JPS60106672A - Automatic multilayer welding - Google Patents

Automatic multilayer welding

Info

Publication number
JPS60106672A
JPS60106672A JP21428183A JP21428183A JPS60106672A JP S60106672 A JPS60106672 A JP S60106672A JP 21428183 A JP21428183 A JP 21428183A JP 21428183 A JP21428183 A JP 21428183A JP S60106672 A JPS60106672 A JP S60106672A
Authority
JP
Japan
Prior art keywords
welding
layer
weaving
sides
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21428183A
Other languages
Japanese (ja)
Inventor
Kunihiro Nagura
名倉 国広
Hisaharu Kitahata
久治 北畠
Yoji Nakada
中田 陽次
Nobuhiko Matsui
松井 信彦
Yoshikazu Miyagi
義和 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP21428183A priority Critical patent/JPS60106672A/en
Publication of JPS60106672A publication Critical patent/JPS60106672A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To eliminate defects that occur when the width of weaving is large by making welding of plural passes of proper number for each layer using straight welding and weaving welding or weaving welding of the second layer and after. CONSTITUTION:A round of welding is taken performing straight welding for the first layer A of the bottom. Multipass welding is made for the second layer and after. However, for the second layer, both sides B, C are straight welded successively. For the third layer and after, sides, D, G, J, M on the nozzle 2 side are straight welded first, and sides E, H, K, N of base tube 1 side are welded by minute weaving keeping the height of the welding torch at that time, and welding is made accurately correcting by an arc sensor. Intermediate parts F, I, L, O, P between them not yet welded are welded by ordinary weaving welding.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は溶接ロボットなどの自動溶接装置を用いて開先
の多層盛自動溶接を行なう溶接方法に関する。
The present invention relates to a welding method for automatically performing multilayer welding of a groove using an automatic welding device such as a welding robot.

【従来技術】[Prior art]

V形、J形、し形などの開先を溶接ロボットによって多
層盛の自動溶接を行なわせる場合、従来に倣い制御#か
比較的容易であることから例えば特願昭57−1627
82号のように、1層1バス方式による溶接が殆どであ
った。 なお、上記1層lバス方式とはm接層の各層について、
底部の初NIゴストレード溶接を行なわせ、続く第2層
目以降の各層はウィービング巾が漸増する1回のウィー
ビング溶接を夫々性なわせることによって、各層につい
て]パスの溶接をする方式である。 ところが、この溶接方法で01次のようfJ問題点があ
るので溶接ワークが特定されるなど適用範囲が制限さ九
一般的でなかった。 げ】 最終層に近付くにつれてウィ−ビング巾が拡がっ
てくるために一人熱が大となり、この熱影響で溶接性能
、仕上り品の品質が低下する。 (口〕 ウィービング巾が広いと、溶融金属がan出し
て仕上りが悪いだけですく、融合不能になる場合があり
、特に開先浴接線が平面的でなく勾配を有する3次元的
な形態である場合に問題が大である。 (ハ) また、溶接の際の入熱が大きいので、溶接電流
が小さく抑えられる結果となり、効率的でない。 1−J 溶融金属が流出し易いこきから溶接姿勢に制限
があり一下向き溶接しか行なえない不都合がある。 (発明の目的l このように従来の1層1バス方式による多層盛自動溶接
方法が実用上の各種問題点を有していることから従来の
欠点を解消すること?技術的な課題として本発明は案出
されたものであって、熟練した溶接技術者が手作業で行
なっているのと同等の多層盛溶接を浴接ロボット等の自
動溶接装置Qこ容易に適用可能とすることによって、開
先溶接の形態、溶接姿勢についての制限を無くシ、溶接
鳳工範囲の拡大をGゴかることによって自動溶接化を推
進せしめる点を本発明は主要な目的とする。 (発明の構成] 本発明は開先をlNN多パスよる多層盛自動溶接を行な
う点に特徴が存するものであって、底部の初層はlパス
、次の第2層ζゴ2バス、第3層以降に3バスあるいG
@Lそれ以上のバスの浴接を?1なわせるに際して、開
先での母材面に沿オ〕せた両辺部の各溶接バスを先行し
た後、前記両辺部に挾まれる中間部における溶接バスに
移行せしめるさ共に、先行する両辺部の各溶接バスにつ
いてGコ、溶接トーチに対応して設けた位置決め用セン
サからの指令にもとづいてストレート溶接あるいは微少
ウィービング浴接を行なわせ、次いで行なう中間部の各
溶接バスについては、溶接ロボソ) 8 If (Dデ
ータバンクに対し予め教示anでいる開先形状から当該
各層の開先中を算出し、これから前記両辺部の溶接バス
の巾を減算することにより、未溶接部分のウィービング
巾ならびに位置を決定して。 このウィービング巾が許容ウィービング巾以内であれば
1パスのウィービング溶接を行ない一一方、Ff 容つ
ィービング巾2超えていれば最も少すい数での複数バス
のウィービング溶接を行なうものであって、多)ぐス方
式としたことによシ入熱を低減することが可能であり、
溶接トーチに指示する位置ならびにウィービング巾を正
確かつ容易に決定し得て整容された多層盛溶接が可能で
あって、ここに所期の目的は達成される。
When automatic multi-layer welding of V-shaped, J-shaped, or diamond-shaped grooves is performed by a welding robot, it is comparatively easy to use conventional copying control.
Like No. 82, most of the welding was done using a one-layer, one-bus method. In addition, the above-mentioned one-layer l-bus method means that for each layer of the m-connection layer,
The first NI Gostrade welding is performed on the bottom, and each layer after the second layer is weaved one time with the weaving width gradually increasing, thereby performing pass welding for each layer. However, this welding method has fJ problems such as 01 order, so the range of application is limited, such as the welding work being specified, and it is not common. [Ge] As the weaving width increases as the weaving width approaches the final layer, the heat generated by the weaving increases, and the effects of this heat degrade welding performance and the quality of the finished product. (Note) If the weaving width is wide, the molten metal will come out and the finish will be poor, but it may also become impossible to fuse.Especially if the weaving width is three-dimensional, where the bevel tangent is not flat but sloped. (c) Also, since the heat input during welding is large, the welding current is suppressed to a low level, which is not efficient. (Purpose of the Invention) As described above, the conventional multi-layer automatic welding method using the one-layer, one-bus method has various problems in practical use. To solve the drawbacks?The present invention was devised as a technical problem, and it is possible to automatically perform multi-layer welding using a bath welding robot, etc., which is equivalent to that performed manually by a skilled welding engineer. The present invention has the following points: By making the device Q easily applicable, there are no restrictions on the form of groove welding and welding posture, and the scope of welding can be expanded, thereby promoting automatic welding. (Structure of the Invention) The present invention is characterized in that the groove is automatically welded in multiple layers by lNN multiple passes, and the first layer at the bottom is welded in one pass, and the next layer is ζ Go 2 buses, 3 buses or G after the 3rd layer
@L Is it better than that? 1. When aligning, the welding baths on both sides along the base metal surface at the groove are first applied, and then the welding baths are transferred to the welding baths on the intermediate part sandwiched between the two sides. Straight welding or slight weaving bath welding is performed for each welding bath in the middle section based on commands from a positioning sensor installed corresponding to the welding torch. ) 8 If (The weaving width of the unwelded part and Determine the position. If this weaving width is within the allowable weaving width, perform weaving welding in one pass, while if it exceeds the Ff weaving width 2, weave welding multiple buses with the smallest number. It is possible to reduce heat input by using a multi-gas method.
The position to be directed to the welding torch and the weaving width can be accurately and easily determined, making it possible to perform well-organized multi-layer welding, thereby achieving the intended purpose.

【実施例】【Example】

第1図は本発明方法の実施に係る溶接ロボットと溶接対
象のワークとを略示した図であるが、ワークは水平に配
置した大径管の母管[11と垂直に配置した小径管のノ
ズル(21とを軸直角に交差させて接合してなるもので
、母管(1)からノズル(2)が直交して分岐された構
造をなし、前記交差部分に形成される相貫曲線に沿った
鞍形溶接線(31を前記溶接ロボットによって自動溶接
し一体化されるものでる0 前記鞍形浴接i +31に、ノズル【21の外周面が形
成する直立面と、母管fi+の交差部分における孔の周
縁面が形成する傾斜面とがなすし形の開先となっていて
、さらlIC3次元閉曲線で勾配が存している。 溶接ロボットはノズル121の中心軸を略々中心として
その周、!2に公回転させるRo軸と、ノズル(21の
中心軸に平行に昇降動させる2軸と、該zill]に直
交してノズル+21の外周面に対し接離し得る水平方向
に直線動させるX軸との3軸を有する本体の先端部に溶
接トーチ+41を備えていて、さらに該溶接トーチ(4
]のトーチ軸をノズル(21の中心軸に対しなす傾斜角
度が変えられるように俯仰方向の揺動可能となしたS軸
を先端部に有している。 この溶接ロボットによって鞍形浴接線(3)の開先を多
層盛自動溶接するには、Ro、Z 、 X 、 Sの各
軸を操作して溶接トーチ(4]を溶接個所に正しい方向
、離隔距離−角度にて指向せしめて自動的、連続的に溶
接を行なわせることが可能であるが、ノズル(21側の
垂直面に沿う溶接バスは、接触方式による位置決め用セ
ンサ例えば倣いスタイラス15)をノズル]21の周面
に接当することによって、正確に位置決めができ、一方
、母管filの孔周縁の傾斜面に沿う溶接バスは、ウィ
ービング浴接と組合わせて行なう電流制御方式の位置決
め用センサ、例えばアークセンサ(図示せず]での電流
検出によって位置補正ができる。 ところでアークか発生してそれが安定するには浴接トー
チ+41の正確な位置決めが必要であることは言うまで
もなく、そのためにOゴ開先の形状について溶接ロボッ
トのデータバンクに正確な情報として予め教示しておか
なければならない。 従って第2図に示す如く、開先の底■と、傾斜面側の上
端@と垂直面側の余盛シ邪分を考慮した所定位置○を最
初にデータバンクに教示して2くことで、斜面側の溶接
位置Oに、アークセンサによって検出した前の溶接層と
教示されている上端@位置とからめることが可能であり
、その高さに図示しない高さ検出センサによって検出可
能である。 次いで、多層盛自動溶接を行なう方法2第3図を参照し
ながら詳述すると、底部の初層【第3層目以降 ]につ
いて&ゴ前記■に関する情報から位置が確定できるので
、該位置が決定するとストレート溶接を行なって一層目
の浴接を一巡する。 次の第2層目以降Gゴ多パス浴接を行なわせるが、まず
第2層は両辺部[BI (03を順にストレート浴接す
ればそれで十分であり、第3層目以降はそれぞれ/ ス
ル121 gの辺部(D) (GJ’ IJ+(ロ)J
を先にストレート溶接した後、このときの浴接トーチ(
41の高さを維持したままで母管ill側の辺i lK
Jの1 fKI +NJを微小ウィービング溶接し、か
つアークセンサにより補正しながら正確な位置の溶接を
行なう。 第3層目以降Gゴ浴接巾か広いので両辺部の溶接を行な
っても、その間に挾まれる中間部に未溶接部分が存在す
るので1次いでこの中間i (FJ TIJ (LI 
IcII[Plを通常のウィービング溶接手段によって
浴接する。 この場合には予め教示されている開先形状から当該各層
の開先部を算出して、これから両辺部の溶接パスの巾を
減算することにより、未溶接部分の溶接バスの巾ならび
に位置がめられるので。 この中間部溶接パスのウィービング巾及び電圧。 電流、速度等の溶接条件をデータバンクから取シ出して
出力し、溶接を行なわせnばよい。 ところで第5層以降の中間部Ud・・・におけるウィー
ビング巾は可成シ広(なるので1人熱量、開先部分の勾
配などによって決定される許容ウィービング巾よりも広
いときには2パス、3パス等、最モ少ナイハス数での複
数パスのウィービング溶接を行なわせる。 かくして1層多バス方式による自動溶接が正確に行なえ
て溶融金属の流れ、ブローホール等の好ましくない現象
が生じるのを排除して正確かつ。 整容された多層盛溶接が可能となる。 なお、上述の実施例はし形開先に対する溶接方法に係る
ものであって1両辺部が傾斜面となるV形開先の場合は
両辺ともに微小ウィービング溶接を行なうようにすわば
よい。 (発明の効果] 以上述べたところから明らかなように不発明方法によれ
ば一第2層目以降にストレート浴接とウィービング溶接
又はウィービング溶接によって各層につき適切な数の複
数ノぐスの溶接を行なわせているので、溶接のウィービ
ング巾を狭くさせて入熱を小さくすることが可能であり
、従って、溶融金属が流れたり、溶接効率が低下するな
どのウィービング巾が広いときに生じる欠点を排除する
ことが可能である。 しかも1本発明Gゴ開先における両辺部の各溶接バスを
位置決め用センサからの指令によって先行し、この面溶
接パスに挾まれる中間部のウィービング溶接を続いて行
なわせるようにしているので。 ウィービング巾の計算及び制御か正確かつ容易に行なえ
る。 このように、本発明G11層多ノくス万式の多層盛自動
溶接を行なわせることによって勾配を有する開先の溶接
も可能となシ、溶接施工範囲が拡大されて自動溶接化の
推進に一翼企担うものであって実用的価値は頗る大きい
FIG. 1 is a diagram schematically showing a welding robot according to the method of the present invention and a workpiece to be welded. The nozzle (21) is joined at right angles to the axis, and has a structure in which the nozzle (2) is orthogonally branched from the main pipe (1), and the intersecting curve formed at the intersection part The saddle-shaped welding line (31 is automatically welded and integrated by the welding robot. The sloping surface formed by the peripheral surface of the hole in the part forms a bevel-shaped bevel, and there is also a slope in the IC three-dimensional closed curve. The Ro axis rotates around the circumference, !2, and the nozzle (two axes that move up and down parallel to the central axis of 21, and the two axes that move up and down parallel to the center axis of 21, and the horizontal linear movement that can move toward and away from the outer peripheral surface of the nozzle + 21 orthogonal to the zill). A welding torch +41 is provided at the tip of the main body having three axes including the X-axis, and the welding torch (41)
The torch shaft of the nozzle (21) has an S-axis at its tip that can be swung in the vertical direction so that the angle of inclination to the center axis of the nozzle (21) can be changed. To automatically perform multi-layer welding on the groove in step 3), operate the Ro, Z, However, the welding bus along the vertical surface on the nozzle 21 side is a contact type positioning sensor such as a copying stylus 15 that is brought into contact with the circumferential surface of the nozzle 21. On the other hand, the welding bath along the inclined surface of the hole periphery of the main tube fil is controlled by a current-controlled positioning sensor, such as an arc sensor (not shown), which is carried out in combination with weaving bath contact. ] The position can be corrected by detecting the current. By the way, it goes without saying that accurate positioning of the bath welding torch +41 is necessary to stabilize the arc generated. Accurate information must be taught in advance to the robot's data bank. Therefore, as shown in Figure 2, the bottom of the groove ■, the upper end @ of the slope side, and the excess thickness of the vertical side. By first teaching the data bank the considered predetermined position ○, it is possible to intertwine the welding position O on the slope side with the previous weld layer detected by the arc sensor and the taught upper end @ position. The height can be detected by a height detection sensor (not shown) at that height.Next, method 2 for performing multi-layer automatic welding will be described in detail with reference to Fig. 3. The position of &G can be determined from the information regarding (■) above, so once the position is determined, straight welding is performed and the first layer bath welding is completed. From the second layer onwards, G-go multi-pass bath welding is performed. , First, for the second layer, it is sufficient to make straight bath contact on both sides [BI
After straight welding first, use the bath welding torch (
While maintaining the height of 41, side i lK on the main tube ill side.
J's 1 fKI +NJ is micro-weaved and welded at an accurate position while being corrected by an arc sensor. Since the third layer and subsequent layers have a wide G bath width, even if both sides are welded, there will be an unwelded part in the middle part sandwiched between them.
IcII[Pl is bath welded by conventional weaving welding means. In this case, the width and position of the weld bus in the unwelded part can be determined by calculating the groove part of each layer from the groove shape taught in advance and subtracting the width of the welding pass on both sides from this. So. Weaving width and voltage of this intermediate welding pass. All you have to do is retrieve welding conditions such as current and speed from the data bank, output them, and perform welding. By the way, the weaving width in the middle part Ud of the 5th layer and onwards can be made as wide as possible (so if it is wider than the allowable weaving width determined by the amount of heat per person, the slope of the groove, etc., we will use 2 passes, 3 passes, etc.) , performs weaving welding in multiple passes with the minimum number of welds.In this way, automatic welding using the single-layer multi-bus method can be performed accurately, eliminating undesirable phenomena such as flow of molten metal and blowholes. Accurate and well-organized multi-layer welding is possible. Note that the above embodiment relates to a welding method for a wedge-shaped groove, and in the case of a V-shaped groove in which both sides are inclined surfaces, both sides are welded. (Effects of the invention) As is clear from the above description, according to the uninvented method, each layer is welded by straight bath welding and weaving welding or by weaving welding after the first and second layers. Since welding is performed using an appropriate number of multiple nozzles per weld, it is possible to narrow the welding width and reduce heat input, which prevents molten metal from flowing and reducing welding efficiency. It is possible to eliminate the drawbacks that occur when the weaving width is wide.Moreover, according to the present invention, each welding bus on both sides of the G groove is preceded by a command from a positioning sensor, and this surface welding path is followed by a command from a positioning sensor. Since the weaving welding of the sandwiched intermediate part is performed continuously, the weaving width can be calculated and controlled accurately and easily.In this way, the multi-layer welding of the G11 multi-layer weld of the present invention is possible. By performing automatic welding, it is possible to weld grooves with slopes, and the range of welding work is expanded, which plays a role in promoting automatic welding, and has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に係る溶接ロボットの概要示
機構図、第2図及び第3図は本発明方法を説明するため
の開先部断面図である。 (4)・・・溶接トーチ。
FIG. 1 is a schematic mechanical diagram of a welding robot that implements the method of the present invention, and FIGS. 2 and 3 are sectional views of a groove portion for explaining the method of the present invention. (4)...Welding torch.

Claims (1)

【特許請求の範囲】[Claims] 1、 開先の多層盛自動溶接を各層について複数パスで
行なう方法であって、底部の初層を除く第2層目以降の
各層は、母材面に沿わせた両辺部の各溶接パスを先行し
た後、前記両辺部の間の中間部における各溶接パスに移
行せしめると共に、前記両辺部の各溶接パスについては
、溶接トーチに対応して設けた位置決め用センサからの
指令にもとづいてストレート溶接あるいは微少ウィービ
ング溶接を行なわせ一前記中間邪の各溶接パスについて
は、予め教示されている開先形状から当該各層の開先中
を算出し、これから前記両辺部の溶接パスの巾を減算す
ることにより、未溶接部分のウィービング巾ならびに位
置を決定して、このウィービング巾が許容ウィービング
巾以内であればエパスのウィービング溶接を行ない、−
万、許容ウィービング巾を超えていれば最も少ない数で
の複数パスのウィービング溶接を行なうことを特徴とす
る多層盛自動溶接方法。
1. A method in which multi-layer automatic welding of the groove is performed in multiple passes for each layer, and for each layer from the second layer onwards, excluding the first layer at the bottom, each welding pass on both sides along the base metal surface is performed. After the preceding welding, the process moves to each welding pass in the intermediate part between the two sides, and for each welding pass on both sides, straight welding is performed based on a command from a positioning sensor provided corresponding to the welding torch. Alternatively, by performing minute weaving welding, for each intermediate welding pass, calculate the groove middle of each layer from the groove shape taught in advance, and subtract the width of the welding pass on both sides from this. Determine the weaving width and position of the unwelded part, and if this weaving width is within the allowable weaving width, perform Epass weaving, -
1. A multilayer welding automatic welding method characterized in that if the weaving width exceeds an allowable weaving width, weaving welding is performed using the smallest number of multiple passes.
JP21428183A 1983-11-14 1983-11-14 Automatic multilayer welding Pending JPS60106672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21428183A JPS60106672A (en) 1983-11-14 1983-11-14 Automatic multilayer welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21428183A JPS60106672A (en) 1983-11-14 1983-11-14 Automatic multilayer welding

Publications (1)

Publication Number Publication Date
JPS60106672A true JPS60106672A (en) 1985-06-12

Family

ID=16653131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21428183A Pending JPS60106672A (en) 1983-11-14 1983-11-14 Automatic multilayer welding

Country Status (1)

Country Link
JP (1) JPS60106672A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06640A (en) * 1992-06-19 1994-01-11 Nkk Corp Horizontal multilayer welding method
EP0765709A1 (en) * 1995-09-28 1997-04-02 Framatome Brass for controlling the welding parameters in order to weld two metallic workpieces
US20140027497A1 (en) * 2009-08-17 2014-01-30 Global Tubing Llc Method of Manufacturing Coiled Tubing Using Multi-Pass Friction Stir Welding
RU2548541C2 (en) * 2013-04-12 2015-04-20 Леонид Михайлович Лобанов Method of multipass automatic welding by non-fusible electrode with filler wire feed and device to this end

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06640A (en) * 1992-06-19 1994-01-11 Nkk Corp Horizontal multilayer welding method
EP0765709A1 (en) * 1995-09-28 1997-04-02 Framatome Brass for controlling the welding parameters in order to weld two metallic workpieces
FR2739315A1 (en) * 1995-09-28 1997-04-04 Framatome Sa METHOD FOR ADJUSTING WELDING PARAMETERS FOR THE PRODUCTION OF A WELDING JOINT BETWEEN TWO METAL PARTS
US20140027497A1 (en) * 2009-08-17 2014-01-30 Global Tubing Llc Method of Manufacturing Coiled Tubing Using Multi-Pass Friction Stir Welding
US9541224B2 (en) * 2009-08-17 2017-01-10 Global Tubing, Llc Method of manufacturing coiled tubing using multi-pass friction stir welding
RU2548541C2 (en) * 2013-04-12 2015-04-20 Леонид Михайлович Лобанов Method of multipass automatic welding by non-fusible electrode with filler wire feed and device to this end

Similar Documents

Publication Publication Date Title
CN110153534B (en) Multilayer and multi-path robot welding path planning method and system suitable for welding deformation
US10835981B2 (en) Method for circumferential welding and a robotic welding system for circumferential welding
CN110052692B (en) V-groove robot welding path planning method and system
CN107378201A (en) The real-time planing method of intersection multi-pass welding seam track
CN112276390B (en) Multilayer multi-welding track planning method for thick plate large slope
CN111496428B (en) Multilayer multi-pass welding bead planning method based on straight welding seam contour recognition and welding workstation
CN111451610B (en) Method and device for controlling a welding process
Zhang et al. A segmentation planning method based on the change rate of cross-sectional area of single V-groove for robotic multi-pass welding in intersecting pipe-pipe joint
JP6596655B2 (en) Laser welding control method and laser welding system
JPS60106672A (en) Automatic multilayer welding
CN113681133B (en) Intelligent welding method of redundant degree of freedom robot with vision
JPH06270B2 (en) One-sided first layer welding method for pipes
JPH0513031B2 (en)
JP7223652B2 (en) On-site welding equipment
JPS59229284A (en) Welding method in juncture having three-dimensional shape
Zhao Multi-Layer and Multi-Channel Welding Trajectory Control Method of Welding Robot.
JPH07241673A (en) Method and equipment for automatic welding
CN117817077A (en) Multilayer multi-channel corner welding planning method
JPS62259673A (en) Welding method for periphery of fixed pipe
JP2002096170A (en) Amendment method of automatic sensing process in automatic programming of arc welding robot
JPH051106B2 (en)
JPH1043858A (en) Method for setting welding condition in butt welding
JP2021007977A (en) Construction-site welding apparatus
JPS6313676A (en) Multi-layer welding method
JPS58184072A (en) Multi-layer build-up welding method