JP2016180464A - Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member - Google Patents

Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member Download PDF

Info

Publication number
JP2016180464A
JP2016180464A JP2015061224A JP2015061224A JP2016180464A JP 2016180464 A JP2016180464 A JP 2016180464A JP 2015061224 A JP2015061224 A JP 2015061224A JP 2015061224 A JP2015061224 A JP 2015061224A JP 2016180464 A JP2016180464 A JP 2016180464A
Authority
JP
Japan
Prior art keywords
solid lubricant
oil
impregnated
bearing
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015061224A
Other languages
Japanese (ja)
Inventor
史朗 石川
Shiro Ishikawa
史朗 石川
和彦 山▲崎▼
Kazuhiko Yamasaki
和彦 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015061224A priority Critical patent/JP2016180464A/en
Publication of JP2016180464A publication Critical patent/JP2016180464A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an oil retaining slide member which enables stable improvement of load bearing without deteriorating strength of a slide member, and to provide an oil retaining bearing and a manufacturing method of the oil retaining slide member.SOLUTION: An oil retaining slide member 10 supplies a liquid or semi-solid lubricant to a slide surface 12c of a member body 12, and a load bearing solid lubricant exists on the slide surface 12c.SELECTED DRAWING: Figure 1

Description

本発明は、含油摺動部材、含油軸受および含油摺動部材の製造方法に係り、特に耐荷重性を高めた含油摺動部材に関する。   The present invention relates to an oil-impregnated sliding member, an oil-impregnated bearing, and an oil-impregnated sliding member manufacturing method, and more particularly to an oil-impregnated sliding member having improved load resistance.

含油軸受等の含油摺動部材においては、金属製または樹脂製の多孔質体の内部に含有された潤滑油が摺動面に供給されて潤滑作用が得られる。例えば軸受であれば、荷重が小さい時にはシャフトは薄い油膜に支えられており、シャフトの固体面は軸受の固体面に接触しない。シャフトの固体面と軸受の固体面とが油膜で隔離された流体潤滑の状態にあるので、部材の摩耗が少なく、安定的に長期に渡って使用できる。しかしながら、荷重が大きくなると、油膜ではシャフトを支えきれなくなって固体面同士の接触が起こる。時間の経過とともに、いわゆる焼きつきと呼ばれる現象も生じ、摩擦係数が増大して摩耗も進み始める。摩耗が一定以上になると、軸受としてもはや使用することができなくなって寿命を縮める原因となる。したがって、大きな荷重を受けた際でも焼きつきを抑制することができれば、含油摺動部材の耐荷重性を高めることができる。   In an oil-impregnated sliding member such as an oil-impregnated bearing, lubricating oil contained in a metal or resin porous body is supplied to the sliding surface to obtain a lubricating action. For example, in the case of a bearing, the shaft is supported by a thin oil film when the load is small, and the solid surface of the shaft does not contact the solid surface of the bearing. Since the solid surface of the shaft and the solid surface of the bearing are in a fluid lubrication state separated by an oil film, there is little wear on the member, and the shaft can be used stably over a long period of time. However, when the load increases, the oil film cannot support the shaft and the solid surfaces come into contact with each other. As time passes, so-called seizure occurs, the friction coefficient increases, and wear begins to progress. If the wear exceeds a certain level, it can no longer be used as a bearing, which causes a shortened life. Therefore, if the seizure can be suppressed even when a large load is applied, the load resistance of the oil-impregnated sliding member can be improved.

軸受等の摺動部材の耐荷重性を高めるために、潤滑油に固体潤滑剤または極圧添加剤を配合した潤滑油組成物を用いることが提案されている(例えば、特許文献1、2)。また、軸受に固体潤滑剤を含有させる方法(例えば、特許文献3)や、結合剤等を用いて軸受の表面に固体潤滑剤を含む皮膜を作る方法(例えば、特許文献4)が提案されている。さらに、摺動部材に穴を設け、固体潤滑剤と潤滑油と樹脂成分とを含有する潤滑組成物をその穴の内部に埋め込むという方法も提案されている(例えば、特許文献5)。   In order to increase the load resistance of a sliding member such as a bearing, it has been proposed to use a lubricating oil composition in which a solid lubricant or an extreme pressure additive is blended with a lubricating oil (for example, Patent Documents 1 and 2). . In addition, a method of incorporating a solid lubricant into the bearing (for example, Patent Document 3) and a method of forming a film containing the solid lubricant on the surface of the bearing using a binder or the like (for example, Patent Document 4) have been proposed. Yes. Furthermore, a method has also been proposed in which a hole is provided in the sliding member and a lubricating composition containing a solid lubricant, a lubricating oil, and a resin component is embedded in the hole (for example, Patent Document 5).

特開2008−255271号公報JP 2008-255271 A 特開平8−295896号公報JP-A-8-295896 特開2001−132755号公報JP 2001-132755 A 特開2005−89514号公報JP 2005-89514 A 特開平6−9979号公報JP-A-6-979

しかしながら、上記特許文献に係る方法は、含油摺動部材の耐荷重性を高めるために満足のいくものではなかった。   However, the method according to the above patent document is not satisfactory in order to increase the load resistance of the oil-containing sliding member.

すなわち、特許文献1に記載されている潤滑油組成物では、固体潤滑剤の効果を十分に得るには固体潤滑剤の添加量を増やす必要があるが、添加量の増加に伴い固体潤滑剤の分散安定性が低下し、固体潤滑剤が凝集して沈降する。また、特許文献2に記載されているような極圧添加剤は、一般的に硫黄分を含み、腐食作用を有することが知られている。したがって、使用量にも限界がある。いずれの場合も固体潤滑剤や極圧添加剤の効果は限定的となり、摺動部材の耐荷重性を十分に高めることができない。   That is, in the lubricating oil composition described in Patent Document 1, it is necessary to increase the amount of solid lubricant added in order to sufficiently obtain the effect of the solid lubricant. The dispersion stability is lowered, and the solid lubricant aggregates and settles. Moreover, it is known that the extreme pressure additive as described in Patent Document 2 generally contains a sulfur component and has a corrosive action. Therefore, there is a limit to the amount used. In either case, the effects of the solid lubricant and the extreme pressure additive are limited, and the load resistance of the sliding member cannot be sufficiently increased.

特許文献3に係る方法では、固体潤滑剤の効果を高めるために軸受中の固体潤滑剤の割合を多くすると、軸受の主成分の割合が減少して軸受の強度が低下する。この場合、コストの上昇といった問題も発生する。また、特許文献4に係る方法では、軸受の表面が皮膜で覆われることにより表面の孔が塞がれるので、内部からの給油機構が失われてしまう。このため、部材の内部から微細孔を経由して潤滑油が供給される含油摺動部材には適用できない。   In the method according to Patent Document 3, when the ratio of the solid lubricant in the bearing is increased in order to enhance the effect of the solid lubricant, the ratio of the main component of the bearing is decreased and the strength of the bearing is decreased. In this case, a problem such as an increase in cost also occurs. Further, in the method according to Patent Document 4, the surface of the bearing is covered with a film to close the hole in the surface, so that the oil supply mechanism from the inside is lost. For this reason, it cannot be applied to an oil-impregnated sliding member to which lubricating oil is supplied from the inside of the member via a fine hole.

特許文献5に係る方法は、部材に穴を設ける点で、微細孔を有する多孔質体には適用しにくい。多孔質体に適用したところで、潤滑油は潤滑組成物中に含まれているため、内部からの円滑な供給は期待できない。しかも、固体潤滑剤は樹脂成分等とともに穴の内部に埋め込まれており部材の表面には存在しないため、固体潤滑剤の効果は十分に発揮されない。   The method according to Patent Document 5 is difficult to apply to a porous body having micropores in that a hole is provided in a member. When applied to a porous body, since the lubricating oil is contained in the lubricating composition, a smooth supply from the inside cannot be expected. Moreover, since the solid lubricant is embedded in the hole together with the resin component and the like and does not exist on the surface of the member, the effect of the solid lubricant is not sufficiently exhibited.

そこで本発明は、摺動部材の強度を低下させることなく、安定的に耐荷重性を向上させた含油摺動部材、含油軸受および含油摺動部材の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an oil-impregnated sliding member, an oil-impregnated bearing, and a method for manufacturing the oil-impregnated sliding member that stably improve the load resistance without reducing the strength of the sliding member.

本発明の第1の観点は、部材本体の摺動面に液状または半固体状の潤滑剤を供給できる含油摺動部材であって、前記摺動面上に耐荷重性固体潤滑剤が存在することを特徴とする。   A first aspect of the present invention is an oil-containing sliding member capable of supplying a liquid or semi-solid lubricant to a sliding surface of a member body, wherein a load-bearing solid lubricant is present on the sliding surface. It is characterized by that.

本発明の第2の観点は、第1の観点に基づく発明であって、前記部材本体は微細孔を有する多孔質状であり、前記液状または半固体状の潤滑剤は、前記部材本体の前記微細孔内に充填されていることを特徴とする。   A second aspect of the present invention is the invention based on the first aspect, wherein the member main body is a porous shape having micropores, and the liquid or semi-solid lubricant is a component of the member main body. It is filled in the micropores.

本発明の第3の観点は、第1または第2の観点に基づく発明であって、前記摺動面における前記耐荷重性固体潤滑剤の表面被覆率は、60%を超えることを特徴とする。   A third aspect of the present invention is the invention based on the first or second aspect, characterized in that the surface coverage of the load-bearing solid lubricant on the sliding surface exceeds 60%. .

本発明の第4の観点は、第1〜第3のいずれか1つの観点に基づく発明であって、前記耐荷重性固体潤滑剤は、走査型電子顕微鏡観察に基づいて得られた一次粒子の平均粒径が1μm以下の粒子を含むことを特徴とする。   A fourth aspect of the present invention is an invention based on any one of the first to third aspects, wherein the load-bearing solid lubricant is a primary particle obtained based on observation with a scanning electron microscope. It contains particles having an average particle size of 1 μm or less.

本発明の第5の観点は、第1〜第4のいずれか1つの観点に基づく発明であって、前記耐荷重性固体潤滑剤は、ナノ炭素材料を含むことを特徴とする。   A fifth aspect of the present invention is an invention based on any one of the first to fourth aspects, wherein the load-bearing solid lubricant includes a nanocarbon material.

本発明の第6の観点は、第1〜第5のいずれか1つの観点に基づく発明であって、前記摺動面が、境界潤滑または混合潤滑の状態で使用されることを特徴とする。   A sixth aspect of the present invention is an invention based on any one of the first to fifth aspects, wherein the sliding surface is used in a boundary lubrication or mixed lubrication state.

本発明の第7の観点は、前述のいずれかの含油摺動部材を用いたこと特徴とする。   A seventh aspect of the present invention is characterized by using any of the oil-containing sliding members described above.

本発明の第8の観点は、耐荷重性固体潤滑剤を含有する分散液を用いて、部材本体の摺動面に前記耐荷重性固体潤滑剤を配置する工程と、前記摺動面に前記耐荷重性固体潤滑剤が配置された前記部材本体に、液状または半固体状の潤滑剤を含浸させる工程とを備えることを特徴とする。   According to an eighth aspect of the present invention, there is provided a step of disposing the load-bearing solid lubricant on the sliding surface of the member body using a dispersion containing a load-bearing solid lubricant; A step of impregnating the member main body on which the load-bearing solid lubricant is disposed with a liquid or semi-solid lubricant.

本発明の第9の観点は、液状または半固体状の潤滑剤を部材本体に含浸させる工程と、耐荷重性固体潤滑剤を含有する分散液を用いて、前記液状または半固体状の潤滑剤が含浸された部材本体の摺動面に前記耐荷重性固体潤滑剤を配置する工程とを備えることを特徴とする。   According to a ninth aspect of the present invention, there is provided a liquid or semi-solid lubricant using a step of impregnating a member body with a liquid or semi-solid lubricant and a dispersion containing a load-bearing solid lubricant. And a step of disposing the load-bearing solid lubricant on the sliding surface of the member body impregnated with.

本発明の第1〜第7の観点の含油摺動部材では、部材本体の摺動面に耐荷重性固体潤滑剤が存在することにより、摺動部材の強度を低下させることなく、焼きつきを抑制して耐荷重性を高めることができる。   In the oil-impregnated sliding member according to the first to seventh aspects of the present invention, the presence of a load-bearing solid lubricant on the sliding surface of the member main body prevents seizure without reducing the strength of the sliding member. It can suppress and can improve load resistance.

本発明の第2の観点の含油摺動部材では、多孔質状の焼結金属からなる部材本体の微細孔内に液状または半固体状の潤滑剤が充填されていることにより、自己給油を行うことができる。   In the oil-impregnated sliding member according to the second aspect of the present invention, self-lubrication is performed by filling a liquid or semi-solid lubricant in the micropores of the member body made of a porous sintered metal. be able to.

本発明の第3の観点の含油摺動部材では、摺動面における耐荷重性固体潤滑剤の表面被覆率が60%超であるので、耐荷重性をよりいっそう高め、摩擦係数をよりいっそう低減することができる。   In the oil-impregnated sliding member of the third aspect of the present invention, the surface coverage of the load-bearing solid lubricant on the sliding surface is more than 60%, so the load bearing is further improved and the friction coefficient is further reduced. can do.

本発明の第4の観点の含油摺動部材では、耐荷重性固体潤滑剤が、一次粒子の平均粒径が1μm以下の粒子を含むことにより、耐荷重性をよりいっそう高め、摩擦係数をよりいっそう低減することができる。   In the oil-impregnated sliding member according to the fourth aspect of the present invention, the load-bearing solid lubricant includes particles having an average primary particle size of 1 μm or less, thereby further increasing the load-bearing capability and further increasing the friction coefficient. It can be further reduced.

本発明の第5の観点の含油摺動部材では、耐荷重性固体潤滑剤がナノ炭素材料を含むことにより、耐荷重性をよりいっそう高め、摩擦係数をよりいっそう低減することができる。   In the oil-impregnated sliding member according to the fifth aspect of the present invention, the load-bearing solid lubricant contains the nanocarbon material, so that the load-bearing property can be further increased and the friction coefficient can be further reduced.

本発明の第6の観点の含油摺動部材では、前記摺動面が、境界潤滑または混合潤滑の状態で使用されることにより、摺動面に存在する耐荷重性固体潤滑剤の効果を十分に発揮することができる。   In the oil-impregnated sliding member of the sixth aspect of the present invention, the sliding surface is used in the state of boundary lubrication or mixed lubrication, so that the effect of the load-bearing solid lubricant existing on the sliding surface is sufficiently obtained. Can be demonstrated.

本発明の第8、第9の観点の含油摺動部材の製造方法では、部材本体の摺動面に耐荷重性固体潤滑剤を配置することができるので、耐荷重性の向上した含油摺動部材を製造することができる。   In the manufacturing method of the oil-impregnated sliding member according to the eighth and ninth aspects of the present invention, the load-bearing solid lubricant can be disposed on the sliding surface of the member main body. A member can be manufactured.

実施形態に係る含油摺動部材の縦断面図である。It is a longitudinal cross-sectional view of the oil-containing sliding member which concerns on embodiment.

以下、図面を参照して本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

1.全体構成
図1には、本実施形態にかかる含油摺動部材として、含油軸受10の縦断面図を示す。図示する含油軸受10は、摺動面を有する部材本体12を含む。この部材本体12は、多孔質状の焼結金属である。本実施形態においては、部材本体12は、ほぼ円筒状に形成されている。本実施形態に用いられる部材本体12は、乾燥密度が5.2〜7.5g/cmで、含油率が15〜27vol%であることが好ましい。一般的には、部材本体12の乾燥密度や含油率は、JIS規格Z2501:2000により求められる。
1. Overall Configuration FIG. 1 is a longitudinal sectional view of an oil-impregnated bearing 10 as an oil-impregnated sliding member according to this embodiment. The illustrated oil-impregnated bearing 10 includes a member body 12 having a sliding surface. The member body 12 is a porous sintered metal. In the present embodiment, the member main body 12 is formed in a substantially cylindrical shape. The member body 12 used in the present embodiment preferably has a dry density of 5.2 to 7.5 g / cm 3 and an oil content of 15 to 27 vol%. In general, the dry density and oil content of the member body 12 are determined according to JIS standard Z2501: 2000.

部材本体12は、直径が1〜20μm程度の微細孔を有し、この微細孔は三次元的に連続している。微細孔の直径は、一般的には、水銀圧入法により求めることができる。微細孔内部には液状または半固体状の潤滑剤が充填されており、この潤滑剤が摺動面に滲出して潤滑油膜を形成し、摺動面に潤滑作用を付与する。充填される液状または半固体状の潤滑剤としては、例えば、油、グリース、およびイオン液体などが挙げられる。   The member main body 12 has fine holes having a diameter of about 1 to 20 μm, and the fine holes are three-dimensionally continuous. In general, the diameter of the micropores can be determined by a mercury intrusion method. The micropores are filled with a liquid or semi-solid lubricant, and this lubricant oozes out on the sliding surface to form a lubricating oil film and imparts a lubricating action to the sliding surface. Examples of the liquid or semi-solid lubricant to be filled include oil, grease, and ionic liquid.

部材本体12の内側には、一端面12aから他端面12bまで軸体14が回転自在に支持されている。この軸体14に一体的に設けられた鍔16から、一端面12aへ軸方向の荷重が加わる。   Inside the member main body 12, a shaft body 14 is rotatably supported from one end surface 12a to the other end surface 12b. An axial load is applied to the one end face 12a from the flange 16 provided integrally with the shaft body 14.

部材本体12の内周面12cは、摺動面として作用するものである。この内周面12c上には、図示しない耐荷重性固体潤滑剤(以下、固体潤滑剤と称する)が存在する。本実施形態においては、固体潤滑剤は、内周面12cの表面に直接接して、内周面12c上に設けられている。軸体14の表面は、常温で液状または半固体状の潤滑剤からなる潤滑油膜と固体潤滑剤とによって、部材本体12の内周面12cから隔てられることになる。したがって、固体潤滑剤は、部材本体12の内部からの液状または半固体状の潤滑剤の滲出を妨げないように、内周面12cに存在していることが求められる。   The inner peripheral surface 12c of the member main body 12 functions as a sliding surface. A load-bearing solid lubricant (not shown) (hereinafter referred to as a solid lubricant) is present on the inner peripheral surface 12c. In the present embodiment, the solid lubricant is provided on the inner peripheral surface 12c in direct contact with the surface of the inner peripheral surface 12c. The surface of the shaft body 14 is separated from the inner peripheral surface 12c of the member main body 12 by a lubricating oil film made of a liquid or semi-solid lubricant at normal temperature and a solid lubricant. Therefore, the solid lubricant is required to be present on the inner peripheral surface 12c so as not to prevent the liquid or semi-solid lubricant from exuding from the inside of the member main body 12.

固体潤滑剤の効果を十分に得るためには、固体潤滑剤は、内周面12cの全面にわたって存在することが好ましいが、これは必ずしも必須ではない。以下の手法で求められる表面被覆率が30%を超えるように、内周面12cに固体潤滑剤が配置されていれば、内周面12cにおける焼きつきを抑制し、さらに摩擦係数を低減することができる。摩擦係数を十分に低減するには、表面被覆率は60%を超えることが好ましい。表面被覆率を得るには、まず、固体潤滑剤が配置された内周面12cにおける単位領域(10μmの領域)を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)により100箇所観察する。観察された100箇所のなかで、固体潤滑剤の存在が確認された単位領域の割合を表面被覆率とする。 In order to sufficiently obtain the effect of the solid lubricant, the solid lubricant is preferably present over the entire inner peripheral surface 12c, but this is not always essential. If the solid lubricant is disposed on the inner peripheral surface 12c so that the surface coverage required by the following method exceeds 30%, the seizure on the inner peripheral surface 12c is suppressed and the coefficient of friction is further reduced. Can do. In order to sufficiently reduce the coefficient of friction, the surface coverage is preferably more than 60%. In order to obtain the surface coverage, first, 100 unit regions (regions of 10 μm 2 ) on the inner peripheral surface 12c on which the solid lubricant is arranged are observed at 100 locations by a scanning electron microscope (SEM). The ratio of the unit region in which the presence of the solid lubricant is confirmed among the observed 100 locations is defined as the surface coverage.

固体潤滑剤としては、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン、およびナノダイヤモンドなどのナノ炭素材料が挙げられる。黒鉛、窒化ホウ素、二硫化モリブデン、またはフッ素樹脂の粒子を、固体潤滑剤として用いてもよいが、ナノ炭素材料を用いることが好ましい。ナノ炭素材料からなる固体潤滑剤は、樹脂や結合剤等を用いずに部材本体12の内周面12cに配置することができるため、内部から内周面12cへの液状または半固体状の潤滑剤の滲出を妨げるおそれがない。   Examples of the solid lubricant include nanocarbon materials such as carbon black, carbon nanotube, carbon nanofiber, fullerene, and nanodiamond. Graphite, boron nitride, molybdenum disulfide, or fluororesin particles may be used as the solid lubricant, but it is preferable to use a nanocarbon material. Since the solid lubricant made of the nanocarbon material can be disposed on the inner peripheral surface 12c of the member body 12 without using a resin, a binder, or the like, liquid or semi-solid lubrication from the inside to the inner peripheral surface 12c. There is no risk of preventing the exudation of the agent.

摺動面としての内周面12cにおいては、固体潤滑剤は粒子状で存在し、その一次粒子の平均粒径は1μm以下であることが好ましい。固体潤滑剤の平均粒径が1μm以下の場合には、内周面12cにおける摩擦係数を十分に低減することができる。内周面12cに存在する固体潤滑剤の平均粒径は、例えばSEM観察により求めることができる。具体的には、固体潤滑剤が配置された内周面12cをSEMにより観察して画像を得、画像の1ピクセルの大きさを算出して求めることができる。あるいは、アルコール中で超音波洗浄を行うことにより内周面12cから落とした固体潤滑剤について、透過型電子顕微鏡(TEM:Transmission Electron Microscope)観察することによって固体潤滑剤の平均粒径を求めてもよい。   On the inner peripheral surface 12c as the sliding surface, the solid lubricant is preferably present in the form of particles, and the average particle size of the primary particles is preferably 1 μm or less. When the average particle size of the solid lubricant is 1 μm or less, the friction coefficient on the inner peripheral surface 12c can be sufficiently reduced. The average particle diameter of the solid lubricant present on the inner peripheral surface 12c can be determined by, for example, SEM observation. Specifically, the image can be obtained by observing the inner peripheral surface 12c on which the solid lubricant is disposed with an SEM, obtaining an image, and calculating the size of one pixel of the image. Alternatively, the average particle diameter of the solid lubricant may be obtained by observing a transmission electron microscope (TEM) for the solid lubricant dropped from the inner peripheral surface 12c by ultrasonic cleaning in alcohol. Good.

2.製造方法
本実施形態の含油軸受10は、部材本体12の摺動面に固体潤滑剤を配置し、部材本体12に液状または半固体状の潤滑剤を含浸させることによって製造することができる。
2. Manufacturing Method The oil-impregnated bearing 10 of the present embodiment can be manufactured by disposing a solid lubricant on the sliding surface of the member body 12 and impregnating the member body 12 with a liquid or semi-solid lubricant.

摺動面としての内周面12cに固体潤滑剤を配置するには、固体潤滑剤を含有する分散液(以下、固体潤滑剤分散液と称する)が用いられる。固体潤滑剤分散液は、所定の固体潤滑剤を水等の分散媒に分散させて、1時間程度の分散処理を施すことにより調製することができる。分散処理は、例えば超音波ホモジナイザーを用いて行うことができ、この際、固体潤滑剤に対して0.1〜10wt%程度の量の分散剤を配合してもよい。分散剤としては、例えば、ポリビニルピロリドン(PVP)およびコール酸ナトリウム水和物等が挙げられる。   In order to dispose the solid lubricant on the inner peripheral surface 12c as the sliding surface, a dispersion containing a solid lubricant (hereinafter referred to as a solid lubricant dispersion) is used. The solid lubricant dispersion can be prepared by dispersing a predetermined solid lubricant in a dispersion medium such as water and performing a dispersion treatment for about 1 hour. The dispersion treatment can be performed using, for example, an ultrasonic homogenizer. At this time, a dispersant in an amount of about 0.1 to 10 wt% may be blended with the solid lubricant. Examples of the dispersant include polyvinyl pyrrolidone (PVP) and sodium cholate hydrate.

分散媒中には、メタノール等のアルコールが含まれていてもよい。メタノールによって分散液の粘度を低め、塗布性を向上させることができる。水とメタノールとの重量比(水:メタノール)は、50:50〜95:5程度とすることができる。分散液中における固体潤滑剤の濃度は、0.1〜20wt%程度が好ましく、1〜5wt%程度がより好ましい。   The dispersion medium may contain an alcohol such as methanol. Methanol can reduce the viscosity of the dispersion and improve the coating properties. The weight ratio of water to methanol (water: methanol) can be about 50:50 to 95: 5. The concentration of the solid lubricant in the dispersion is preferably about 0.1 to 20 wt%, more preferably about 1 to 5 wt%.

固体潤滑剤分散液を部材本体12の内周面12cに塗布した後、乾燥し、プレスを行うことによって、部材本体12の内周面12cに固体潤滑剤が配置される。固体潤滑剤分散液は、例えばマイクロピペットを用いて、部材本体12の内周面12cに滴下し、その後スピンコートすることで塗布することができる。後述するように、部材本体12には、液状または半固体状の潤滑剤が含浸され、この潤滑剤は摺動面としての内周面12cに供給される。内周面12cの一部が露出されていれば、この露出部で液状または半固体状の潤滑剤の含浸、供給が円滑に行われる。したがって、部材本体12の内周面12cの全面が固体潤滑剤分散液で完全に覆われないように、分散液の濃度やコーティング条件を調整して固体潤滑剤分散液を塗布することが好ましい。   After the solid lubricant dispersion is applied to the inner peripheral surface 12c of the member body 12, the solid lubricant is disposed on the inner peripheral surface 12c of the member body 12 by drying and pressing. The solid lubricant dispersion can be applied by, for example, dropping onto the inner peripheral surface 12c of the member body 12 using a micropipette and then spin-coating. As will be described later, the member main body 12 is impregnated with a liquid or semi-solid lubricant, and this lubricant is supplied to the inner peripheral surface 12c as a sliding surface. If a part of the inner peripheral surface 12c is exposed, the liquid portion or the semisolid lubricant is smoothly impregnated and supplied in the exposed portion. Therefore, it is preferable to apply the solid lubricant dispersion by adjusting the concentration of the dispersion and the coating conditions so that the entire inner peripheral surface 12c of the member body 12 is not completely covered with the solid lubricant dispersion.

部材本体12の内周面12cに塗布された固体潤滑剤分散液は、例えば60℃で12時間保持することによって乾燥することができる。その後、例えば、1〜10×10kg/cmとなる圧力で1〜10分間のプレスを行うことによって、部材本体12の内周面に固体潤滑剤が配置される。 The solid lubricant dispersion applied to the inner peripheral surface 12c of the member main body 12 can be dried by, for example, holding at 60 ° C. for 12 hours. Then, a solid lubricant is arrange | positioned on the internal peripheral surface of the member main body 12, for example by performing the press for 1 to 10 minutes with the pressure used as 1-10 * 10 < 3 > kg / cm < 2 >.

固体潤滑剤を部材本体12の内周面12cに配置した後、部材本体12に液状または半固体状の潤滑剤を含浸させる。例えば、内周面12cに固体潤滑剤が配置された部材本体12を、液状または半固体状の潤滑剤に浸漬し、1〜100mmHg程度の真空引きによって、液状または半固体状の潤滑剤を部材本体12に含浸させる。含浸時間は、特に限定されないが、一般的には1〜12時間とすることができる。   After the solid lubricant is disposed on the inner peripheral surface 12c of the member main body 12, the member main body 12 is impregnated with a liquid or semi-solid lubricant. For example, the member main body 12 in which the solid lubricant is disposed on the inner peripheral surface 12c is immersed in a liquid or semi-solid lubricant, and the liquid or semi-solid lubricant is made into a member by evacuation of about 1 to 100 mmHg. The main body 12 is impregnated. The impregnation time is not particularly limited, but can generally be 1 to 12 hours.

本実施形態の場合、液状または半固体状の潤滑剤を多孔質状の焼結金属からなる部材本体12に含浸させる前に、固体潤滑剤分散液を部材本体12の摺動面としての内周面12cに塗布することとした。これによって、固体潤滑剤を部材本体12の内周面12cに均一に配置することができる。固体潤滑剤は、基本的には部材本体12の表面に存在するものであるが、液状または半固体状の潤滑剤を含浸させる処理によって、部材本体12の微細孔の内部に固体潤滑剤の一部が入り込んでいてもよい。   In the case of this embodiment, before impregnating the member main body 12 made of a porous sintered metal with a liquid or semi-solid lubricant, the solid lubricant dispersion is used as an inner periphery as a sliding surface of the member main body 12. It was decided to apply to the surface 12c. As a result, the solid lubricant can be uniformly disposed on the inner peripheral surface 12 c of the member main body 12. The solid lubricant is basically present on the surface of the member main body 12, but the solid lubricant is one of the solid lubricants in the micropores of the member main body 12 by the treatment of impregnating the liquid or semi-solid lubricant. The part may enter.

以上のようにして、多孔質状の焼結金属からなる部材本体12に液状または半固体状の潤滑剤が含浸され、摺動面としての内周面12cに固体潤滑剤が配置された本実施形態の含油軸受10が得られる。   As described above, the member body 12 made of a porous sintered metal is impregnated with a liquid or semi-solid lubricant, and the solid lubricant is disposed on the inner peripheral surface 12c as a sliding surface. The oil-impregnated bearing 10 having the form is obtained.

3.作用及び効果
本実施形態に係る含油軸受10においては、液状または半固体状の潤滑剤が部材本体12の内部から摺動面としての内周面12cに供給され、さらに、内周面12cには固体潤滑剤が存在している。液状または半固体状の潤滑剤による潤滑油膜と固体潤滑剤とによって、本実施形態に係る含油軸受10においては、部材本体12の内周面12cに十分な潤滑作用が与えられる。
3. Action and Effect In the oil-impregnated bearing 10 according to the present embodiment, a liquid or semi-solid lubricant is supplied from the inside of the member main body 12 to the inner peripheral surface 12c as a sliding surface, and further, on the inner peripheral surface 12c. A solid lubricant is present. In the oil-impregnated bearing 10 according to the present embodiment, a sufficient lubricating action is given to the inner peripheral surface 12c of the member main body 12 by the lubricating oil film and the solid lubricant made of the liquid or semi-solid lubricant.

一般的には、含油軸受10は、1〜10MPa程度の面圧で用いられる。本実施形態の含油軸受10は、高い面圧を受けて潤滑油膜の一部が損なわれて部材本体12の内周面12cが軸体14の固体面に接触した場合、いわゆる境界潤滑または混合潤滑の状態でも、固体潤滑剤によって内周面12cの潤滑作用は保たれる。固体潤滑剤に起因した潤滑作用によって、高い面圧を受けても内周面12cにおける摩擦係数の増大は回避され、部材の摩耗が進行することもない。なお、境界潤滑は、部材本体12の内周面12cと軸体14の固体面との間に潤滑油膜が存在するにも拘わらず、部材本体12の内周面12cと軸体14の固体面とが部分的に接触する状態である。混合潤滑とは、流体潤滑部分と境界潤滑部分とが混在した状態である。   Generally, the oil-impregnated bearing 10 is used with a surface pressure of about 1 to 10 MPa. The oil-impregnated bearing 10 of the present embodiment is so-called boundary lubrication or mixed lubrication when a part of the lubricating oil film is damaged due to high surface pressure and the inner peripheral surface 12c of the member body 12 contacts the solid surface of the shaft body 14. Even in this state, the lubricating action of the inner peripheral surface 12c is maintained by the solid lubricant. Due to the lubricating action caused by the solid lubricant, an increase in the coefficient of friction on the inner peripheral surface 12c is avoided even when a high surface pressure is applied, and the wear of the member does not proceed. In the boundary lubrication, the inner peripheral surface 12c of the member main body 12 and the solid surface of the shaft body 14 are provided even though a lubricating oil film exists between the inner peripheral surface 12c of the member main body 12 and the solid surface of the shaft body 14. Are in partial contact with each other. Mixed lubrication is a state in which a fluid lubrication portion and a boundary lubrication portion are mixed.

このように、本実施形態に係る含油摺動部材10は、焼結金属で形成された部材本体12の構成を変えずに内周面12cに固体潤滑剤を配置することができるので、強度を低下させることなく耐荷重性を高めることができる。本実施形態に係る含油軸受10は、5MPa程度以上の比較的高い面圧で用いた際に、特に効果が発揮される。   Thus, the oil-impregnated sliding member 10 according to the present embodiment can dispose the solid lubricant on the inner peripheral surface 12c without changing the configuration of the member body 12 formed of sintered metal. The load resistance can be increased without lowering. The oil-impregnated bearing 10 according to this embodiment is particularly effective when used at a relatively high surface pressure of about 5 MPa or more.

樹脂や結合剤等を用いずに固体潤滑剤を摺動面としての内周面12cに配置した場合には、部材本体12の微細孔が樹脂等により塞がれることがない。内部に含浸された液状または半固体状の潤滑剤は内周面12cに良好に供給されて、潤滑油膜を形成することができる。したがって、液状または半固体状の潤滑剤と固体潤滑剤とによる潤滑作用を、長期にわたって保つことができる。   When the solid lubricant is disposed on the inner peripheral surface 12c as a sliding surface without using a resin or a binder, the fine holes of the member main body 12 are not blocked by the resin or the like. The liquid or semi-solid lubricant impregnated inside is satisfactorily supplied to the inner peripheral surface 12c, and a lubricating oil film can be formed. Accordingly, the lubricating action of the liquid or semi-solid lubricant and the solid lubricant can be maintained for a long period of time.

上述したとおり本実施形態においては、固体潤滑剤は、部材本体12の摺動面としての内周面12cに存在する。固体潤滑剤が部材本体12に含まれている場合とは異なって、部材本体12を構成している焼結金属の組成には影響を及ぼさないことから、部材本体12は本来の強度を維持できる。しかも、本実施形態においては、部材本体12に含浸される潤滑油への固体潤滑剤の分散性を考慮する必要がなく、固体潤滑剤の選択の自由度が広がった点でも有利である。   As described above, in the present embodiment, the solid lubricant is present on the inner peripheral surface 12 c as the sliding surface of the member main body 12. Unlike the case where the solid lubricant is contained in the member main body 12, the member main body 12 can maintain the original strength because it does not affect the composition of the sintered metal constituting the member main body 12. . In addition, in the present embodiment, it is not necessary to consider the dispersibility of the solid lubricant in the lubricating oil impregnated in the member main body 12, and it is advantageous in that the degree of freedom in selecting the solid lubricant is expanded.

4.変形例
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
4). The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.

上述の実施形態では、含油摺動部材として含油軸受を用いたが、軸受の他、ブッシュなどの摺動部材を用いることもできる。含油軸受の内周面を摺動面の例として説明したが、摺動部材の種類によっては、内周面以外の面が摺動面となることもあり得る。部材本体の材質は、金属に限定されず、セラミックス、樹脂、または多孔質セラミックスを含む樹脂としてもよい。   In the above-described embodiment, the oil-impregnated bearing is used as the oil-impregnated sliding member, but a sliding member such as a bush can be used in addition to the bearing. Although the inner peripheral surface of the oil-impregnated bearing has been described as an example of the sliding surface, depending on the type of the sliding member, a surface other than the inner peripheral surface may be the sliding surface. The material of the member main body is not limited to metal, and may be ceramic, resin, or resin containing porous ceramic.

含油軸受を製造するにあたっては、液状または半固体状の潤滑剤を多孔質状の焼結金属からなる部材本体に含浸させた後、固体潤滑剤を摺動面に配置してもよい。固体潤滑剤が表面に存在しない場合には、液状または半固体状の潤滑剤がより円滑に部材本体に含浸される。この場合、液状または半固体状の潤滑剤は、先立って部材本体に含浸されているので、摺動面への固体潤滑剤の配置を制限する必要性は特に生じない。   In manufacturing the oil-impregnated bearing, after impregnating a member body made of a porous sintered metal with a liquid or semi-solid lubricant, the solid lubricant may be disposed on the sliding surface. When the solid lubricant is not present on the surface, the member body is more smoothly impregnated with the liquid or semi-solid lubricant. In this case, since the liquid or semi-solid lubricant is impregnated in the member body in advance, there is no particular need to limit the arrangement of the solid lubricant on the sliding surface.

固体潤滑剤分散液は、スピンコート法、またはスプレーにより部材本体の摺動面に塗布することもできる。場合によっては、固体潤滑剤分散液を塗布した後、放置して自然乾燥させることによって、固体潤滑剤を摺動面に配置することもできる。   The solid lubricant dispersion can also be applied to the sliding surface of the member body by spin coating or spraying. In some cases, the solid lubricant can be disposed on the sliding surface by applying the solid lubricant dispersion and allowing it to stand to dry naturally.

上述したとおり、固体潤滑剤は、部材本体内部からの液状または半固体状の潤滑剤の滲出を妨げないように、部材本体の摺動面に存在していることが求められる。これが達成されていれば、樹脂や結合剤などの他の成分を用いて固体潤滑剤を摺動面に配置してもよい。   As described above, the solid lubricant is required to be present on the sliding surface of the member main body so as not to prevent the liquid or semi-solid lubricant from exuding from the inside of the member main body. If this is achieved, the solid lubricant may be disposed on the sliding surface using other components such as a resin and a binder.

5.実施例
以下の実施例においては、焼結金属からなる部材本体の表面に固体潤滑剤を配置するとともに、液状または半固体状の潤滑剤としての潤滑油を部材本体内部に含浸させて試料を作製し、固体潤滑剤が配置された表面の動摩擦係数を測定して試料の耐荷重性を調べた。
5. Examples In the following examples, a solid lubricant is disposed on the surface of a member body made of sintered metal, and a lubricant is prepared as a liquid or semi-solid lubricant to prepare a sample. The load resistance of the sample was examined by measuring the dynamic friction coefficient of the surface on which the solid lubricant was disposed.

(実施例1)
<部材本体の作製>
Cu:88wt%、Sn:10wt%、C:2wt%の組成となるように、原料粉末としての銅粉末、錫粉末、および黒鉛を配合して混合粉末を得、これを常法によりプレスしてφ30mm、L10mmの成形体を作製した。得られた成形体を、常法により、不活性雰囲気中750℃で30分間焼結して、焼結金属からなる部材本体を作製した。得られた部材本体は、JIS規格Z2501:2000により求めた乾燥密度が6.6g/cmであり、含油率は20vol%であった。
Example 1
<Production of member body>
Cu powder, tin powder, and graphite as raw material powders were mixed to obtain a mixed powder so as to have a composition of Cu: 88 wt%, Sn: 10 wt%, C: 2 wt%, and this was pressed by a conventional method A molded body of φ30 mm and L10 mm was produced. The obtained molded body was sintered in an inert atmosphere at 750 ° C. for 30 minutes by a conventional method to produce a member body made of sintered metal. The obtained member main body had a dry density obtained by JIS standard Z2501: 2000 of 6.6 g / cm 3 and an oil content of 20 vol%.

<固体潤滑剤の配置>
固体潤滑剤としてのカーボンナノファイバー(CNF)(CNano Technology Ltd.:Flotube9000)を、硝酸:硫酸=1:3の溶液中で60℃において24時間酸化処理し、その後分散処理を施した。分散処理には超音波ホモジナイザー(QSonica製:Q700)を用い、処理条件は、280Wで2時間(パルス間隔:30sec)とした。分散処理後、20wt%のメタノールをさらに加えて、固体潤滑剤分散液としてのCNF分散液を得た。分散液中におけるCNF濃度は0.05wt%であった。
<Arrangement of solid lubricant>
Carbon nanofibers (CNF) (CNano Technology Ltd .: Flotube 9000) as a solid lubricant was oxidized in a solution of nitric acid: sulfuric acid = 1: 3 at 60 ° C. for 24 hours, and then subjected to dispersion treatment. An ultrasonic homogenizer (manufactured by Qsonica: Q700) was used for the dispersion treatment, and the treatment condition was 280 W for 2 hours (pulse interval: 30 sec). After the dispersion treatment, 20 wt% methanol was further added to obtain a CNF dispersion as a solid lubricant dispersion. The CNF concentration in the dispersion was 0.05 wt%.

この分散液100μLで前述の部材本体の表面全体を覆い、60℃で12時間保持することで乾燥させた。その後、ハンドプレスを用いて圧力1.0×10kg/cm(98MPa)となる力で1分間プレスし、固体潤滑剤としてのCNFを部材本体の表面に配置した。 The entire surface of the above-mentioned member main body was covered with 100 μL of this dispersion, and dried by holding at 60 ° C. for 12 hours. Then, it pressed for 1 minute with the force used as a pressure 1.0 * 10 < 3 > kg / cm < 2 > (98MPa) using a hand press, and CNF as a solid lubricant was arrange | positioned on the surface of the member main body.

<液状または半固体状の潤滑剤の含浸>
液状の潤滑剤として潤滑油(JX日鉱日石エネルギー(株):タービン油)を用意し、表面にCNFが配置された部材本体をこの中に浸漬した。10mmHgの真空引きを4時間行って、部材本体に潤滑油を含浸させた。こうして、部材本体に潤滑油が含浸されるとともに、表面にCNFが配置された実施例1の試料が得られた。
<Impregnation of liquid or semi-solid lubricant>
Lubricating oil (JX Nippon Oil & Energy Co., Ltd .: Turbine oil) was prepared as a liquid lubricant, and a member main body having CNF disposed on the surface thereof was immersed therein. The member body was impregnated with lubricating oil by evacuating 10 mmHg for 4 hours. Thus, the sample of Example 1 was obtained in which the member main body was impregnated with the lubricating oil and CNF was disposed on the surface.

さらに、以下の点を変更する以外は実施例1と同様の手法により、実施例2〜11および比較例の試料を作製した。   Further, samples of Examples 2 to 11 and Comparative Example were produced by the same method as in Example 1 except that the following points were changed.

(実施例2)
マイクロピペットを用いて80μLの固体潤滑剤分散液を部材本体に滴下し、表面の8割程度をスポット的に覆った。
(Example 2)
Using a micropipette, 80 μL of a solid lubricant dispersion was dropped onto the member body, and about 80% of the surface was covered in a spot manner.

(実施例3)
マイクロピペットを用いて60μLの固体潤滑剤分散液を部材本体に滴下し、表面の6割程度をスポット的に覆った。
Example 3
Using a micropipette, 60 μL of a solid lubricant dispersion was dropped onto the member body, and about 60% of the surface was covered in a spot manner.

(実施例4)
マイクロピペットを用いて20μLの固体潤滑剤分散液を部材本体に滴下し、表面の2割程度をスポット的に覆った。
Example 4
Using a micropipette, 20 μL of a solid lubricant dispersion was dropped onto the member body, and about 20% of the surface was spot-covered.

(実施例5)
固体潤滑剤としてのCNFを、フラーレン(Sigma Aldrich Corp.:製品番号572500)に変更した。また、酸化処理は行わず、分散剤としてのPVP(K=30 CNFに対して10wt%)と共に分散処理を行った。
(Example 5)
CNF as a solid lubricant was changed to fullerene (Sigma Aldrich Corp .: product number 572500). Moreover, the oxidation process was not performed but the dispersion process was performed with PVP (10 wt% with respect to K = 30 CNF) as a dispersing agent.

(実施例6)
固体潤滑剤としてのCNFを、カーボンブラック(三菱化学(株):#2650)に変更した。また、酸化処理は行わず、分散剤も使用しなかった。
(Example 6)
CNF as a solid lubricant was changed to carbon black (Mitsubishi Chemical Corporation: # 2650). Also, no oxidation treatment was performed and no dispersant was used.

(実施例7)
固体潤滑剤分散液としてのCNF分散液を、ボロンナイトライド(BN)分散液((株)MARUKA:ウルトラコート、Cタイプ)の希釈液に変更した。ボロンナイトライド分散液は、水とメタノールとの混合溶液(水:メタノール=80:20重量比)を用いて、固形分濃度が0.05wt%になるように希釈した。
(Example 7)
The CNF dispersion as the solid lubricant dispersion was changed to a diluted solution of boron nitride (BN) dispersion (MARUKA: Ultracoat, C type). The boron nitride dispersion was diluted with a mixed solution of water and methanol (water: methanol = 80: 20 weight ratio) so that the solid content concentration was 0.05 wt%.

(実施例8)
固体潤滑剤としてのCNFを二硫化モリブデン粉末(Sigma Aldrich Corp.:製品番号234842)に変更し、PVPをコール酸ナトリウム水和物(Sigma Aldrich Corp.:製品番号C1254)に変更した。
(Example 8)
CNF as a solid lubricant was changed to molybdenum disulfide powder (Sigma Aldrich Corp .: product number 234842), and PVP was changed to sodium cholate hydrate (Sigma Aldrich Corp .: product number C1254).

(実施例9)
原料粉末の種類および配合量を変更して得られた焼結金属を、部材本体として用いた。焼結金属の組成は、Cu:40wt%,Fe:55wt%,Sn:5wt%であり、この焼結金属からなる部材本体の乾燥密度および含油率は、それぞれ6.2g/cmおよび25vol%であった。
Example 9
A sintered metal obtained by changing the type and blending amount of the raw material powder was used as a member body. The composition of the sintered metal is Cu: 40 wt%, Fe: 55 wt%, Sn: 5 wt%, and the dry density and oil content of the member body made of this sintered metal are 6.2 g / cm 3 and 25 vol%, respectively. Met.

(実施例10)
原料粉末の種類および配合量を変更して得られた焼結金属を、部材本体として用いた。焼結金属の組成は、Fe:77wt%、Sn:1wt%、C:2wt%、Cu:20wt%であり、この焼結金属からなる部材本体の乾燥密度および含油率は、それぞれ5.8g/cmおよび24vol%であった。
(Example 10)
A sintered metal obtained by changing the type and blending amount of the raw material powder was used as a member body. The composition of the sintered metal was Fe: 77 wt%, Sn: 1 wt%, C: 2 wt%, Cu: 20 wt%, and the dry density and oil content of the sintered body of the member body were 5.8 g / It was cm 3 and 24vol%.

(実施例11)
まず、部材本体に潤滑油を含浸させ、次いで、部材本体の表面に固体潤滑剤分散液を塗布した。固体潤滑剤分散液の調液においては、水:メタノール重量比を10:90に変更し、分散作業は100%水中で行った。こうして得られた分散液1mLを、潤滑油が含浸された部材本体の表面にスピンコート(3000rpm、1分)により塗布した。その後、ハンドプレスによって圧力1.0×10kg/cm(98MPa)となる力で1分間プレスした。
(Example 11)
First, the member main body was impregnated with lubricating oil, and then a solid lubricant dispersion was applied to the surface of the member main body. In the preparation of the solid lubricant dispersion, the water: methanol weight ratio was changed to 10:90, and the dispersion operation was performed in 100% water. 1 mL of the dispersion thus obtained was applied to the surface of the member body impregnated with the lubricating oil by spin coating (3000 rpm, 1 minute). Then, it pressed for 1 minute with the force used as a pressure 1.0 * 10 < 3 > kg / cm < 2 > (98MPa) with a hand press.

実施例2〜11の試料においては、実施例1の試料と同様、部材本体に潤滑油が含浸されるとともに、部材本体の表面に固体潤滑剤が配置されている。   In the samples of Examples 2 to 11, as in the sample of Example 1, the member body is impregnated with lubricating oil, and a solid lubricant is disposed on the surface of the member body.

(比較例)
部材本体に固体潤滑剤分散液を用いた処理を施さず、プレスおよび潤滑油の含浸を行った。比較例の試料においては、部材本体の表面に固体潤滑剤が配置されていない。
(Comparative example)
The member body was not subjected to the treatment using the solid lubricant dispersion, and was subjected to press and lubricating oil impregnation. In the sample of the comparative example, no solid lubricant is arranged on the surface of the member main body.

上述のように得られた試料(実施例1〜11、比較例)の物性値を、試料の構成とともに下記表1にまとめる。物性値としては、固体潤滑剤の平均粒径および表面被覆率、面圧、動摩擦係数、および焼きつきの有無を、以下の手法により求めた。   The physical property values of the samples (Examples 1 to 11 and Comparative Examples) obtained as described above are summarized in Table 1 below together with the configuration of the samples. As physical property values, the average particle size and surface coverage of the solid lubricant, the surface pressure, the dynamic friction coefficient, and the presence or absence of seizure were determined by the following methods.

<固体潤滑剤の平均粒径>
部材本体の表面に配置された固体潤滑剤をSEM、もしくはTEM観察して画像を得、その結果から一次粒子の平均粒径を求めた。なお、異方性のある粒子(カーボンナノファイバー、窒化ホウ素(BN)、二硫化モリブデン)に関しては、最大長さを粒径とした。
<Average particle size of solid lubricant>
The solid lubricant arranged on the surface of the member body was observed by SEM or TEM to obtain an image, and the average particle size of the primary particles was obtained from the result. For anisotropic particles (carbon nanofibers, boron nitride (BN), molybdenum disulfide), the maximum length was taken as the particle size.

<表面被覆率>
SEMにより10μmの単位領域の画像を100箇所について観察し、固体潤滑剤の存在が確認された単位領域の割合を求めて表面被覆率とした。
<Surface coverage>
The image of the unit area of 10 μm 2 was observed at 100 locations by SEM, and the ratio of the unit area where the presence of the solid lubricant was confirmed was determined as the surface coverage.

<面圧>
面圧は、動摩擦係数の測定において、荷重を見かけ接触面積(測定用ピンの面積)で割ることによって算出した。
<Surface pressure>
The surface pressure was calculated by dividing the apparent load by the contact area (the area of the measurement pin) in the measurement of the dynamic friction coefficient.

<動摩擦係数>
動摩擦係数は、作製直後の試料について、摩擦摩耗試験機(神鋼造機(株):SZ−FT−93B)を用いて測定した。滑り速度は62m/minに設定し、炭素鋼(S45C)製のピン(Φ4)を用いた。試験は、部材本体の上をピンが回転する形で30分間行い、後半の15分の値の算術平均を求めて動摩擦係数とした。部材本体の表面に固体潤滑剤が配置されていない比較例の試料については、任意の表面の動摩擦係数を測定した。
<Dynamic friction coefficient>
The dynamic friction coefficient was measured for a sample immediately after production using a friction and wear tester (Shinko Engineering Co., Ltd .: SZ-FT-93B). The sliding speed was set to 62 m / min, and a pin (Φ4) made of carbon steel (S45C) was used. The test was performed for 30 minutes with the pin rotating on the member body, and the arithmetic average of the values for the latter half of 15 minutes was obtained as the dynamic friction coefficient. For the sample of the comparative example in which the solid lubricant is not disposed on the surface of the member body, the dynamic friction coefficient of an arbitrary surface was measured.

<焼きつきの有無>
焼きつきが起きたかどうかは、測定中の動摩擦係数が急激に増大し、摺動音が異常に大きくなる状態が続いた場合、焼きつきが起きたと判断した。
<Presence of burn-in>
Whether or not seizure occurred was judged that seizure occurred when the coefficient of dynamic friction during measurement increased rapidly and the sliding sound continued to be abnormally loud.

Figure 2016180464
Figure 2016180464

表1中、「NA」は「Not Available」の略であり、データが存在しないことを表している。上記表1に示されるように、比較例の試料では焼きつきが生じているが、実施例の試料では焼きつきが発生していない。このことから、実施例の試料は耐荷重性が高められたことがわかる。また焼きつきが起きていない試料においては、摩擦係数も小さいままとどまっている。特に、固体潤滑剤として、カーボンナノファイバー、カーボンブラックまたはフラーレンといったナノ炭素材料を用いた場合には、動摩擦係数がより小さくなった。   In Table 1, “NA” is an abbreviation for “Not Available” and indicates that no data exists. As shown in Table 1 above, burn-in occurs in the sample of the comparative example, but no burn-in occurs in the sample of the example. From this, it can be seen that the load resistance of the sample of the example was enhanced. In addition, the friction coefficient of the sample in which no seizure has occurred remains small. In particular, when a nanocarbon material such as carbon nanofiber, carbon black, or fullerene was used as the solid lubricant, the dynamic friction coefficient was further reduced.

部材本体表面における固体潤滑剤の表面被覆率が大きいほど、動摩擦係数は小さくなる傾向があり、固体潤滑剤の表面被覆率が60%を超えていれば0.098未満の動摩擦係数が得られている。また、固体潤滑剤の平均粒径が小さいほど動摩擦係数も小さくなる傾向があり、固体潤滑剤の平均粒径が1μm以下であれば、動摩擦係数は0.092未満に抑えることができる。   The larger the surface coverage of the solid lubricant on the surface of the member body, the smaller the dynamic friction coefficient tends to be. If the surface coverage of the solid lubricant exceeds 60%, a dynamic friction coefficient of less than 0.098 is obtained. Yes. Further, the smaller the average particle size of the solid lubricant is, the smaller the dynamic friction coefficient tends to be. If the average particle size of the solid lubricant is 1 μm or less, the dynamic friction coefficient can be suppressed to less than 0.092.

以上においては、焼結金属からなる部材本体の表面に固体充填剤を配置するとともに、内部に液状または半固体状の潤滑剤としての潤滑油を含浸させて得られた試料を例に挙げて、耐荷重性を高め、さらに摩擦係数を低減し得ることを示した。こうした試料と同様に、液状または半固体状の潤滑剤が部材本体の内部に含有されるとともに、固体潤滑剤が摺動面に配置されていれば、含油軸受等の含油摺動部材の場合も同様に、耐荷重性を高め、さらに摩擦係数を低減することができる。   In the above, a sample obtained by placing a solid filler on the surface of a member body made of sintered metal and impregnating a lubricating oil as a liquid or semi-solid lubricant inside is given as an example, It was shown that the load resistance can be increased and the coefficient of friction can be further reduced. Similarly to these samples, a liquid or semi-solid lubricant is contained inside the member body, and if the solid lubricant is disposed on the sliding surface, it may be an oil-impregnated sliding member such as an oil-impregnated bearing. Similarly, load resistance can be increased and the coefficient of friction can be further reduced.

10 含油軸受(含油摺動部材)
12 部材本体
14 軸体
16 鍔
10 Oil-impregnated bearing (oil-impregnated sliding member)
12 Member body 14 Shaft body 16 鍔

Claims (9)

部材本体の摺動面に液状または半固体状の潤滑剤を供給できる含油摺動部材であって、前記摺動面上に耐荷重性固体潤滑剤が存在する
ことを特徴とする含油摺動部材。
An oil-containing sliding member capable of supplying a liquid or semi-solid lubricant to a sliding surface of a member body, wherein a load-bearing solid lubricant is present on the sliding surface. .
前記部材本体は微細孔を有する多孔質状であり、前記液状または半固体状の潤滑剤は、前記部材本体の前記微細孔内に充填されていることを特徴とする請求項1記載の含油摺動部材。   2. The oil-impregnated slide according to claim 1, wherein the member main body is porous having fine holes, and the liquid or semi-solid lubricant is filled in the fine holes of the member main body. Moving member. 前記摺動面における前記耐荷重性固体潤滑剤の表面被覆率は、60%を超えることを特徴とする請求項1または2記載の含油摺動部材。   The oil-impregnated sliding member according to claim 1 or 2, wherein a surface coverage of the load-bearing solid lubricant on the sliding surface exceeds 60%. 前記耐荷重性固体潤滑剤は、走査型電子顕微鏡観察に基づいて得られた一次粒子の平均粒径が1μm以下の粒子を含むことを特徴とする請求項1〜3のいずれか1項記載の含油摺動部材。   The load-bearing solid lubricant includes particles having an average particle diameter of primary particles obtained based on observation with a scanning electron microscope of 1 µm or less. Oil-impregnated sliding member. 前記耐荷重性固体潤滑剤は、ナノ炭素材料を含むことを特徴とする請求項1〜4のいずれか1項記載の含油摺動部材。   The oil-impregnated sliding member according to any one of claims 1 to 4, wherein the load-bearing solid lubricant includes a nanocarbon material. 前記摺動面が、境界潤滑または混合潤滑の状態で使用されることを特徴とする請求項1〜5のいずれか1項記載の含油摺動部材。   6. The oil-impregnated sliding member according to any one of claims 1 to 5, wherein the sliding surface is used in a boundary lubrication or mixed lubrication state. 請求項1〜6のいずれか1項記載の含油摺動部材を用いたことを特徴とする含油軸受。   An oil-impregnated bearing using the oil-impregnated sliding member according to any one of claims 1 to 6. 耐荷重性固体潤滑剤を含有する分散液を用いて、部材本体の摺動面に前記耐荷重性固体潤滑剤を配置する工程と、
前記摺動面に前記耐荷重性固体潤滑剤が配置された前記部材本体に、液状または半固体状の潤滑剤を含浸させる工程と
を備えることを特徴とする含油摺動部材の製造方法。
Using a dispersion containing a load-bearing solid lubricant, placing the load-bearing solid lubricant on the sliding surface of the member body; and
And a step of impregnating the member main body, on which the load-bearing solid lubricant is disposed, on the sliding surface with a liquid or semi-solid lubricant.
液状または半固体状の潤滑剤を部材本体に含浸させる工程と、
耐荷重性固体潤滑剤を含有する分散液を用いて、前記液状または半固体状の潤滑剤が含浸された部材本体の摺動面に前記耐荷重性固体潤滑剤を配置する工程と
を備えることを特徴とする含油摺動部材の製造方法。
Impregnating the member body with a liquid or semi-solid lubricant;
Disposing the load-bearing solid lubricant on a sliding surface of a member body impregnated with the liquid or semi-solid lubricant using a dispersion containing the load-bearing solid lubricant. The manufacturing method of the oil-impregnated sliding member characterized by these.
JP2015061224A 2015-03-24 2015-03-24 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member Pending JP2016180464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061224A JP2016180464A (en) 2015-03-24 2015-03-24 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061224A JP2016180464A (en) 2015-03-24 2015-03-24 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member

Publications (1)

Publication Number Publication Date
JP2016180464A true JP2016180464A (en) 2016-10-13

Family

ID=57132643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061224A Pending JP2016180464A (en) 2015-03-24 2015-03-24 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member

Country Status (1)

Country Link
JP (1) JP2016180464A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142920A (en) * 1988-11-21 1990-06-01 Katsuzo Okada Lubricating oil impregnated metal powder sintered bearing and manufacture thereof
JP2004108461A (en) * 2002-09-17 2004-04-08 Mitsubishi Materials Corp Sintered bearing and its manufacturing method
JP2005147201A (en) * 2003-11-12 2005-06-09 Heiwa Sangyo Kk Oil-impregnated sintered bearing and its manufacturing method
JP2006002907A (en) * 2004-06-21 2006-01-05 Ntn Corp Conductive high-precision sliding bearing
JP2008261374A (en) * 2007-04-10 2008-10-30 Daikin Ind Ltd Slide member and fluid machine utilizing the same
JP2009523863A (en) * 2006-01-12 2009-06-25 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー NANOPARTICLE COMPOSITION, PROCESS FOR PRODUCTION AND USE THEREOF
JP2013210061A (en) * 2012-03-30 2013-10-10 Taiho Kogyo Co Ltd Sliding bearing and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142920A (en) * 1988-11-21 1990-06-01 Katsuzo Okada Lubricating oil impregnated metal powder sintered bearing and manufacture thereof
JP2004108461A (en) * 2002-09-17 2004-04-08 Mitsubishi Materials Corp Sintered bearing and its manufacturing method
JP2005147201A (en) * 2003-11-12 2005-06-09 Heiwa Sangyo Kk Oil-impregnated sintered bearing and its manufacturing method
JP2006002907A (en) * 2004-06-21 2006-01-05 Ntn Corp Conductive high-precision sliding bearing
JP2009523863A (en) * 2006-01-12 2009-06-25 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー NANOPARTICLE COMPOSITION, PROCESS FOR PRODUCTION AND USE THEREOF
JP2008261374A (en) * 2007-04-10 2008-10-30 Daikin Ind Ltd Slide member and fluid machine utilizing the same
JP2013210061A (en) * 2012-03-30 2013-10-10 Taiho Kogyo Co Ltd Sliding bearing and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6710020B2 (en) Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices
Rapoport et al. Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
JP2005082867A (en) Method for manufacturing iron/copper base sintered alloy for oilless bearing
CN102216633B (en) PTFE series sliding material, bearing, and PTFE series sliding material manufacturing method
JP6114512B2 (en) Sintered bearing and manufacturing method thereof
JP5178698B2 (en) Sliding resin composition
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
Fatih Tunay et al. Investigation of the tribological properties of Cu‐based porous bearings
Mushtaq et al. Tribological characterization of Fe-Cu-Sn alloy with graphite as solid lubricant
JP3774614B2 (en) Sintered oil-impregnated bearing material using copper-coated iron powder and manufacturing method thereof
JP2016180464A (en) Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member
JP6594009B2 (en) Oil-impregnated sliding member, oil-impregnated bearing, and method for producing oil-impregnated sliding member
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
WO2018047765A1 (en) Slide bearing
KR102598911B1 (en) A method for producing a bush lubricating coating agent, the bush lubricating coating agent thus prepared, and a lubricating coating film formed on the inner peripheral surface of the bush with the bush lubricating coating agent
JP6487957B2 (en) Sintered bearing
JP5424121B2 (en) Sliding material
RU2392509C1 (en) Antifriction material
JP2023036234A (en) Sintered sliding component and manufacturing method thereof
JP2008249129A (en) Carbon sliding material
JPH02142920A (en) Lubricating oil impregnated metal powder sintered bearing and manufacture thereof
JP2551437B2 (en) Solid lubricant
JP2019113188A (en) Sintered bearing
JP2019207030A (en) Sintered bearing and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903