JPS61206175A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS61206175A
JPS61206175A JP60044530A JP4453085A JPS61206175A JP S61206175 A JPS61206175 A JP S61206175A JP 60044530 A JP60044530 A JP 60044530A JP 4453085 A JP4453085 A JP 4453085A JP S61206175 A JPS61206175 A JP S61206175A
Authority
JP
Japan
Prior art keywords
line
drain
fluid
heat exchanger
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60044530A
Other languages
Japanese (ja)
Inventor
Masahiro Akiyoshi
秋吉 正寛
Shigeru Tajima
茂 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60044530A priority Critical patent/JPS61206175A/en
Publication of JPS61206175A publication Critical patent/JPS61206175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make a heat exchanger compact and layout easy by adopting a direct type heat exchanger as an heat exchanger for cooling process gas. CONSTITUTION:An outlet line 2 from a low temperature CO converter, a fuel electrode inlet steam separator 1, and a fuel electrode inlet line 4 constitute a fuel electrode inlet line of a fuel cell main body 5. A drain line 6, a drain cooler 7, a drain circulation pump 9, and a cooling water line 3 constitute a drain circulation line. An air electrode outlet line 11, an air electrode outlet steam separator 10, an auxiliary combustion unit inlet line 13 constitute an air electrode outlet line. A drain line 14, a drain cooler 15, a drain circulation pump 17, and a cooling water line 12 constitute a drain circulation line. In the steam separators 1, 10, operating fluid passes through particles of cooling water, and gas and fine particles of water perform direct heat exchange.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池発電システムに係わり、更C二詳しく
線電池へ供給する水素系流体を事前(:処理する系統S
よび電池から排出される酸累系流体全亭後C二処理する
燃料電池発電システムに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fuel cell power generation system.
The present invention also relates to a fuel cell power generation system that performs C2 treatment on the acidic fluid discharged from the battery.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池は水素と酸素を用いて電気化学反応作用により
電気出力を得る電池である。水素は天然ガス、プロパン
等の炭化水素系物質を改質することによって得られてい
るが、こうして得られる水素系流体中にh30%以上C
二及ぶ水分が含まれている。そこで、より水素成分の多
い流体を燃料電池C二送るために、事前処理として水分
を除去する工程が必要となる。また、この工程で)ま該
流体l燃料電池が要求する適当な温度に制御することも
併せて行なうのが通例の方式である。このように。
A fuel cell is a battery that obtains electrical output through an electrochemical reaction using hydrogen and oxygen. Hydrogen is obtained by reforming hydrocarbon-based substances such as natural gas and propane, but the hydrogen-based fluid obtained in this way contains more than 30% C.
Contains up to two ounces of water. Therefore, in order to send a fluid with a higher hydrogen content to the fuel cell C2, a step of removing moisture is required as a preliminary treatment. In addition, in this process, it is a usual method to also control the temperature to an appropriate level required by the fluid fuel cell. in this way.

水分分離と温度制御を行わしめるために冷却用熱変換器
が用いられている。
Cooling heat converters are used to provide moisture separation and temperature control.

一方、燃料電池が必要とする酸素に、窄気中の酸素とし
て供給されるが、電池内で作用したのちに排出される酸
素系流体には25%程度の水分が含まれると共に、電池
の作用が発熱反応であるためC二該流体の温度は200
℃程度(−なっている。通例の方式でtよ、該流体ン圧
縮器の駆動源Sよび改質器の作動流体として再利用する
ので、水分を除去する必要がある。このための水分除去
装置として冷却用黒変換器乞用いている。
On the other hand, the oxygen required by a fuel cell is supplied as oxygen in confined air, but the oxygen-based fluid discharged after acting in the cell contains about 25% water, and the Since is an exothermic reaction, the temperature of the C2 fluid is 200
℃ (-). In the usual method, the fluid is reused as the drive source S of the compressor and the working fluid of the reformer, so it is necessary to remove moisture. A black converter for cooling is used as a device.

これらの冷却用熱交換器(二ついては、間接接触式熱交
換器と湿分分離器全併設したものがあった。
These cooling heat exchangers (two of them included an indirect contact heat exchanger and a moisture separator).

この公知の装置の構成は間接接触式熱交換器で冷却した
流体を湿分分離器で水凝縮ガスと凝劇水I:分離するも
のであるが、該流体C二は不凝縮ガスが含まれているた
め、この公知の装置1’t’用いたのでは熱貫流率が小
さく、従って熱51換器が大形化し、価格が増大すると
共に機器配置計画上も不利であるという欠点があった。
The configuration of this known device is such that a fluid cooled by an indirect contact heat exchanger is separated from water condensed gas and condensed water I by a moisture separator, but the fluid C2 contains non-condensable gas. Therefore, when this known device 1't' was used, the heat transfer coefficient was small, and therefore the heat exchanger became large, which increased the price and was disadvantageous in terms of equipment layout planning. .

また、別の公知例として、該流体の冷却用黒変換器に樹
脂粒を充填した型式の直接接触式熱変換器’21’E用
するものがあった。この公知の装置も。
Another known example is a direct contact heat converter '21'E in which a black converter for cooling the fluid is filled with resin particles. Also this known device.

冷却水の粒子の中!高温のガスが通過する型式の直接接
触式熱交換器と比較して外形が大きくなるという欠点が
あった。
Inside the cooling water particles! The disadvantage is that the external size is larger than that of a direct contact heat exchanger through which high-temperature gas passes.

〔発明の目的〕[Purpose of the invention]

本発明に上記事情に鑑みてなされたもので、その目的は
小形の直接接触式熱交換器を設置すること(二より1機
器配置計画を容易にするとともf二高信頼性で長寿命の
安価な燃料電池発電システム全提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to install a small direct contact heat exchanger (2) to facilitate equipment layout planning, and (2) to provide high reliability, long life, and low cost. Our goal is to provide complete fuel cell power generation systems.

〔発明の概要〕[Summary of the invention]

本発明に、上記目的を達成するため、作動流体の冷却用
熱変換器g二冷却−水の粒子の中を高温のガスが通過す
ることにより、ガスと冷却水の微粒子が直接熱交換を行
なう直接接触式熱交換器を採用しにことを特徴とするも
のである。
In order to achieve the above object, the present invention provides a heat converter for cooling a working fluid.g.2 Cooling - A high temperature gas passes through the cooling water particles, so that the gas and the cooling water particles directly exchange heat. It is characterized by the adoption of a direct contact heat exchanger.

〔発明の実施例〕[Embodiments of the invention]

図面は、本発明になる燃料電池発電システムの具体的一
実施例!示すものである。図C%いて、低温CO転化器
からの出口系統2、燃料&入口水蒸気分離器1.Nよび
燃料極入口系統4は、燃料電池本体5の6料a入口系を
構成する。さらに、水蒸気分離器ドレン系統6、ドレン
冷却器7.ドレン循環ポンプ9、および水蒸気分離器冷
却水系統31求ドレン倣環系を構成する。また、空気臘
出口・   系統11.空気極出口水蒸気分離器IO1
および補助燃焼器入口系統13は空気極出口系を構成す
る。さらに、水蒸気ドレン系統14、ドレン冷却器15
.  ドレン循環ポンプ17、および水蒸気分離器冷却
水系統12は、ドレン循環系を構成する。
The drawing is a specific example of the fuel cell power generation system according to the present invention! It shows. Figure C: Exit system 2 from low temperature CO converter, fuel & inlet steam separator 1. N and the fuel electrode inlet system 4 constitute a 6-feed a inlet system of the fuel cell main body 5. Furthermore, a steam separator drain system 6, a drain cooler 7. The drain circulating pump 9 and the steam separator cooling water system 31 constitute a drain-seeking ring system. In addition, air outlet/system 11. Air electrode outlet steam separator IO1
The auxiliary combustor inlet system 13 constitutes a cathode outlet system. Furthermore, a steam drain system 14, a drain cooler 15
.. The drain circulation pump 17 and the steam separator cooling water system 12 constitute a drain circulation system.

次に作用を説明する。燃料権入口水蒸気分離器りは低温
CO転化器出口系統2の作動流体を水蒸気分離器冷却水
系統3の冷却水(二より冷却し湿分除去する。湿分除去
された作動流体は燃料極入口系統4を通り燃料電池本体
5C二送られ、水蒸気分離器lで分離された凝縮水は水
魚気分WL器ドレン系統6を通すドレン冷却器7により
冷却され、一部はブローダウン系統8を通りブローダウ
ンされ残りはドレン循環ポンプ9および冷却水系統3を
通り貼環する。同様g二、図面において1、空気極出口
水蒸気分離器10は、空気極出口系統11の排窒気を水
蒸気分離器冷却水系統12の冷却水により冷却し湿分除
去する。湿分除去された徘望気は補助燃焼器入口系統1
3を通り図示しない補助燃焼器C二速られ、水蒸気分離
器lOで分離された凝縮水は水蒸気分離器ドレン系統1
4を通すドレン冷却器15(二より冷却され、一部はブ
ローダウン系統16を通りブローダウンされ、残りはド
レン貼環ポンプ17および冷却水系統12を通り閑環す
る。
Next, the effect will be explained. The fuel inlet steam separator cools and removes moisture from the working fluid in the low temperature CO converter outlet system 2 through the cooling water (2) in the steam separator cooling water system 3.The moisture-removed working fluid is transferred to the fuel electrode inlet. The condensed water is sent through the fuel cell main body 5C2 through the system 4, and separated by the steam separator 1. The condensed water is cooled by the drain cooler 7 which passes through the water vapor WL device drain system 6, and a part of it passes through the blowdown system 8 and is blown away. The remaining water passes through the drain circulation pump 9 and the cooling water system 3. Similarly, in the drawing, the air electrode outlet steam separator 10 cools the exhaust nitrogen from the air electrode outlet system 11. It is cooled and moisture removed by the cooling water in the water system 12.The wandering air from which moisture has been removed is transferred to the auxiliary combustor inlet system 1.
The condensed water that passes through the auxiliary combustor C (not shown) and is separated in the steam separator IO is transferred to the steam separator drain system 1.
4 is passed through a drain cooler 15 (cooled from the second side, a part is blown down through a blowdown system 16, and the rest passes through a drain ring pump 17 and a cooling water system 12 and is cooled down).

水蒸気分離器内では1作動流体が冷却水の粒子の中を通
過し、ガスと冷却水の微粒子が直接熱交換を行なうこと
イニより、熱貫流率を大きくすることができる。
In the steam separator, a working fluid passes through the cooling water particles, and the gas and the cooling water particles directly exchange heat, thereby increasing the heat transfer coefficient.

例工if、IQMW 級の燃料電池発電システムにおい
て、前述の樹脂粒充填型の直接接触式熱交換器の外形寸
法は、燃料極入口弁a@で1.2mφX3.7m、寞気
梅出口分離器で1.6mφX4.3mであるが、本発明
による直接接触式熱交換器を採用すれば各々0.6 r
r4X1.8m 、 t、tmφX 3.3mと小型化
できる。
For example, in an IQMW class fuel cell power generation system, the external dimensions of the resin granule-filled direct contact heat exchanger described above are 1.2 mφ x 3.7 m at the fuel electrode inlet valve a@, and the air outlet separator. However, if the direct contact heat exchanger according to the present invention is adopted, each diameter is 0.6 mφ x 4.3 m.
It can be downsized to r4X1.8m, t,tmφX3.3m.

このように本発明によれば、プロセスガスの冷即用熱交
換器f二直接接触式熱交換器を採用することC二より、
熱交換器を小型化できることになり。
As described above, according to the present invention, by employing the cold ready heat exchanger f2 for the process gas and the direct contact heat exchanger C2,
This allows the heat exchanger to be made smaller.

機器配置計画が容易となり、安価となる。Equipment layout planning becomes easier and cheaper.

また、本発明によれば1間接接触式熱交換器にみられる
チューブがないため、チューブリーク等の問題は全くな
く、構造が簡単なため補修が容易となる。
Further, according to the present invention, since there is no tube as seen in single indirect contact type heat exchangers, there are no problems such as tube leaks, and the structure is simple, so repairs are easy.

さらに1本発明S二よれば、樹脂等の内部充填がない定
め、圧損が少なく、目詰まりg:よる問題は全くなく、
内部充填物の交換等の必要もない。
Furthermore, according to the present invention S2, there is no internal filling with resin or the like, there is little pressure loss, and there is no problem of clogging.
There is no need to replace the internal filling.

なお、本発明になる直接接触式熱交換器は、地熱発電プ
ラントの復水器や、ガス抽出装置の凝縮器等に多数使用
されており、機器の性能計算も確立されていることから
、採用にあたっての問題は全く生じない。
The direct contact heat exchanger of the present invention is widely used in condensers of geothermal power plants, condensers of gas extraction equipment, etc., and the performance calculation of the equipment has been established, so it was adopted. No problems arise at all.

図面C二おいては1本発明になる@接接触式熱交換器は
燃料電池発電システムの燃料極入口および空気掻出口に
設置されているが、本発明(二なる直接接触式熱交換器
は、燃料電池発電システムの燃料極入口および菟気糧出
口とは限らず、燃料電池発電システムの作動流体の水回
収あるいは湿分制御の必要なあらゆる箇所C二適用でき
る。
In Drawing C2, the contact heat exchanger according to the present invention is installed at the fuel electrode inlet and air scraping outlet of the fuel cell power generation system, but the present invention (the second direct contact heat exchanger is installed at the fuel electrode inlet and air scraping outlet) The invention is applicable not only to the fuel electrode inlet and fuel outlet of the fuel cell power generation system, but also to any location where water recovery or moisture control of the working fluid of the fuel cell power generation system is required.

〔発明の′効果〕〔Effect of the invention〕

以上述べたよう(二、本発明によれば1作動流体の冷却
用熱交換器に直接接触式熱交換器を採用して熱交(Ij
!器を小型化でき、かつ湿分の少ない流体を電池に供給
できることにより、機器配置計画を容易とし、高信頼性
で長寿命の燃料電池発電システムを提供でき、発電原価
の安価なプラントが構成できるため、省エネルギー(二
寄与する。
As mentioned above (2. According to the present invention, 1. A direct contact heat exchanger is adopted as a heat exchanger for cooling the working fluid, and the heat exchanger (Ij
! By being able to miniaturize the device and supply fluid with low moisture content to the battery, it is possible to easily plan the equipment layout, provide a highly reliable and long-life fuel cell power generation system, and construct a plant with low power generation costs. Therefore, it contributes to energy saving (2).

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す燃料電池発電システムの
系統構成図である。 l・・・燃料極入口水蒸器分離器。 2・・・低温CO転化器出口系統、 3・・・水蒸気分離器冷却水系統、 4・・・燃料極入口系統、 5・・・燃料電池本体。 6・・・水蒸気分離器ドレン系統。 7・・・ドレン冷却器、   8・・・ブローダウン系
統、9・・・ドレン循環ポンプ、lO・・・空部出口水
蒸気分1lit器、11・・・窒気准出口系統、 12・・・水蒸気分離器冷却水系統。 13・・・補助燃焼器入口系統、 14・・・水蒸気分離器ドレン系統、 15・・・ドレン冷却器、    16・・・ブローダ
ウン系統、17・・・ドレン循環ポンプ 代理人 弁理士 則 近 憲 佑 (ほか1名)
The drawing is a system configuration diagram of a fuel cell power generation system showing one embodiment of the present invention. l...Fuel electrode inlet steam separator. 2...Low temperature CO converter outlet system, 3...Steam separator cooling water system, 4...Fuel electrode inlet system, 5...Fuel cell main body. 6...Steam separator drain system. 7... Drain cooler, 8... Blowdown system, 9... Drain circulation pump, lO... Vacant outlet water vapor 1 liter unit, 11... Nitrogen semi-outlet system, 12... Steam separator cooling water system. 13...Auxiliary combustor inlet system, 14...Steam separator drain system, 15...Drain cooler, 16...Blowdown system, 17...Drain circulation pump agent Nori Chika, patent attorney Yu (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)水素と酸素を用い、電気化学反応作用によつて電
気出力を得る電池本体へ水素を多量に含む液体を供給す
る系統において、該流体中に含まれる水蒸気を除去し、
該流体中の湿分を制御すると同時に該流体の温度を制御
する装置として、該流体と微粒化した冷却源流体とを直
接接触させる方式の熱交換器を用いたことを特徴とする
燃料電池発電システム。
(1) In a system that uses hydrogen and oxygen to supply a liquid containing a large amount of hydrogen to a battery body that obtains electrical output through an electrochemical reaction, water vapor contained in the fluid is removed,
A fuel cell power generation device characterized in that a heat exchanger that brings the fluid into direct contact with an atomized cooling source fluid is used as a device for controlling the moisture in the fluid and the temperature of the fluid at the same time. system.
(2)水素と酸素を用い、電気化学反応作用によつて電
気出力を得る電池本体から電池本体内で作用した酸素系
流体を排出する系統において、該流体中に含まれる水蒸
気を除去し、該流体中の湿分を制御すると同時に該流体
の温度を制御する装置として、該流体と微粒化した冷却
源流体とを直接接触させる方式の熱交換器を用いたこと
を特徴とする燃料電池発電システム。
(2) In a system that uses hydrogen and oxygen to generate electrical output through an electrochemical reaction, the oxygen-based fluid that has acted inside the battery body is discharged from the battery body, in which the water vapor contained in the fluid is removed and the A fuel cell power generation system characterized in that a heat exchanger that brings the fluid into direct contact with an atomized cooling source fluid is used as a device for controlling the moisture in the fluid and the temperature of the fluid at the same time. .
JP60044530A 1985-03-08 1985-03-08 Fuel cell power generating system Pending JPS61206175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044530A JPS61206175A (en) 1985-03-08 1985-03-08 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044530A JPS61206175A (en) 1985-03-08 1985-03-08 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS61206175A true JPS61206175A (en) 1986-09-12

Family

ID=12694065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044530A Pending JPS61206175A (en) 1985-03-08 1985-03-08 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS61206175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559653A1 (en) * 1990-11-13 1993-09-15 Perry Oceanographics, Inc. Closed loop reactant/product management system for electrochemical galvanic energy devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559653A1 (en) * 1990-11-13 1993-09-15 Perry Oceanographics, Inc. Closed loop reactant/product management system for electrochemical galvanic energy devices
EP0559653A4 (en) * 1990-11-13 1995-04-19 Perry Oceanographics Inc Closed loop reactant/product management system for electrochemical galvanic energy devices

Similar Documents

Publication Publication Date Title
TW499778B (en) Generating system for a fuel cell, and heat waste recirculating and cooling system of the generating system
CN105576269A (en) Thermal control system of fixed mini-type fuel cell cogeneration device
JPH0228232B2 (en)
EP1284515A2 (en) Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system
US7037610B2 (en) Humidification of reactant streams in fuel cells
JPS6257072B2 (en)
JPS61206175A (en) Fuel cell power generating system
JP4453211B2 (en) Waste heat treatment method and apparatus for fuel cell power generator
US4591495A (en) Method and apparatus for making sulphuric acid
JP3557104B2 (en) Phosphoric acid fuel cell power plant
JPH05225993A (en) Phosphoric acid type fuel cell
JPH0443567A (en) Waste heat recovery device for fuel cell power generating plant
JP2002100382A (en) Fuel cell power generator
JP2002246060A (en) Fuel cell generator and operation method therefor
JPH1064573A (en) Recovery system of fuel cell exhaust gas system heat and water
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JPS5828177A (en) Fuel-cell generation plant
JP2800286B2 (en) Water recovery device for fuel cell
JP4440676B2 (en) Fuel cell power generation hot water supply system
JPH0629036A (en) Heat collection system of fuel cell power-generation device
JPS6280970A (en) Power generating method of fuel cell
JPH02168573A (en) Fuel battery power generating system
JPS6041770A (en) Fuel cell system
JPH05144452A (en) Fuel cell power generating system
JP2002151095A (en) Fuel cell generating system and driving method thereof