JPS6120603B2 - - Google Patents

Info

Publication number
JPS6120603B2
JPS6120603B2 JP11326678A JP11326678A JPS6120603B2 JP S6120603 B2 JPS6120603 B2 JP S6120603B2 JP 11326678 A JP11326678 A JP 11326678A JP 11326678 A JP11326678 A JP 11326678A JP S6120603 B2 JPS6120603 B2 JP S6120603B2
Authority
JP
Japan
Prior art keywords
forging
powder
atmosphere
preform
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11326678A
Other languages
Japanese (ja)
Other versions
JPS5541915A (en
Inventor
Yoshinobu Takeda
Atsushi Kuroishi
Susumu Nomichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11326678A priority Critical patent/JPS5541915A/en
Publication of JPS5541915A publication Critical patent/JPS5541915A/en
Publication of JPS6120603B2 publication Critical patent/JPS6120603B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 粉末熱間鍛造法によつて高性能部品を製造する
技術は、より経済的に、より優れた機械的性質を
要求する市場によつて年々その重要度を増しつゝ
ある。
[Detailed Description of the Invention] The technology of manufacturing high-performance parts by powder hot forging is becoming more and more important year by year as the market demands better mechanical properties at a more economical rate. be.

粉末熱間鍛造法の基体原理そのものは、古くか
ら知られているが、工業化し、量産する技術にお
いては、種々の解決すべき問題を有していること
は衆知の通りである。
Although the basic principle of the powder hot forging method itself has been known for a long time, it is well known that there are various problems that need to be solved in the technology for industrialization and mass production.

本発明は、粉末熱間鍛造法における加熱工程
と、鍛造工程における品質の安定性向上と、経済
性の向上極めて有効な技術を供せんとするもので
ある。
The present invention aims to provide an extremely effective technique for improving the heating process in powder hot forging, the stability of quality in the forging process, and the economical efficiency.

粉末熱間鍛造法において、いわゆるプレフオー
ム(予備成形体)の加熱条件は、熱間塑性変形能
の温度依存性、焼結度依存性、潤滑剤の劣化度、
及び脱炭、酸化度に著しい影響を及ぼすことが知
られている。例えばプレフオームの温度が異なれ
ば、熱間塑性変形能は著しく影響を受け、鍛造圧
力の増加や限界すえ込み率の低下を惹起する。即
ち、鍛造金型の寿命の低下や微細割れの発生率を
高めることになり、品質及び経済上極めて不都合
である。この様に加熱条件として保持温度、時
間、雰囲気が極めて重要であるが、すべての製造
条件を満足する様な加熱条件の選定は容易でなか
つた。
In the powder hot forging method, the heating conditions for the so-called preform (preform) are determined by the temperature dependence of hot plastic deformability, the degree of sintering, the degree of deterioration of the lubricant,
It is known to have a significant effect on decarburization and oxidation degree. For example, if the temperature of the preform differs, the hot plastic deformability is significantly affected, causing an increase in forging pressure and a decrease in the critical swaging rate. That is, this reduces the life of the forging die and increases the incidence of microcracks, which is extremely disadvantageous in terms of quality and economy. As described above, holding temperature, time, and atmosphere are extremely important heating conditions, but it has not been easy to select heating conditions that satisfy all manufacturing conditions.

何故なら、一般に加熱によつてプレフオームの
焼結が進み、粉末粒子同志の原子的結合が強固に
なるにつれ、熱間塑性変形能は同一温度でも向上
する。従つて、この目的から望ましい加熱条件は
出来るだけ高温で長時間である。
This is because, in general, as the preform is sintered by heating and the atomic bonds between the powder particles become stronger, the hot plastic deformability improves even at the same temperature. Therefore, for this purpose, desirable heating conditions are as high a temperature as possible and for a long time.

一方、鍛造に際して、プレフオームと金型との
摩擦は鍛造のエネルギーを摩擦エネルギーとして
吸収し、実際の変形と緻密化に使われるエネルギ
ーを減少する。この為、出来るだけ摩擦を減ら
し、実効エネルギーを確保する必要がある。この
目的でプレフオームにコロダルグラフアイト等の
固体潤滑剤を塗布することが一般に行われる。こ
れの処理は、普通加熱前に行われる為、加熱中に
固体潤滑剤が分解、劣化することがあつた。
On the other hand, during forging, the friction between the preform and the die absorbs the forging energy as frictional energy, reducing the energy used for actual deformation and densification. For this reason, it is necessary to reduce friction as much as possible and secure effective energy. It is common practice to coat the preform with a solid lubricant such as colodalgraphite for this purpose. Since this treatment is usually performed before heating, the solid lubricant sometimes decomposes and deteriorates during heating.

鋼組成の粉末熱間鍛造体の製造に於ては、炭素
組成の均一化、安定化が大きな問題であつた。加
熱雰囲気は必ずしも炭素雰囲気ではなく、雰囲気
中の水分や酸素によつて脱炭によつて脱炭、醸化
することがしばしばあつた。これを防止する炭素
雰囲気を得る為には、吸熱性変成ガス或いは浸炭
性のCO,CH4,C3H8等のガスを不活性ガスに混
合せねばならなかつた。吸熱性変成ガスは、高価
な変成炉を必要とするばかりか、雰囲気の安定度
に問題があり、ガス混合法は混合ガスの不均一が
問題であつた。
In the production of powder hot forged bodies of steel composition, uniformity and stabilization of the carbon composition has been a major problem. The heating atmosphere is not necessarily a carbon atmosphere, and decarburization and fermentation often occur due to decarburization due to moisture and oxygen in the atmosphere. In order to obtain a carbon atmosphere that prevents this, it is necessary to mix an endothermic modified gas or a carburizing gas such as CO, CH 4 or C 3 H 8 with an inert gas. Endothermic converted gases not only require an expensive conversion furnace, but also have problems with the stability of the atmosphere, and gas mixing methods have problems with non-uniformity of the mixed gas.

浸炭性ガスを得る方法として、メタノール、イ
ソプロピルアルコール、メチルアセテートの如き
有機液剤を熱分解させ、CO,H2ガスを発生させ
る方法を知られている。この方法は、炉内に有機
液剤を適性する等して雰囲気を形成する為、変成
炉やガス混合装置を必要としない優れた方法であ
る。
A known method for obtaining carburizing gas is to thermally decompose an organic liquid such as methanol, isopropyl alcohol, or methyl acetate to generate CO and H 2 gases. This method is an excellent method that does not require a shift furnace or a gas mixing device, since an atmosphere is created by applying an organic liquid in the furnace.

本発明はこの方法を更に改良し、適注装置を全
く必要としない雰囲気ガスの調整法を供するもの
である。即ち、プレフオーム中に存在する空孔中
に含浸させた前記有機液剤を分解させることによ
り、雰囲気を得、過剰の分子状炭素を媒としてプ
レフオーム表面に折出させ、潤滑効果を高める方
法である。本方法に依ると、雰囲気調製液剤を潤
滑剤の懸濁液とすることが出来、容易に脱炭、酸
化のないプレフオームを得ることが出来ることが
可能となつた。本発明におけるプレフオームの空
孔率は、前記有機液剤を有効に含浸させるに必要
な最低量として10%、良好な鍛造体を得るのに必
要な最高空孔率として17%が必要である。含浸さ
せる有機液剤はメタノール、イソプロピルアルコ
ール、メチルアセテートが最も経済的で且つ、分
解安定性も優れているので採用した。懸濁させる
固体潤滑剤は1%以下であると、充分な潤滑効果
を得る為に不充分であり、10%以上になると懸濁
が困難となつたり、過剰の潤滑剤によつて鍛造体
の寸法が狂う為に本範囲であることが必要であ
る。
The present invention further improves this method and provides a method for adjusting the atmospheric gas that does not require any proper injection equipment. That is, this is a method in which an atmosphere is obtained by decomposing the organic liquid agent impregnated into the pores existing in the preform, and the excess molecular carbon is precipitated onto the surface of the preform as a medium to enhance the lubricating effect. According to this method, the atmosphere conditioning liquid can be made into a lubricant suspension, and it has become possible to easily obtain a preform that is free from decarburization and oxidation. The porosity of the preform in the present invention is required to be 10% as the minimum amount required to effectively impregnate the organic liquid, and 17% as the maximum porosity required to obtain a good forged body. As the organic liquid for impregnation, methanol, isopropyl alcohol, and methyl acetate were used because they are the most economical and have excellent decomposition stability. If the amount of solid lubricant to be suspended is less than 1%, it is insufficient to obtain a sufficient lubrication effect, and if it is more than 10%, it may become difficult to suspend or cause damage to the forging due to excessive lubricant. Since the dimensions will be out of order, it is necessary to be within this range.

実施例 Fe−2Ni−0.5Mo−銅粉0.5%黒鉛を添加した粉
末混合体を型押成形し、68g/c.c.の気孔率13%の
粉末成形体を得た。更に本成形体をエンドガス中
で1130℃で焼結した。得られた焼結体の空孔率は
12%であつた。
Example A powder mixture containing Fe-2Ni-0.5Mo-copper powder and 0.5% graphite was pressed and molded to obtain a powder compact of 68 g/cc and a porosity of 13%. Furthermore, this molded body was sintered at 1130°C in an end gas. The porosity of the obtained sintered body is
It was 12%.

これら粉末成形体及び焼結体に、固体潤滑剤を
5%懸濁させたメタノールを含浸し、直ちにN2
ガス中で1200℃で60分間加熱した。加熱されたプ
レフオームを型中で鍛造し、7.8g/c.c.の比重を
得た。一方、従来法として、水を懸濁液剤とした
潤滑剤を含浸させた後、同様の鍛造を行い、鍛造
後の表層部組識を比較したところ、本発明に依る
鍛造体には顕著な脱炭層は見られなかつたが、従
来法においては脱炭層が認められた。又、鍛造圧
力は7.8g/c.c.の比重を得るのに本発明では9.4〜
9.6ton/cm2、従来法では9.7〜9.9ton/cm2を要し、
本発明の方が平均して0.3ton/cm2低かつた。
These powder compacts and sintered compacts were impregnated with methanol in which 5% solid lubricant was suspended, and immediately N2
Heated in gas at 1200°C for 60 minutes. The heated preform was forged in a mold to obtain a specific gravity of 7.8 g/cc. On the other hand, as in the conventional method, similar forging was performed after impregnating a lubricant using water as a suspension agent, and the surface layer structure after forging was compared. Although no coal seam was observed, a decarburized seam was observed in the conventional method. In addition, the forging pressure is 9.4 to 9.4 in the present invention to obtain a specific gravity of 7.8 g/cc.
9.6ton/cm 2 , conventional method requires 9.7 to 9.9ton/cm 2 ,
The present invention was 0.3 ton/cm 2 lower on average.

以上の如く本発明は、粉末熱間鍛造法における
加熱雰囲気の調整と潤滑方法の改良方法を供する
ものであり、簡単な工程によつて、著しく品質を
安定化することが出来、実用上極めて有意義であ
る。
As described above, the present invention provides a method for improving the heating atmosphere adjustment and lubrication method in the powder hot forging method, which can significantly stabilize quality through a simple process, and is extremely meaningful in practice. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 空孔率が10〜17%の粉末成形体もしくは焼結
体に、メタノール、イソプロピルアルコール、メ
チルアセテートのうちから選ばれた一種又は二種
の有機液剤中に固体潤滑剤を1〜10%懸濁せしめ
た液体を含浸塗布し、直ちに不活性ガス雰囲気中
で加熱し含有された有機液剤をCO,H2,及び遊
離炭素に分解することによつて調節された雰囲気
を得、脱炭、酸化を低減し、且つ鍛造時の潤滑性
を改善することを特徴とする粉末熱間鍛造法。
1 A powder compact or sintered body with a porosity of 10 to 17% is coated with 1 to 10% of a solid lubricant in one or two organic liquids selected from methanol, isopropyl alcohol, and methyl acetate. A controlled atmosphere is obtained by impregnating the turbid liquid and immediately heating it in an inert gas atmosphere to decompose the contained organic liquid into CO, H 2 and free carbon, allowing decarburization and oxidation. A powder hot forging method characterized by reducing lubricity and improving lubricity during forging.
JP11326678A 1978-09-14 1978-09-14 Hot forging method for powder Granted JPS5541915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11326678A JPS5541915A (en) 1978-09-14 1978-09-14 Hot forging method for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11326678A JPS5541915A (en) 1978-09-14 1978-09-14 Hot forging method for powder

Publications (2)

Publication Number Publication Date
JPS5541915A JPS5541915A (en) 1980-03-25
JPS6120603B2 true JPS6120603B2 (en) 1986-05-23

Family

ID=14607801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11326678A Granted JPS5541915A (en) 1978-09-14 1978-09-14 Hot forging method for powder

Country Status (1)

Country Link
JP (1) JPS5541915A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514880Y2 (en) * 1988-03-14 1993-04-20
JPH0734717Y2 (en) * 1992-11-06 1995-08-09 マルイ工業株式会社 Decoration

Also Published As

Publication number Publication date
JPS5541915A (en) 1980-03-25

Similar Documents

Publication Publication Date Title
GB653235A (en) A porous electrode for galvanic accumulator elements and a method of producing such electrode
US4477493A (en) Production of reaction-bonded silicon carbide bodies
JPS6120603B2 (en)
JPH0341426B2 (en)
US2187589A (en) Porous iron article and method of making same
US4122220A (en) Method for reducing the gas permeability of a sintered porous silicon nitride body
US3142894A (en) Sintered metal article and method of making same
JPH0244078A (en) Porous ceramic composite material and production thereof
CN111963573A (en) Oil-containing bearing and preparation method and application thereof
RU2131805C1 (en) Method of manufacturing polycrystalline product
JPS62148384A (en) Silicon carbide base composite material
CN212615930U (en) Oil-retaining bearing
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
SU1044657A1 (en) Antifriction material based on iron oxide
JP4158015B2 (en) Method for producing sintered body and sintered body
US4227926A (en) Method for producing high density and high conductivity metal pressings
RU2171159C2 (en) Method of production of structural wear-resistant powder steel
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
GB956830A (en) Improvements in or relating to welding electrodes
US3956193A (en) Conductivity of silicon nitride
JPH02142920A (en) Lubricating oil impregnated metal powder sintered bearing and manufacture thereof
RU2080210C1 (en) Method of manufacturing parts from powder materials
JPH06145712A (en) Production of iron base sintered parts low in nitrogen content
JPS5884967A (en) Carburizing method for sintered iron member
JPH09202934A (en) Production of stainless steel sintered body