor
Shiro Komata
小俣 四郎
Kei Isono
磯野 勁
Hideaki Kikuchi
英明 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4484385A priority Critical patent/JPS61206562A/en
Publication of JPS61206562A publication Critical patent/JPS61206562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To automatize finishing work by cutting with beveling a ridge line by the thermal energy of plasma and by heating with the melting of the residual edge by the plasma soft arc reducing the energy density continuously. CONSTITUTION:A slant cutting is performed under the plasma conditions for cutting in the first stage. In this case, the center of a spindle 2 is connected to the manipulator, etc. having the function to direct for the point of intersection P0 and profile the ridge line and controlled with the dimension of the nozzle gap being made about constant. In the second stage, the residual edge part A of the slant cutting time is continuously melted under the plasma conditions reducing the energy density for melting by the one pass melting method to melt the contour shape including the torch aiming position P01 at the melting time or the plural passes melting method to melt the contour shape including P02, P03. The prescribed R beveling is worked by utilizing the surface tension of the molten metal and the melt solidification phenomenon of the metal related to the torch feeding speed and plasma conditions.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属性構造物の角を滑らかにR面取りする加工
法に係り、特に、大形構造物の稜線に対し、電気的2機
械的に良好なRを溶融加工する方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a processing method for smoothly chamfering the corners of a metal structure, and in particular, it is applied to the ridgeline of a large structure in an electrical and mechanical manner. This invention relates to a method for melt processing a good R.

〔発明の背景〕[Background of the invention]

放電エネルギを利用して金属の一部を溶融し形状加工に
応用している方法として、例えば、「車輌台車枠の溶接
ビード仕上法に関する研究」川崎重工技報;85号(1
984,7)に記載のTIGリメルト法などが知られて
いる。この方法は、主として、溶接ビード止端部の疲労
強度を改善するために、ビードを含む表面のわずかな凹
凸をTIG電極で溶融し、滑らかにならす方法である。
An example of a method that uses electrical discharge energy to melt a part of metal and apply it to shape processing is described in "Research on weld bead finishing method for vehicle bogie frame" Kawasaki Heavy Industries Technical Report; No. 85 (1).
The TIG remelt method described in 984, 7) is known. This method is mainly a method in which slight irregularities on the surface including the bead are melted and smoothed using a TIG electrode in order to improve the fatigue strength of the toe of the weld bead.

一方、高電圧送変電機器の電気的特性向上のためには、
角部を5Rmm以上に加工する必要があり、上述の方法
では溶融金属のたれ下がりやブローホールが生じてR加
工には応用できない。
On the other hand, in order to improve the electrical characteristics of high-voltage power transmission and substation equipment,
It is necessary to process the corners to 5 Rmm or more, and the above-mentioned method cannot be applied to R processing because sagging of molten metal and blowholes occur.

〔発明の目的〕[Purpose of the invention]

本発明は金属製大形構造物のR面取りをハンドグライン
ダ作業からプラズマによる熱エネルギ加工法にして、仕
上作業の自動化をはかり、製缶嫌悪作業を排除するプラ
ズマR面取り法を提供することにある。
The object of the present invention is to provide a plasma R-chamfering method that automates the finishing work by changing the R-chamfering process of a large metal structure from hand grinding work to a thermal energy processing method using plasma, and eliminates the unpleasant work of can manufacturing. .

〔発明の概要〕[Summary of the invention]

本発明はプラズマの熱エネルギを利用して、稜線を面取
り溶断し、連続してエネルギ密度を下げたプラズマソフ
トアークにより面取り切断後の残留エツジを溶融し、疑
似Rを熱加工する。このとき、R加工によって排除され
る断面積と面取り時の溶断面積をほぼ一致させておけば
、前工程加工精度に影響されない一様なRの加工が可能
であり、容易にR面取り作業を自動化することができる
In the present invention, the ridge line is chamfered and fused using the thermal energy of plasma, and the residual edge after the chamfer cutting is melted by a plasma soft arc with a continuously lowered energy density to thermally process the pseudo-R. At this time, if the cross-sectional area removed by R machining and the fused cross-sectional area during chamfering are made approximately equal, uniform R machining is possible without being affected by the machining accuracy of the previous process, and R chamfering work can be easily automated. can do.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第4図により説明
する。第1図はR面取りすべき構造物の一部を示す斜視
図であってR加工すべき稜RIAL。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a perspective view showing a part of the structure to be rounded, and shows the ridge RIAL to be rounded.

は任意の三次元形状をもち、被加工物1内に含まれる。has an arbitrary three-dimensional shape and is contained within the workpiece 1.

第2図および第3図はプラズマによるR面取方法を示す
原理図であって、第2図は角度面取溶断を示す側断面図
である。第2図において、トーチヘッド3はスピンドル
2に対して傾斜Bを保持し、面取り溶断寸法aCは稜線
を構成する二面の交点P。を基準としてAQ力方向調整
自由に係合する。このとき、スピンドル2の中心は、常
に。
FIGS. 2 and 3 are principle diagrams showing the R-chamfering method using plasma, and FIG. 2 is a side sectional view showing angle-chamfering fusing. In FIG. 2, the torch head 3 maintains an inclination B with respect to the spindle 2, and the chamfered fusing dimension aC is the intersection point P of the two surfaces forming the ridgeline. The AQ force direction can be freely adjusted and engaged based on . At this time, the center of spindle 2 is always.

交点P0を指向し稜IIALoを倣う機能をもったマニ
プレータ等に接続され、ノズル間隔り寸法を概一定とし
て制御する。第3図は面取り溶断後の残留エツジを溶融
してR加工する側断面図である。
It is connected to a manipulator or the like that has the function of pointing at the intersection point P0 and tracing the ridge IIALo, and controls the nozzle spacing dimension to be approximately constant. FIG. 3 is a side sectional view in which the remaining edge after chamfering and cutting is melted and rounded.

第3図において、トーチヘッド2は面取り面に対向して
γなる傾斜角度自由に設定し、かつ、加工部の受けるプ
ラズマ熱が一定となるように、トーチ間隔Eを一定制御
する。溶融時のトーチねらい位置P。11 Po1l 
PO3は、これらの点を通り角度γとスピンドル中心の
垂直延長線との交点P□。
In FIG. 3, the torch head 2 is freely set at an inclination angle of γ facing the chamfered surface, and the torch spacing E is controlled to be constant so that the plasma heat received by the processing section is constant. Torch aiming position P during melting. 11 Po1l
PO3 is the intersection point P□ of the angle γ and the vertical extension of the spindle center passing through these points.

P2.P、に輪郭制御形状をオフセットして実行する。P2. Execute by offsetting the contour control shape to P.

次に、本発明によるR面取り動作を説明する。Next, the R-chamfering operation according to the present invention will be explained.

第1図のような所定のR面取りを加工する輪郭稜線り。Contour ridgeline for machining a predetermined R chamfer as shown in Figure 1.

をもつ被加工物に対し、第一工程で第2図に示すように
、切断用のプラズマ条件で傾斜切断を行なう。第二工程
では、第3図のように、溶融用にエネルギ密度を下げた
プラズマ条件で。
In the first step, a workpiece having a diameter is subjected to oblique cutting under plasma conditions for cutting, as shown in FIG. In the second step, as shown in Figure 3, plasma conditions are used to lower the energy density for melting.

Po□を含む輪郭形状を溶融する一パス溶融方式。A one-pass melting method that melts the contour shape including Po□.

または、PO21PO3を含む輪郭形状を溶融する複数
バス溶融方式で傾斜切断時の残留エツジ部Aを連続溶融
すれば、溶融金属の表面張力と、トーチ送り速度および
プラズマ条件に関係する金属の溶融凝固現象を利用して
所定のR面取りを加工することができる。面取りR寸法
の大きさは、R加工によって除去される断面積と傾斜面
取り時のACの大きさで決定される溶融除去面積をほぼ
一致させておけば、前工程の加工精度に影響されない一
様なRの加工が可能となる。一方、溶融バス回数は同一
トーチを使用する場合には、Rの大きさに応じて小R加
工では−パス、大R加工では複数バスとする。
Alternatively, if the remaining edge part A during oblique cutting is continuously melted using a multi-bus melting method that melts the contour shape including PO21PO3, the melting and solidification phenomenon of the metal is related to the surface tension of the molten metal, the torch feed rate, and the plasma conditions. A predetermined R chamfer can be processed using this method. The size of the chamfer R dimension can be made uniform without being affected by the machining accuracy of the previous process, as long as the cross-sectional area removed by R machining and the melted removal area determined by the size of AC during inclined chamfering are approximately the same. It is possible to process a radius. On the other hand, when using the same torch, the number of melting baths is set to -pass for small radius processing and multiple baths for large radius processing depending on the size of radius.

第4図は本方法による自動R面取り装置の一例であって
、トーチ3はAC,β可変にスピンドル2に係合し、こ
のスピンドルをX、Y、Z、 θに四軸軸郭制御できる
マニプレータ−4,5で駆動する。一般に、大形構造物
では製作誤差が大きいため1図面寸法情報によるNC制
御方式では、一様なR加工ができない。このような場合
は、二軸同時位置検出センサ6によりY軸方向の微小変
位に対するX、Z軸方向の誤差AX、 ΔZを検出し、
制御情軸を実体寸法に合せて補正する。この四軸制御機
能をもつマニプレータと、切断溶融機能をもつプラズマ
装置を合体して、被加工物1の三次元稜ml Lo を
第一工程で傾斜面取りし、次に、トーチを面取面に対向
させ輪郭線をオフセットして金属表面を溶融し、一様な
Rを自動加工することができる。
FIG. 4 shows an example of an automatic R chamfering device according to the present method, in which the torch 3 is variably engaged with the spindle 2 in AC and β, and the manipulator is capable of controlling the spindle in four axes of X, Y, Z, and θ. Drive at -4,5. Generally, large structures have large manufacturing errors, and therefore uniform R processing cannot be performed using the NC control method based on one drawing dimension information. In such a case, the two-axis simultaneous position detection sensor 6 detects errors AX and ΔZ in the X and Z axes with respect to minute displacements in the Y axis direction,
Correct the control axis to match the actual dimensions. By combining this manipulator with a four-axis control function and a plasma device with a cutting and melting function, the three-dimensional edge ml Lo of the workpiece 1 is chamfered in the first step, and then the torch is applied to the chamfered surface. By facing each other and offsetting the contour lines, the metal surface can be melted and a uniform radius can be automatically machined.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、角度切断除去面積の大きさと、溶融ト
ーチのオフセット量および溶融パス回数により任意の大
きさのR加工が可能となり、R加工で発生する振動、騒
音、粉塵などが皆無となる。
According to the present invention, R machining of any size is possible depending on the size of the angle cutting removal area, the offset amount of the melting torch, and the number of melting passes, and there is no vibration, noise, dust, etc. generated during R machining. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の角度面取り溶断を示す側断
面図、第2図は本発明の溶融R加工状態を示す側断面図
、第3図は被加工物の一部を示す斜視図、第4図は自動
R面取装置の斜視図である。 1・・・被加工物、2・・・スピンドル、3・・・トー
チ、4・・・マニプレータ、5・・・レール、6・・・
センサ。
Fig. 1 is a side sectional view showing angle chamfer melt cutting according to an embodiment of the present invention, Fig. 2 is a side sectional view showing the melt R processing state of the present invention, and Fig. 3 is a perspective view showing a part of the workpiece. FIG. 4 is a perspective view of the automatic R-chamfering device. DESCRIPTION OF SYMBOLS 1... Workpiece, 2... Spindle, 3... Torch, 4... Manipulator, 5... Rail, 6...
sensor.

Claims (1)

【特許請求の範囲】 1、切断と溶融機能をもつプラズマ発生装置とトーチと
を用いて、金属被加工物のR面取り加工稜線の一断面に
おける稜線を構成する二面の交点である加工基準点に対
し、トーチねらいの姿勢を任意に設定後保持する機能を
もち、前記加工基準点とトーチヘッドの間隔を一定に保
持する腕に任意三次元輪郭形状倣い機能を装備し、曲線
形状に対する前記トーチの接線回転機能を付加し、前記
金属被加工物に対する前記トーチの接線方向速度が一定
となるように制御する手段を設けたプラズマ加工装置に
おいて、 前記プラズマによる角度面切断後、残留角部を連続して
プラズマソフトアークにより金属溶融し、この溶融金属
の表面張力とトーチ送り速度および熱エネルギ密度に関
係する金属の溶融凝固現象を利用して任意のR形状を熱
加工することを特徴とするプラズマR面取り法。 2、前記プラズマ発生装置の前記トーチを前記加工稜線
に対して四軸に制御し、任意の三次元稜線に対して自動
R面取り加工を行うことを特徴とする特許請求の範囲第
1項記載のプラズマR面取り法。
[Scope of Claims] 1. Using a torch and a plasma generator with cutting and melting functions, a processing reference point that is the intersection of two surfaces forming the ridgeline in a cross section of the R-chamfered ridgeline of the metal workpiece In contrast, the arm has a function of arbitrarily setting and holding the aiming posture of the torch, and is equipped with an arbitrary three-dimensional contour tracing function on the arm that maintains a constant distance between the processing reference point and the torch head. In the plasma processing apparatus, which is provided with a tangential rotation function and a means for controlling the tangential speed of the torch with respect to the metal workpiece to be constant, The plasma is characterized in that metal is melted by a plasma soft arc, and an arbitrary R shape is thermally processed by utilizing the melting and solidification phenomenon of the metal, which is related to the surface tension of the molten metal, the torch feed rate, and the thermal energy density. R chamfer method. 2. The torch of the plasma generator is controlled in four axes with respect to the processing ridgeline, and automatic R-chamfering processing is performed on an arbitrary three-dimensional ridgeline. Plasma R chamfering method.
JP4484385A 1985-03-08 1985-03-08 R beveling method using plasma Pending JPS61206562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4484385A JPS61206562A (en) 1985-03-08 1985-03-08 R beveling method using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4484385A JPS61206562A (en) 1985-03-08 1985-03-08 R beveling method using plasma

Publications (1)

Publication Number Publication Date
JPS61206562A true JPS61206562A (en) 1986-09-12

Family

ID=12702752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4484385A Pending JPS61206562A (en) 1985-03-08 1985-03-08 R beveling method using plasma

Country Status (1)

Country Link
JP (1) JPS61206562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132374A (en) * 1993-11-09 1995-05-23 Kawasaki Heavy Ind Ltd Method for machining curved surface of end part of metal plate and device therefor
WO2008044756A1 (en) * 2006-10-12 2008-04-17 Koike Sanso Kogyo Co., Ltd. Plasma cutting method, and plasma cutting apparatus
US7368871B2 (en) 2003-11-29 2008-05-06 Samsung Sdi Co., Ltd. Plasma display apparatus with improved substrates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132374A (en) * 1993-11-09 1995-05-23 Kawasaki Heavy Ind Ltd Method for machining curved surface of end part of metal plate and device therefor
US7368871B2 (en) 2003-11-29 2008-05-06 Samsung Sdi Co., Ltd. Plasma display apparatus with improved substrates
WO2008044756A1 (en) * 2006-10-12 2008-04-17 Koike Sanso Kogyo Co., Ltd. Plasma cutting method, and plasma cutting apparatus
EP2082824A1 (en) * 2006-10-12 2009-07-29 Koike Sanso Kogyo Co., Ltd. Plasma cutting method, and plasma cutting apparatus
EP2082824A4 (en) * 2006-10-12 2011-05-18 Koike Sanso Kogyo Kk Plasma cutting method, and plasma cutting apparatus
JP5230008B2 (en) * 2006-10-12 2013-07-10 小池酸素工業株式会社 Plasma cutting device
KR101389213B1 (en) * 2006-10-12 2014-04-24 고이께 산소 고교 가부시끼가이샤 Plasma Cutting Apparatus
US9492882B2 (en) 2006-10-12 2016-11-15 Koike Sanso Kogyo Co., Ltd. Plasma cutting method and plasma cutting apparatus

Similar Documents

Publication Publication Date Title
JP3763734B2 (en) Panel member processing method
US5147999A (en) Laser welding device
US4920249A (en) Weld bead wetting angle detection and control
JP3793592B2 (en) Manufacturing method for spherical tanks for liquefied natural gas
WO2014020420A2 (en) Method and system of hot wire joint design for out-of-position welding
EP2560786B1 (en) Method and device for cutting openings in flat, concave or convex surfaces
JP4647179B2 (en) Processing method
CA2302880C (en) Method of cutting a workpiece along an arcuate path with a plasma arc torch
CA2159517A1 (en) Method of Cutting Ellipse Contour with Numerically-Controlled Machine Tools
JPS61206562A (en) R beveling method using plasma
JP4558278B2 (en) A processing method for forming a surface concave portion having a circular cross section having a central axis inclined with respect to a processing material axis around the outside of the processing material
CN115233212A (en) Preparation method of ultrahigh-speed laser rapid cladding-waste heat cutting coating
JPH06640A (en) Horizontal multilayer welding method
JP2004314108A (en) Automatic welding control method
JPS61232085A (en) Method and apparatus for laser beam cutting
JPH09117845A (en) Square hole machining method in numerically controlled machine tool
JPH06198441A (en) Welding equipment and method for square steel pipes
JPS6192792A (en) Method and device for welding
JPH09150284A (en) Method for machining bevel with three dimensional laser beam machine
JPH0243581Y2 (en)
Begin et al. Welding adaptive functions performed through infrared simplified vision schemes
JPH06198442A (en) Welding equipment and method for square steel pipes
JP2024021965A (en) laser processing nozzle
JPH0788654A (en) Method and device for cutting groove by plasma
CN118218762A (en) Welding method for sheet metal part machining