JPH02142920A - Lubricating oil impregnated metal powder sintered bearing and manufacture thereof - Google Patents

Lubricating oil impregnated metal powder sintered bearing and manufacture thereof

Info

Publication number
JPH02142920A
JPH02142920A JP29435588A JP29435588A JPH02142920A JP H02142920 A JPH02142920 A JP H02142920A JP 29435588 A JP29435588 A JP 29435588A JP 29435588 A JP29435588 A JP 29435588A JP H02142920 A JPH02142920 A JP H02142920A
Authority
JP
Japan
Prior art keywords
lubricating oil
bearing
solid lubricant
sintered
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29435588A
Other languages
Japanese (ja)
Inventor
Katsuzo Okada
岡田 勝蔵
Makoto Yoshida
誠 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOPACK KK
Original Assignee
OOPACK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOPACK KK filed Critical OOPACK KK
Priority to JP29435588A priority Critical patent/JPH02142920A/en
Publication of JPH02142920A publication Critical patent/JPH02142920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain a lubricating oil impregnated metal powder sintered bearing with small friction and abrasion under the wide using condition by heating the sintered bearing, and thereafter, dipping he bearing in the lubricating oil in which the solid lubricant is uniformly dispersed, and uniformly dispersing he solid lubricant having the powder diameter smaller than the diameter of the capillary holes in the bearing sintered material. CONSTITUTION:The solid lubricant is added in the lubricating oil, and the dust powder of the solid lubricant is dispersed uniformly in the lubricating oil with the ultrasonic wave or a ball mill. After heating the burning-processed bearing, it is dipped in the lubricating oil for 10 60 minutes. The lubricating oil permeated into holes of inside of the bearing sintered material is moved through the capillary holes connecting the holes each other. The dust powder of the solid lubricant is uniformly dispersed in the lubricating oil, and since the diameter of the powder is smaller than the diameter of the capillary holes, the dust powder is moved together with the movement of the lubricating oil and is oozed out to the bearing surface. Since the solid lubricant stands under the condition that the contacting pressure is high so as to eliminate the generation of the break of he lubricant film, the friction of the contacted interface is small under the condition of the boundary lubrication, and the baking caused by the break of the oil film is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焼結含油軸受、詳しくは、金属粉末又は非金属
粉末を主成分とする焼結体若しくは金属粉末と潤滑性非
金属粉末を主成分とする焼結体に潤滑油を含浸させた潤
滑性焼結含油軸受及びその製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a sintered oil-impregnated bearing, specifically a sintered body containing metal powder or non-metal powder as a main component, or a sintered body containing metal powder and lubricating non-metal powder as main components. The present invention relates to a lubricious sintered oil-impregnated bearing in which a sintered body as a component is impregnated with lubricating oil, and a method for manufacturing the same.

(従来の技術〕 従来の焼結含油軸受は、Cu−3n系又はFe−Cu系
などの混合材料に、必要に応じてMo5(二硫化モリブ
デン)、wsz  (二硫化タングステン)、BN(窒
化ボロン)、黒鉛、カーボンブランク、アセチレンブラ
ックなどの固体潤滑剤及び酸化防止剤を配合したものが
原料粉末として用いられ、それらを均一配合した混合原
料粉末を圧粉成形、焼結処理した後、焼結体に潤滑油を
含浸させた軸受である。
(Conventional technology) Conventional sintered oil-impregnated bearings are made by adding Mo5 (molybdenum disulfide), WSZ (tungsten disulfide), or BN (boron nitride) to a mixed material such as Cu-3n or Fe-Cu. ), graphite, carbon blank, acetylene black, and other solid lubricants and antioxidants are used as the raw material powder, and the mixed raw material powder that is uniformly blended with them is compacted, sintered, and then sintered. This is a bearing whose body is impregnated with lubricating oil.

焼結含油軸受は軸の回転に伴って発生する摩擦熱により
含浸油や空札内残留空気が膨張を受け、又軸の回転に伴
い油がすべり面に吹き込まれるポンプ作用があるので、
焼結体の空孔に保持されている潤滑油が浸み出し、潤滑
油膜が接触界面に生ずる。このように焼結含油軸受は自
己潤滑性を発揮するため、外部からの給油の必要がない
いわゆるオイルレス軸受として広汎に利用されている。
In sintered oil-impregnated bearings, the impregnated oil and residual air inside the empty tag expand due to the frictional heat generated as the shaft rotates, and there is also a pump action in which oil is blown into the sliding surface as the shaft rotates.
The lubricating oil held in the pores of the sintered body oozes out, forming a lubricating oil film on the contact interface. Since sintered oil-impregnated bearings exhibit self-lubricating properties as described above, they are widely used as so-called oil-less bearings that do not require external oil supply.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記従来の焼結含油軸受は、軸が高速回転してい
る場合は、接触界面に浸み出た油はいわゆる軸の連れ込
みによって流体潤滑膜を形成しやすいので、摩擦・摩耗
は少なく軸の可動は安定している。しかし、軸が低速回
転している場合は、接触界面の状態は境界潤滑が主体と
なり、摩擦摩耗は大きく軸の可動も不安定になる欠点を
有する。特に軸が断続、揺動、往復などの運動を行う場
合は摩擦・摩耗の増大が著しい。
However, in the conventional sintered oil-impregnated bearings mentioned above, when the shaft rotates at high speed, the oil that seeps into the contact interface tends to form a fluid lubricant film by entraining the shaft, so there is little friction and wear, and the shaft Movement is stable. However, when the shaft is rotating at a low speed, the state of the contact interface is mainly boundary lubrication, which has the disadvantage that frictional wear is large and the movement of the shaft becomes unstable. Particularly when the shaft performs intermittent, swinging, reciprocating motion, etc., friction and wear increase significantly.

本発明は、油膜強度が極めて弱くかつ軸受面の微小凸部
間の接触が多く生ずる低速回転、高荷重、断続、揺動、
往復などの条件下における上記従来の欠点を解消し、低
・高速回転、断続、揺動、往復等の広い使用条件下にお
いても摩擦・摩耗が小さくかつ滑らかなすべりを有する
潤滑性焼結含油軸受及びその製造方法を提供するもので
ある。
The present invention is suitable for low-speed rotation, high load, intermittent, rocking motion, where the oil film strength is extremely weak and there is a lot of contact between minute convex portions on the bearing surface.
A lubricious sintered oil-impregnated bearing that eliminates the above conventional drawbacks under conditions such as reciprocation, and has low friction and wear and smooth sliding even under a wide range of usage conditions such as low and high speed rotation, intermittent, rocking, and reciprocation. The present invention provides a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

本発明は軸受焼結体内部の毛細孔の径より小さい粒径を
有する固体潤滑剤が潤滑油中に均一分散していることを
特徴とする焼結含油軸受である。
The present invention is a sintered oil-impregnated bearing characterized in that a solid lubricant having a particle size smaller than the diameter of the pores inside the bearing sintered body is uniformly dispersed in lubricating oil.

その製造方法は潤滑油中に固体潤滑剤を添加しそれを超
音波又はボールミルを用いて均一分散させる工程と、焼
結軸受を加熱した後それを固体潤滑剤が均一分散してい
る潤滑油中に10乃至60分間浸す工程とを含む方法及
び潤滑油中に固体潤滑剤を添加しそれを超音波又はボー
ルミルを用いて均一分散させる工程と、焼結軸受を真空
中において脱気した後それを固体潤滑剤が均一分散して
いる潤滑油中に浸す工程とを含む方法である。
The manufacturing method involves adding a solid lubricant to lubricating oil and uniformly dispersing it using ultrasonic waves or a ball mill.After heating the sintered bearing, it is then added to the lubricating oil in which the solid lubricant is uniformly dispersed. a step of adding a solid lubricant to the lubricating oil and uniformly dispersing it using ultrasonic waves or a ball mill; and a step of degassing the sintered bearing in a vacuum and then removing the solid lubricant. This method includes a step of immersing the solid lubricant in a lubricating oil in which the solid lubricant is uniformly dispersed.

〔作用〕[Effect]

軸受焼結体内部の空孔内に浸み込んでいる潤滑油は空孔
と空孔を連結した毛細孔を通しで移・助する。潤滑油内
には固体潤滑剤の微粉末が均一分散しており、その粒径
は毛細孔の径より小さいので潤滑油の移動とともに毛細
孔を通して移動し、軸受面に浸み出してくる。固体潤滑
剤は、高い接触圧力の状況下においてもそれに耐えて潤
滑膜の破断を生じさせないものであるので、境界潤滑の
状態においても接触界面の摩擦は小さく、油膜が切断し
て焼付きを起こすことは容易に生しない。
The lubricating oil that has permeated the pores inside the bearing sintered body is transferred and assisted through the capillary pores that connect the pores. Fine solid lubricant powder is uniformly dispersed in the lubricating oil, and its particle size is smaller than the diameter of the capillary pores, so as the lubricating oil moves, it moves through the capillary pores and seeps out onto the bearing surface. Solid lubricants can withstand high contact pressure and do not cause the lubricant film to break, so even in boundary lubrication conditions, the friction at the contact interface is small, causing the oil film to break and seize to occur. Things don't come easily.

[実施例] (])以下本発明の潤滑性焼結含油軸受の製造方法を実
施例に基づき説明する。
[Examples] (]) The method for manufacturing a lubricating sintered oil-impregnated bearing of the present invention will be described below based on Examples.

(1)原料粉末は、金属粉末又は非金属粉末として従来
のものを用い、添加助剤、均一混合方法も従来方法に従
う。Cu−3n系軸受の場合はSn5〜15%、固体潤
滑剤0〜5%の割合、FeCu系の場合は、Cu0〜2
5%、Pb0〜15%、固体潤滑剤0〜5%の割合が好
ましい。粉末粒径はO,1〜100μmを用い、固体潤
滑剤は一般的には無被覆、必要に応して金属被覆された
ものを用いる。
(1) As the raw material powder, conventional metal powder or non-metal powder is used, and the addition of auxiliary agents and the uniform mixing method also follow conventional methods. In the case of Cu-3n bearings, the proportion of Sn is 5 to 15% and the solid lubricant is 0 to 5%, and in the case of FeCu bearings, the proportion of Cu is 0 to 2.
5%, Pb 0 to 15%, and solid lubricant 0 to 5%. The powder particle size is O.1 to 100 μm, and the solid lubricant is generally uncoated, but is coated with metal if necessary.

(1))上記粉末を均一混合した後、押型に充填して加
圧圧縮し圧粉成形体を形成する。
(1)) After uniformly mixing the powder, it is filled into a mold and compressed under pressure to form a green compact.

(iii )圧粉成形体を焼成することにより、合金化
、焼結化、多孔化を同時に行う、焼成温度、焼成時間は
粉末原料、粒径、圧粉成形密度、形状などにより適宜選
択する。水素ガス、アンモニア分解ガス、窒素ガス、ア
ルゴンガス等の焼成雰囲気や真空的焼成の選択も同様で
ある。
(iii) Alloying, sintering, and porosity are simultaneously performed by firing the powder compact. The firing temperature and firing time are appropriately selected depending on the powder raw material, particle size, compaction density, shape, etc. The same applies to the selection of firing atmosphere such as hydrogen gas, ammonia decomposition gas, nitrogen gas, argon gas, etc., and vacuum firing.

(iv)焼成処理した焼結体は、加工処理されることな
くそのまま軸受として用いられる場合があるが、−E的
には形状寸法、表面粗さの調整のため、サイジング、コ
イニング、切削加工を施す。
(iv) The fired sintered body may be used as a bearing without being processed, but in order to adjust the shape and surface roughness, sizing, coining, and cutting are required for -E. give

(v)微粉末の固体潤滑剤を潤滑油中に均一分散させる
方法としては、潤滑油中に固体潤滑剤を添加し、それを
超音波を用いて撹拌するか、ボールミルによる機械的撹
拌方法を用いる。固体潤滑剤の粒径をさらに微粉砕し7
たい場合は後者の方法が好ましい。
(v) As a method for uniformly dispersing fine powder solid lubricant in lubricating oil, the solid lubricant is added to lubricating oil and stirred using ultrasonic waves, or mechanical stirring using a ball mill is used. use The particle size of the solid lubricant is further finely pulverized.
The latter method is preferable if you want to do so.

(vi)上記固体潤滑剤を均一分散した潤滑油を焼成処
理した軸受内に含浸させる工程は、軸受を40〜100
 ’Cに加熱した後潤滑油内に挿入し10〜60分間浸
す方法(常圧浸漬法)、真空脱気した軸受を真空中で潤
滑油に浸した後常圧状態下で圧入する方法(真空法)の
いずれかの方法によって行う。
(vi) The step of impregnating the sintered bearing with the lubricating oil in which the solid lubricant is uniformly dispersed is performed by
A method in which the bearing is heated to a temperature of (Act).

(2) l粉固体潤滑剤が軸受内部に含浸されるために
は軸受の毛細孔の径より小さいことが必要である。焼結
軸受の内部に存在する空孔や毛細孔の大きさは原料、原
料の粉末粒径、焼成条件等によって異なるが、ある空孔
率(焼結体中の空孔がしめる体積割合)を有する軸受に
つき、固体潤滑剤の粒径と含浸率(潤滑油中の固体潤滑
剤が含浸する割合)の関係を知ることは有用である。第
1図は、粒径が0. 1μm及び2.2μmのWS、と
粒径が9.3μm、0.1am、10pmのMoS。
(2) In order for the solid lubricant powder to be impregnated inside the bearing, it must be smaller than the diameter of the pores of the bearing. The size of the pores and pores that exist inside a sintered bearing varies depending on the raw material, powder particle size of the raw material, firing conditions, etc. It is useful to know the relationship between the particle size of the solid lubricant and the impregnation rate (the rate at which the solid lubricant is impregnated in the lubricating oil) for bearings. Figure 1 shows that the particle size is 0. WS with particle sizes of 1 μm and 2.2 μm, and MoS with particle sizes of 9.3 μm, 0.1 am, and 10 pm.

の5種類の固体潤滑剤をそれぞれ高級潤滑油基油(IS
O220)に均一分散させ、次いで13%の空孔率を有
するCu−10%Sn焼結軸受に真空法で含浸させた場
合における含浸率を示す。0゜7μmより大きな粒径の
固体潤滑剤は含浸されないが、0.3amでは約40%
、0.ll1mでは100%含浸することがわかる。
Five types of solid lubricants are each mixed with high grade lubricant base oil (IS
The impregnation rate is shown when the sample is uniformly dispersed in O220) and then impregnated into a Cu-10%Sn sintered bearing having a porosity of 13% by a vacuum method. Solid lubricants with a particle size larger than 0.7 μm are not impregnated, but at 0.3 am, about 40%
,0. It can be seen that 100% impregnation is achieved in ll1m.

(3)第2図は、本発明の実施品(ロ)と固体潤滑剤が
潤滑油に分散していない従来の軸受(イ)につき、接触
荷重と摩擦係数μとの関係を示したものである。実施品
(ロ)は、 原料粉末  Cu扮(平均粒径50 tIm)90wt
に Sn粉(平均粒径50μm) 10wt% 焼成条件  400℃、790°Cで各30分間水素ガ
ス雰囲気で焼成 空孔率   13% 含浸油   高純度基油(ISO220)中にWS*(
平均粒径0.1μm)を 1.5wt%均一分散させた。
(3) Figure 2 shows the relationship between contact load and friction coefficient μ for a bearing according to the present invention (b) and a conventional bearing in which solid lubricant is not dispersed in lubricating oil (a). be. The tested product (b) is raw material powder Cu powder (average particle size 50 tIm) 90wt
Sn powder (average particle size 50μm) 10wt% Firing conditions Firing in a hydrogen gas atmosphere at 400°C and 790°C for 30 minutes each Porosity 13% Impregnation oil WS*(
Average particle size: 0.1 μm) was uniformly dispersed at 1.5 wt%.

の条件のもとに製造され、(イ)は上記含浸油につき高
純度基油(ISO220)が用いられたものである。摩
擦係数μは、S45C炭素鋼との平面同志のすべり摩擦
を銘木式摩擦試験機(すべり速度10 cts/sec
 s摩擦時間1時間、室温)により測定した。従来品(
イ)については、μは接触荷重1 kg / cdでは
0.30.3 kg / cdでは最小値0.27とな
るが焼付荷重(μが急激に増加する荷重の数値)は約6
 kg / cdとなりそれ以上で焼付が生ずる。実施
品(ロ)については、μは接触荷重1〜13kg/cd
の間はほぼ一定値0.08の低い値を維持し、13kg
/cdからやや増加し、焼付何重は約18kg/c−で
ある。本実飾品は従来の軸受より極めて小さいμを有し
、かつその接触荷重による変化も少なく、高接触荷重に
も耐える。
In (a), high-purity base oil (ISO220) was used as the impregnating oil. The friction coefficient μ is the sliding friction between two planes with S45C carbon steel using a precious wood friction tester (sliding speed 10 cts/sec).
s friction time (1 hour, room temperature). Conventional product (
Regarding b), when the contact load is 1 kg/cd, μ has a minimum value of 0.27 when it is 0.30.3 kg/cd, but the seizure load (the value of the load where μ increases rapidly) is about 6.
kg/cd, and if it exceeds that, seizure will occur. For the tested product (b), μ is the contact load of 1 to 13 kg/cd.
During the period, the low value of 0.08 was maintained, and the weight was 13 kg.
/cd, and the number of seizures is approximately 18 kg/c-. This decorative product has an extremely smaller μ than conventional bearings, has little change due to contact loads, and can withstand high contact loads.

第3図は上記(イ)、(ロ)の各軸受につき接触荷重と
軸受の摩耗率Wsの関係を示したものである。従来品(
イ)は、接触荷重が増加するとともに急勾配で摩耗率が
増加するが(1kg/cdで7X l O−@am” 
7kg、 6 kg/c4で8 X 10−’fflI
n” 7kg)、実施品(ロ)は、接触荷重が15kg
/c−まで一定(8X I O−’am” 7kg)か
つ小さい摩耗率である。従って本実飾品は従来品と比較
してその寿命が極めて長くなった。
FIG. 3 shows the relationship between contact load and bearing wear rate Ws for each of the bearings (a) and (b) above. Conventional product (
In case a), the wear rate increases with steep slope as the contact load increases (7X l O-@am at 1kg/cd).
7 kg, 8 X 10-'fflI at 6 kg/c4
n” 7kg), and the contact load of the implemented product (B) is 15kg.
/c- (8X I O-'am" 7kg) and the wear rate is small. Therefore, the life of this decorative product is extremely long compared to conventional products.

第4図は実施品の含浸油中に含まれるWS2の濃度と焼
付荷重の関係を示すものである。Wszカ月、5wt%
までは固体潤滑剤の量が増加するに伴い焼付荷重も高く
なるが、1.5wt%以上の濃度においては、焼付荷重
は飽和値を有する。
FIG. 4 shows the relationship between the concentration of WS2 contained in the impregnated oil and the seizure load of the actual product. Wsz month, 5wt%
Up to this point, as the amount of solid lubricant increases, the seizure load also increases, but at a concentration of 1.5 wt% or more, the seizure load has a saturated value.

従って、固体潤滑剤の濃度は少量であっても本発明の効
果を有するものの1.5wt%存在すれば充分良好な効
果を存することがわかる。
Therefore, it can be seen that although the solid lubricant has the effect of the present invention even if the concentration of the solid lubricant is small, the presence of 1.5 wt% provides a sufficiently good effect.

(4)第5図は他の実施品につき、荷重とFRW#係数
μ係数間係を示したものである。実施品(ニ)は、原料
粉末  Fe扮(平均粒径50μm)80wt% Cu粉(平均粒径50μm) 20wt% 焼成条件  1000°C30分間アンモニアの分解ガ
ス雰囲気で焼成 空孔率   20% 含浸油   高純度基油(ISO220)中にWoSz
(平均粒径0.3μm) を1.Owt%均一分散させた。
(4) FIG. 5 shows the relationship between load and FRW# coefficient μ coefficient for other implemented products. The tested product (d) was made of raw material powder: Fe (average particle size: 50 μm) 80 wt% Cu powder (average particle size: 50 μm): 20 wt% Firing conditions: Firing at 1000°C for 30 minutes in an ammonia decomposition gas atmosphere Porosity: 20% Impregnating oil: High WoSz in purity base oil (ISO220)
(average particle size 0.3 μm) 1. Owt% was uniformly dispersed.

の条件のもとに製造され、(ハ)は上記含浸油につき高
純度基油(ISO220)が用いられたものである。
In (c), high-purity base oil (ISO220) was used as the impregnating oil.

第6図は第5図の(ハ)、(ニ)の各軸受につき接触荷
重と摩耗率Wsとの関係を示したものである。実施品(
ニ)は従来品(ハ)と比較し、極めてすぐれた特性を有
することがわかる。
FIG. 6 shows the relationship between the contact load and the wear rate Ws for each of the bearings (c) and (d) in FIG. 5. Implemented product (
It can be seen that d) has extremely superior properties compared to the conventional product (c).

(5)第7図は以下の条件のもとに製造された実施品(
へ)、(ト)につき荷重と摩擦係数μとの関係を示した
ものである。
(5) Figure 7 shows the product manufactured under the following conditions (
The relationship between the load and the coefficient of friction μ is shown for (f) and (g).

原料粉末  Fe粉(平均粒径50μm)50wt% Cu粉(平均粒径50μm) 5Qwt% 焼成条件  1)00°C30分間アンモニアの分解ガ
ス雰囲気で焼成 空孔率   35% 含浸油 実施品(へ) 高純度基油(ISO220)中にカーボ
ンブラック(平均 粒径0.03μm)を0.5 wt%均一分散させた。
Raw material powder Fe powder (average particle size 50μm) 50wt% Cu powder (average particle size 50μm) 5Qwt% Firing conditions 1) Firing in an ammonia decomposition gas atmosphere at 00°C for 30 minutes Porosity 35% Impregnated oil product (to) High Carbon black (average particle size 0.03 μm) was uniformly dispersed at 0.5 wt% in a pure base oil (ISO220).

実施品(日 高純度基油(ISO220)中にカーボン
ブラック(平均 粒径0.03am)を1. 5 wt%、WS、(平均粒径0゜ 1 μm)を1.5wt%均一 分散させた。
Implemented product (Japan) 1.5 wt% of carbon black (average particle size 0.03 am) and 1.5 wt% of WS (average particle size 0°1 μm) were uniformly dispersed in high purity base oil (ISO220). .

(ホ)は上記含浸油につき高純度基油(IS0220)
が用いられたものである。第8図は第7図の(ホ)(へ
)(ト)の各軸受につき接触荷重と摩耗率Wsとの関係
を示したものである。実施品(へ)、(ト)は従来品に
比較し極めてすぐれた特性を有することがわかる。
(E) is a high purity base oil (IS0220) for the above impregnating oil.
was used. FIG. 8 shows the relationship between the contact load and the wear rate Ws for each of the bearings (E), (F), and (G) in FIG. It can be seen that the implemented products (f) and (g) have extremely superior properties compared to the conventional product.

〔発明の効果〕〔Effect of the invention〕

本発明は上記の構成及び方法であるので上記従来の欠点
を解消し、低回転、高荷重、断続、揺動、往復などの条
件下においても摩擦・摩耗が小さくかつ安定した滑らか
なすべりを有する長ノド命の焼結含油軸受を堤供できた
Since the present invention has the above-described structure and method, it eliminates the above-mentioned conventional drawbacks and has stable and smooth sliding with low friction and wear even under conditions such as low rotation, high load, intermittent, rocking, and reciprocation. We were able to supply a sintered oil-impregnated bearing with a long lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における固体潤滑剤の粒径と含浸率の関
係を示す図、第2図、第5図、第7図は本発明実施品の
接触荷重と摩擦係数の関係を示す図、第3図、第6図、
第8図は本発明の実施品の接触荷重と摩耗率の関係を示
す図、第4図は本発明の実施品において固体潤滑剤の4
度と焼付荷重の関係を示す図である。 岡 田 腋 蔵 −1゜ 第 図 第4図 51度(wt%) 第8図 荷t(kcVc醒) 第 図 第2 図 m t (kg/crn”) 第 図 第6図 7:r支(kcl/c醒)
FIG. 1 is a diagram showing the relationship between particle size and impregnation rate of the solid lubricant in the present invention, FIGS. 2, 5, and 7 are diagrams showing the relationship between contact load and friction coefficient of products implementing the present invention, Figure 3, Figure 6,
FIG. 8 is a diagram showing the relationship between contact load and wear rate of the product according to the present invention, and FIG.
FIG. 3 is a diagram showing the relationship between degree and seizure load. Okada armpit - 1° Figure 4 Figure 51 degrees (wt%) Figure 8 Load t (kcVc rise) Figure 2 Figure m t (kg/crn”) Figure 6 Figure 7: /c wake up)

Claims (3)

【特許請求の範囲】[Claims] (1)軸受焼結体内部の毛細孔の径より小さい粒径を有
する固体潤滑剤が潤滑油中に均一分散していることを特
徴とする焼結含油軸受。
(1) A sintered oil-impregnated bearing characterized in that a solid lubricant having a particle size smaller than the diameter of the pores inside the bearing sintered body is uniformly dispersed in lubricating oil.
(2)潤滑油中に固体潤滑剤を添加しそれを超音波又は
ボールミルを用いて均一分散させる工程と、焼結軸受を
加熱した後これを固体潤滑剤が均一分散している潤滑油
中に10乃至60分間浸す工程とを含む請求項(1)記
載の焼結含油軸受の製造方法。
(2) The process of adding solid lubricant to lubricating oil and uniformly dispersing it using ultrasonic waves or a ball mill, and heating the sintered bearing and then adding it to lubricating oil in which solid lubricant is uniformly dispersed. The method for manufacturing a sintered oil-impregnated bearing according to claim 1, comprising the step of soaking for 10 to 60 minutes.
(3)潤滑油中に固体潤滑剤を添加しそれを超音波又は
ボールミルを用いて均一分散させる工程と、焼結軸受を
真空中において脱気した後それを固体潤滑剤が均一分散
している潤滑油中に浸す工程とを含む請求項(1)記載
の焼結含油軸受の製造方法。
(3) The process of adding a solid lubricant to the lubricating oil and uniformly dispersing it using ultrasonic waves or a ball mill, and degassing the sintered bearing in a vacuum, and then dispersing the solid lubricant uniformly. The method for manufacturing a sintered oil-impregnated bearing according to claim 1, comprising the step of immersing the bearing in lubricating oil.
JP29435588A 1988-11-21 1988-11-21 Lubricating oil impregnated metal powder sintered bearing and manufacture thereof Pending JPH02142920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29435588A JPH02142920A (en) 1988-11-21 1988-11-21 Lubricating oil impregnated metal powder sintered bearing and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29435588A JPH02142920A (en) 1988-11-21 1988-11-21 Lubricating oil impregnated metal powder sintered bearing and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02142920A true JPH02142920A (en) 1990-06-01

Family

ID=17806637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29435588A Pending JPH02142920A (en) 1988-11-21 1988-11-21 Lubricating oil impregnated metal powder sintered bearing and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02142920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384217A (en) * 1989-08-28 1991-04-09 Ntn Corp Manufacture of porous slide bearing
JPH0464713A (en) * 1990-06-29 1992-02-28 Ntn Corp Manufacture of porous sliding bearing
JP2016180464A (en) * 2015-03-24 2016-10-13 三菱マテリアル株式会社 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130409A (en) * 1982-01-29 1983-08-03 Matsushita Electric Ind Co Ltd Recording system of video and audio signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130409A (en) * 1982-01-29 1983-08-03 Matsushita Electric Ind Co Ltd Recording system of video and audio signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384217A (en) * 1989-08-28 1991-04-09 Ntn Corp Manufacture of porous slide bearing
JPH0464713A (en) * 1990-06-29 1992-02-28 Ntn Corp Manufacture of porous sliding bearing
JP2016180464A (en) * 2015-03-24 2016-10-13 三菱マテリアル株式会社 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member

Similar Documents

Publication Publication Date Title
Kato et al. Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide
JP5106733B2 (en) Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JPS6326162B2 (en)
JP2018048358A (en) Copper-based sintered alloy oil retaining bearing
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JPH0244875B2 (en)
JPWO2017199456A1 (en) Iron-based sintered oil-impregnated bearing
JPH01275735A (en) Sintered alloy material and its manufacture
JPH02142920A (en) Lubricating oil impregnated metal powder sintered bearing and manufacture thereof
JP3422994B1 (en) Lubricants, sliding members and solid lubricants
US3427244A (en) Solid lubricant composites
JPH07166278A (en) Coppery sliding material and production thereof
JPH01255631A (en) Sintered alloy material and its manufacture
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
US2301756A (en) Powder metal bearing and method of making the same
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JPS6347762B2 (en)
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
CN110475982B (en) Sintered bearing and method for manufacturing same
JP2001003123A (en) Sintered alloy for oilless bearing, and its manufacture
JPH04191343A (en) Self-lubricating sliding material
CN111719086B (en) Iron-based medium-high temperature self-lubricating material and preparation method thereof
JP3840495B2 (en) Sintered alloy for lubricant and method for producing the same
JPH02290905A (en) Greasefree sliding material and manufacture thereof