JPH06640A - Horizontal multilayer welding method - Google Patents

Horizontal multilayer welding method

Info

Publication number
JPH06640A
JPH06640A JP16096892A JP16096892A JPH06640A JP H06640 A JPH06640 A JP H06640A JP 16096892 A JP16096892 A JP 16096892A JP 16096892 A JP16096892 A JP 16096892A JP H06640 A JPH06640 A JP H06640A
Authority
JP
Japan
Prior art keywords
welding
path
arc
groove
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16096892A
Other languages
Japanese (ja)
Other versions
JP2745964B2 (en
Inventor
Yuji Sugitani
祐司 杉谷
Hisahiro Tamaoki
尚弘 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4160968A priority Critical patent/JP2745964B2/en
Publication of JPH06640A publication Critical patent/JPH06640A/en
Application granted granted Critical
Publication of JP2745964B2 publication Critical patent/JP2745964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To automate a horizontal multilayer welding by welding a path contacting with a groove wall by groove copying control of arc sensor system and welding a path not in contact. with the groove wall by the reproduced copying control for the previous path. CONSTITUTION:In the horizontal multilayer welding, when the path in contact with the groove wall (path number 1-6 and 8 for a small route gap and path number 1-5, 7, 8 and 11 for a large route gap) is welded, high speed rotary welding under groove copying of arc sensor system is used and when the intermediate path not in contact with the groove wall (path number 7 for a small route gap and path number 6, 9 and 10 for a large route gap) is welded, the work is executed according to the reproduced control data for the previous path. Thus, continuous automatic horizontal multilayer welding is enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速回転アーク溶接に
よる横向多層盛溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a horizontal multi-layer welding method using high-speed rotary arc welding.

【0002】[0002]

【従来の技術】溶接ワイヤと被溶接部材との間に発生す
るアークを円運動させながら溶接をする回転アーク溶接
方法は公知である(特公昭63−39346号)。そし
てこの回転アーク溶接方法によれば、 アーク力、アーク熱の分散作用によりビード形状の平
滑化、溶込み形状の改善をはかることができる。 回転の遠心力により溶接ワイヤの溶融速度が増加し、
アークを回転させない場合に比べて高能率になる。 隅肉溶接や開先のある溶接において、溶接電流・アー
ク電圧の波形を利用したアークセンサ方式の開先倣い制
御ができる。 などの特長がある。
2. Description of the Related Art A rotary arc welding method is known in which welding is performed while circularly moving an arc generated between a welding wire and a member to be welded (Japanese Patent Publication No. 63-39346). According to this rotary arc welding method, the bead shape can be smoothed and the penetration shape can be improved by the action of dispersing the arc force and arc heat. The centrifugal force of rotation increases the melting speed of the welding wire,
The efficiency is higher than when the arc is not rotated. In fillet welding and welding with a groove, it is possible to perform groove-probe control using an arc sensor method that utilizes the waveforms of welding current and arc voltage. There are features such as.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
回転アーク溶接においては一般に下向溶接や水平溶接を
対象としており、また多層盛溶接の場合でも狭開先に対
するものが主であった。
However, the conventional rotary arc welding is generally targeted for downward welding or horizontal welding, and even in the case of multi-layer welding, it is mainly for narrow gaps.

【0004】一方、アークを回転させずに比較的高電流
で横向多層盛溶接を行うと、溶接パスごとにビードの下
垂れ現象が起きやすく、ビード形状が悪く、溶込み不足
など溶接欠陥が発生する。
On the other hand, when horizontal multi-layer welding is performed at a relatively high current without rotating the arc, the bead sagging phenomenon easily occurs at each welding pass, the bead shape is poor, and welding defects such as insufficient penetration occur. To do.

【0005】横向溶接の場合は、一般にレ形開先である
ため、従来の高速回転アーク溶接方法を適用した場合で
も開先壁に接しない中間のパスにおいてアークセンサ方
式の開先倣い制御が適用できない個所が生じる。
In the case of horizontal welding, since a generally rectangular groove is used, even if the conventional high-speed rotary arc welding method is applied, the groove-following control of the arc sensor type is applied in the intermediate pass not in contact with the groove wall. There are places where you can't.

【0006】本発明は、前記のような課題を解決するた
めになされたもので、高速回転アーク溶接方法の利点を
保ちつつ、自動溶接を可能にした横向多層盛溶接方法を
提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a horizontal multi-layer welding method capable of automatic welding while maintaining the advantages of the high-speed rotary arc welding method. I am trying.

【0007】[0007]

【課題を解決するための手段】本発明は、高速回転アー
ク溶接方法を横向多層盛溶接に適用する場合において、
開先壁に接するパスの溶接時は前記アークセンサ方式の
開先倣い制御により溶接し、開先壁に接しない中間パス
の溶接時は前回のパスで溶接したときの開先倣い制御の
データを再生し溶接する横向多層盛溶接方法とすること
で、自動溶接を可能にし、かつ、アークの回転によるア
ーク力、アーク熱の分散作用によるビード形状の平滑
化、溶込み形状の改善効果により比較的高電流での横向
多層盛溶接を可能にしたものである。
SUMMARY OF THE INVENTION The present invention provides a method for applying a high-speed rotary arc welding method to horizontal multilayer welding.
When welding a path in contact with the groove wall, the welding is performed by the groove profile control of the arc sensor method, and when welding an intermediate pass that does not contact the groove wall, the data of the groove profile control when welding in the previous pass is performed. By using the horizontal multi-pass welding method of regenerating and welding, automatic welding is made possible, and the arc force by the rotation of the arc, the bead shape smoothing by the dispersion action of the arc heat, and the effect of improving the penetration shape make it relatively It enables horizontal multi-pass welding at high current.

【0008】[0008]

【作用】本発明において、パス数は母材板厚、溶接条
件、ルートギャップG,開先角度θにより自動的に決定
される。そして開先壁に接するパスの番号がわかる。例
えば図1に示すように、ルートギャップが小さい場合は
パス番号の1〜6と8が開先壁に接するパスであり、パ
ス番号7が開先壁に接しない中間パスとなる。またルー
トギャップが大きい場合はパス番号の1〜5と7,8,
11が開先壁に接するパスであり、パス番号6,9,1
0が開先壁に接しない中間パスとなる。
In the present invention, the number of passes is automatically determined by the base metal plate thickness, welding conditions, root gap G, and groove angle θ. And you can see the number of the path that touches the groove wall. For example, as shown in FIG. 1, when the route gap is small, path numbers 1 to 6 and 8 are paths that contact the groove wall, and path number 7 is an intermediate path that does not contact the groove wall. If the route gap is large, pass numbers 1 to 5 and 7, 8,
11 is a path that contacts the groove wall, and the path numbers are 6, 9 and 1
0 is an intermediate pass that does not touch the groove wall.

【0009】高速回転アーク溶接はこのパス番号順に行
われるが、開先壁に接するパスの個所は前回において形
成された溶接ビードと一方の開先壁との間で比較的良好
な形状の開先が形成されているため、その個所ではアー
クセンサ方式の開先倣い制御による自動溶接が可能であ
る。
The high-speed rotating arc welding is performed in the order of the pass numbers, but the place of the pass contacting the groove wall is a groove having a relatively good shape between the weld bead formed in the previous time and one groove wall. Since this is formed, it is possible to perform automatic welding at that location by the groove profile control of the arc sensor method.

【0010】しかし、中間パスの個所は既に形成された
溶接ビードのみによる見掛けの開先であり、その開先の
中心線や形状は不安定であり、仮にアークセンサ方式の
開先倣い制御により溶接を行うと、ビード形状が崩れた
りしてその次のパスの溶込み不足などを生じるおそれが
ある。
However, the position of the intermediate pass is an apparent groove formed only by the weld bead already formed, and the center line and shape of the groove are unstable. If the above procedure is performed, the bead shape may be collapsed, resulting in insufficient penetration of the next pass.

【0011】そこで、かかる中間パスの個所は前回の開
先倣い制御データを再現実行することによりほぼ同程度
のビード形状、溶着量を得ることにしている。このよう
にして横向多層盛溶接の連続自動溶接が可能になる。
Therefore, it is decided to obtain substantially the same bead shape and welding amount at the position of the intermediate pass by reproducing the groove tracking control data of the last time. In this way, continuous automatic welding of horizontal multilayer welding becomes possible.

【0012】[0012]

【実施例】図2は本発明の横向多層盛溶接方法に使用す
る自動溶接機の概要図である。図において、31は自走
式の台車で、レール32上を溶接進行方向(紙面の表裏
方向)に走行する。33は台車31上に設置された水平
方向のX軸送り機構で、X軸スライドブロック34,X
軸モータ35及びボールネジ36等からなり、電極ノズ
ル21に対しレ形開先20の深さ方向の送りを与える。
37はX軸スライドブロック34上に設置された垂直方
向のY軸送り機構で、X軸送り機構33と同様の構成で
あり、Y軸スライドブロック38,図示しないY軸モー
タ及びボールネジ等からなる。Y軸送り機構37により
電極ノズル21を開先20の幅方向に送る。40は電極
ノズル21の回転機構で、回転モータ41により偏心ギ
ヤ機構42を介して電極ノズル21に対し基端部を支点
23とする歳差運動を与えるようになっており、これに
よって溶接ワイヤ22の先端が円運動し、アークを回転
させることができる。43は回転機構40のハウジング
で、トーチ角度調整機構44を介してY軸スライドブロ
ック38に取り付けられている。トーチ角度調整機構4
4はY軸スライドブロック38の側面に取り付けられた
ワイヤ22先端を中心とする円弧ギヤ45にトーチ角度
モータ(図示せず)のギヤ46を噛み合わせてなるもの
で、これにより電極ノズル21の水平に対するトーチ角
度αを溶接パスに応じて調整することができる。図示し
ないトーチ角度モータはハウジング43に取り付けられ
ている。図中、24は給電部である。
FIG. 2 is a schematic view of an automatic welding machine used in the horizontal multi-layer welding method according to the present invention. In the figure, reference numeral 31 denotes a self-propelled carriage that travels on a rail 32 in the welding advancing direction (the front and back directions of the paper). Reference numeral 33 is a horizontal X-axis feed mechanism installed on the carriage 31 and includes X-axis slide blocks 34, X.
It is composed of a shaft motor 35, a ball screw 36 and the like, and feeds the electrode groove 21 in the depth direction of the groove 20.
Reference numeral 37 denotes a vertical Y-axis feed mechanism installed on the X-axis slide block 34, which has the same configuration as the X-axis feed mechanism 33 and includes a Y-axis slide block 38, a Y-axis motor (not shown), a ball screw, and the like. The Y-axis feed mechanism 37 feeds the electrode nozzle 21 in the width direction of the groove 20. Reference numeral 40 denotes a rotating mechanism for the electrode nozzle 21, which is designed to give a precession motion to the electrode nozzle 21 by the rotating motor 41 via the eccentric gear mechanism 42 with the base end portion as the fulcrum 23. The tip of the arc moves circularly and the arc can be rotated. Reference numeral 43 denotes a housing of the rotating mechanism 40, which is attached to the Y-axis slide block 38 via a torch angle adjusting mechanism 44. Torch angle adjustment mechanism 4
Reference numeral 4 is a gear 46 of an torch angle motor (not shown) meshed with an arc gear 45 centered on the tip of the wire 22 attached to the side surface of the Y-axis slide block 38. The torch angle α with respect to can be adjusted according to the welding pass. A torch angle motor (not shown) is attached to the housing 43. In the figure, reference numeral 24 is a power feeding unit.

【0013】この自動溶接機は概略以上のように構成さ
れており、母材板厚、溶接条件、ルートギャップG,開
先角度θによりパス数が決定されると、図1に示すよう
なパス番号順に溶接を開始する。すなわち、電極ノズル
21を回転機構40により歳差運動させ、これにより溶
接ワイヤ22の先端を回転させ、アークを高速度で回転
しながら溶接する。このような公知の高速回転アーク溶
接を行うと同時にアークセンサ方式の開先倣い制御を行
う。この場合、X軸送り機構33によりアーク長を一定
に保ちつつY軸送り機構37によりアークの回転中心が
開先中心に位置するように制御する。
This automatic welding machine is constructed as described above, and when the number of passes is determined by the base metal plate thickness, welding conditions, the root gap G, and the groove angle θ, the passes shown in FIG. Start welding in numerical order. That is, the electrode nozzle 21 is precessed by the rotating mechanism 40, thereby rotating the tip of the welding wire 22 and welding while rotating the arc at a high speed. At the same time as performing such well-known high-speed rotary arc welding, the groove profile control of the arc sensor system is performed. In this case, the X-axis feed mechanism 33 keeps the arc length constant and the Y-axis feed mechanism 37 controls the arc rotation center to be located at the groove center.

【0014】このような開先倣い制御は前述のように開
先壁に接するパスに対してのみ行われる。開先壁に接し
ない個所の中間パスを溶接するときは前回のパスの溶接
時に使用した開先倣い制御データを図示しない制御装置
のメモリーから呼び出してそのデータを再現実行する。
すなわち図1(a)の場合、中間パス7の溶接は6番目
のパスのデータを再生して溶接し、図1(b)の場合、
中間パス6の溶接は5番目のパスのデータを、中間パス
9のときは8番目のパスのデータを、また中間パス10
のときは同じく8番目のパスのデータを、それぞれ再生
して溶接する。なお、溶接はパスごとにX軸送り機構3
3により電極ノズル21を所定量シフトさせ、トーチ角
度調整機構44によりトーチ角度を再調整した後に行う
ものであることはいうまでもない。このようにして最終
パスまで連続自動的に横向多層盛溶接ができる。
Such groove tracking control is performed only for the path in contact with the groove wall as described above. When welding an intermediate pass at a position not in contact with the groove wall, the groove-following control data used during the welding of the previous pass is called from the memory of the control device (not shown) and the data is reproduced and executed.
That is, in the case of FIG. 1A, the welding of the intermediate pass 7 reproduces and welds the data of the sixth pass, and in the case of FIG. 1B,
The welding of the intermediate pass 6 uses the data of the fifth pass, the intermediate pass 9 uses the data of the eighth pass, and the intermediate pass 10
In the case of, similarly, the data of the 8th pass is regenerated and welded. In addition, for welding, X-axis feed mechanism 3 is used for each pass.
Needless to say, this is performed after the electrode nozzle 21 is shifted by a predetermined amount by means of 3 and the torch angle is adjusted again by the torch angle adjusting mechanism 44. In this way, horizontal multilayer welding can be continuously and automatically performed until the final pass.

【0015】図3は高速回転アーク溶接による初層ビー
ドの断面形状を示したものである。併せてアークを回転
させずに溶接したときのビード断面形状を点線で示して
ある。ルートギャップ6mm,開先角度35°,溶接電流
320A,溶接速度35cm/minとし、回転アークの条件
はアークの回転径2mm,回転数50Hzとしたものであ
る。
FIG. 3 shows the cross-sectional shape of the first layer bead produced by high-speed rotary arc welding. In addition, the bead cross-sectional shape when welding was performed without rotating the arc is shown by a dotted line. The root gap was 6 mm, the groove angle was 35 °, the welding current was 320 A, the welding speed was 35 cm / min, and the conditions of the rotating arc were that the rotating diameter of the arc was 2 mm and the rotating speed was 50 Hz.

【0016】アークを回転させない非回転アーク溶接に
よると、ビード16aの表面が凸型になり、また溶込み
深さHa が大きく集中的なものになる。このため、2パ
ス目において17aの個所に融合不良が生じやすい。こ
れに対して、高速回転アーク溶接によると、アークの回
転によりアーク力、アーク熱が分散するため、ビード1
6の表面が平滑になり、溶込み深さHも小さく開先壁側
に膨らんだ形となって、溶込み形状の改善効果が著しい
ものである。もちろん17の個所で融合不良などは生じ
ない。
According to the non-rotating arc welding in which the arc is not rotated, the surface of the bead 16a becomes convex and the penetration depth Ha becomes large and concentrated. Therefore, in the second pass, a fusion defect is likely to occur at the location 17a. On the other hand, according to the high speed rotary arc welding, the arc force and the arc heat are dispersed by the rotation of the arc, so that the bead 1
The surface of No. 6 is smooth, the penetration depth H is small, and the shape is swollen to the groove wall side, and the effect of improving the penetration shape is remarkable. Of course, no defective fusion occurs at 17 points.

【0017】本発明による横向溶接継手のマクロ断面を
図4の(a)〜(d)に示す。(a)はG=3mm,
(b)はG=6mm,(c)はG=9mm,(d)はG=1
2mmの場合である。同図から明らかなように、ルートギ
ャップの大小にかかわらずきわめて良好な横向溶接継手
が得られている。
Macro-sections of lateral weld joints according to the present invention are shown in FIGS. 4 (a) -4 (d). (A) is G = 3 mm,
(B) G = 6 mm, (c) G = 9 mm, (d) G = 1
It is the case of 2 mm. As is clear from the figure, extremely good lateral welded joints were obtained regardless of the size of the root gap.

【0018】[0018]

【発明の効果】以上のように本発明によれば、高速回転
アーク溶接により横向多層盛溶接を連続自動的に行うこ
とができ、かつ、きわめて良好な横向溶接継手を得るこ
とができる。
As described above, according to the present invention, horizontal multilayer welding can be continuously and automatically performed by high-speed rotary arc welding, and a very good horizontal welded joint can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の横向多層盛溶接方法の説明図である。FIG. 1 is an explanatory diagram of a horizontal multilayer welding method according to the present invention.

【図2】本発明において使用する自動溶接機の概要図で
ある。
FIG. 2 is a schematic diagram of an automatic welding machine used in the present invention.

【図3】初層ビードの断面図である。FIG. 3 is a cross-sectional view of a first layer bead.

【図4】本発明による横向溶接継手のマクロ断面図であ
る。
FIG. 4 is a macro sectional view of a horizontal welded joint according to the present invention.

【符号の説明】[Explanation of symbols]

20 レ形開先 21 電極ノズル 22 溶接ワイヤ 20 Re-shaped groove 21 Electrode nozzle 22 Welding wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 横向の多層盛アーク溶接において、 開先壁に接するパスの溶接時は高速回転アーク溶接によ
りアークセンサ方式の開先倣い制御のもとで溶接し、開
先壁に接しない中間パスの溶接時は前回のパスにおける
倣い制御データを再生して溶接することを特徴とする横
向多層盛溶接方法。
1. In the horizontal multi-layer arc welding, when welding a pass in contact with the groove wall, the welding is performed under high-speed rotary arc welding under the control of the groove profile control of the arc sensor method, and the intermediate is not in contact with the groove wall. When welding a pass, the horizontal multi-pass welding method is characterized in that the copying control data in the previous pass is reproduced to perform welding.
JP4160968A 1992-06-19 1992-06-19 Horizontal multilayer welding method Expired - Fee Related JP2745964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160968A JP2745964B2 (en) 1992-06-19 1992-06-19 Horizontal multilayer welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160968A JP2745964B2 (en) 1992-06-19 1992-06-19 Horizontal multilayer welding method

Publications (2)

Publication Number Publication Date
JPH06640A true JPH06640A (en) 1994-01-11
JP2745964B2 JP2745964B2 (en) 1998-04-28

Family

ID=15726066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160968A Expired - Fee Related JP2745964B2 (en) 1992-06-19 1992-06-19 Horizontal multilayer welding method

Country Status (1)

Country Link
JP (1) JP2745964B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378310A1 (en) * 2001-02-19 2004-01-07 Hitachi Construction Machinery Co., Ltd. Welding method, welding device, welded joint, and welded structure
JP2007090390A (en) * 2005-09-29 2007-04-12 Jfe Engineering Kk Welding method of rippled web beam
JP2007516368A (en) * 2003-07-02 2007-06-21 アンドウステイール・フランス How to assemble a section of a rack over a self-raising oilfield platform
US20140117001A1 (en) * 2010-02-10 2014-05-01 Illinois Tool Works Inc. Aluminum alloy welding wire
US20140190952A1 (en) * 2010-02-10 2014-07-10 Illinois Tool Works Inc. Aluminum alloy welding wire
US10421159B2 (en) 2015-02-25 2019-09-24 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire
US10654135B2 (en) 2010-02-10 2020-05-19 Illinois Tool Works Inc. Aluminum alloy welding wire
US11370068B2 (en) 2015-02-25 2022-06-28 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106672A (en) * 1983-11-14 1985-06-12 Daikin Ind Ltd Automatic multilayer welding
JPS62254971A (en) * 1986-04-28 1987-11-06 Nippon Kokan Kk <Nkk> Three o'clock welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106672A (en) * 1983-11-14 1985-06-12 Daikin Ind Ltd Automatic multilayer welding
JPS62254971A (en) * 1986-04-28 1987-11-06 Nippon Kokan Kk <Nkk> Three o'clock welding method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378310A1 (en) * 2001-02-19 2004-01-07 Hitachi Construction Machinery Co., Ltd. Welding method, welding device, welded joint, and welded structure
EP1378310A4 (en) * 2001-02-19 2008-04-23 Hitachi Construction Machinery Welding method, welding device, welded joint, and welded structure
JP2007516368A (en) * 2003-07-02 2007-06-21 アンドウステイール・フランス How to assemble a section of a rack over a self-raising oilfield platform
JP2007090390A (en) * 2005-09-29 2007-04-12 Jfe Engineering Kk Welding method of rippled web beam
US9770788B2 (en) * 2010-02-10 2017-09-26 Hobart Brothers Company Aluminum alloy welding wire
US20140190952A1 (en) * 2010-02-10 2014-07-10 Illinois Tool Works Inc. Aluminum alloy welding wire
US20140117001A1 (en) * 2010-02-10 2014-05-01 Illinois Tool Works Inc. Aluminum alloy welding wire
US9770787B2 (en) 2010-02-10 2017-09-26 Hobart Brother Company Aluminum alloy welding wire
US10654135B2 (en) 2010-02-10 2020-05-19 Illinois Tool Works Inc. Aluminum alloy welding wire
US11097380B2 (en) 2010-02-10 2021-08-24 Hobart Brothers Llc Aluminum alloy welding wire
US11890703B2 (en) 2010-02-10 2024-02-06 Illinois Tool Works Inc. Aluminum alloy welding wire
US10421159B2 (en) 2015-02-25 2019-09-24 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire
US11370068B2 (en) 2015-02-25 2022-06-28 Hobart Brothers Llc Systems and methods for additive manufacturing using aluminum metal-cored wire

Also Published As

Publication number Publication date
JP2745964B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
KR920006416B1 (en) Method for one-side root pass welding of a pipe joint
US4441011A (en) Rotary arc-welding method
JPH06640A (en) Horizontal multilayer welding method
JPH10118771A (en) Vertical electro-gas welding device
JP4957441B2 (en) Gas shield arc welding method
JP2000317666A (en) Laser beam welding machine
SU1320030A1 (en) Current-conducting nozzle
JPH06270B2 (en) One-sided first layer welding method for pipes
JP3166507B2 (en) Narrow butt welding method for fixed pipe
JP2745951B2 (en) Back bead control method in single side welding
JP2522114B2 (en) Joint welding method for steel members
JP3232933B2 (en) Vertical welding method
JP2892572B2 (en) Horizontal automatic welding method
JP3166510B2 (en) Narrow butt welding method for fixed pipe
JP3166508B2 (en) Narrow butt welding method for fixed pipe
JP3166509B2 (en) Narrow butt welding method for fixed pipe
JPS58112661A (en) Arc welding method
JP2003181644A (en) Multi-layer pad welding method for x-shaped groove joint
JP2701656B2 (en) Back bead control method in single side welding
JP3152063B2 (en) Groove profiling method and groove profiling control device in electrode rotating non-consumable electrode arc welding
JP2000263234A (en) Four-electrode automatic welding device for steel pipepile joint
KR20200055386A (en) Hybrid type fillet auto carriage
JPH0694069B2 (en) One-sided welding method for pipes
JPH046472B2 (en)
JPS6366634B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees