JPS61205892A - Nuclear fuel element - Google Patents

Nuclear fuel element

Info

Publication number
JPS61205892A
JPS61205892A JP60046598A JP4659885A JPS61205892A JP S61205892 A JPS61205892 A JP S61205892A JP 60046598 A JP60046598 A JP 60046598A JP 4659885 A JP4659885 A JP 4659885A JP S61205892 A JPS61205892 A JP S61205892A
Authority
JP
Japan
Prior art keywords
nuclear fuel
cladding tube
cladding
fuel element
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60046598A
Other languages
Japanese (ja)
Inventor
雅文 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP60046598A priority Critical patent/JPS61205892A/en
Publication of JPS61205892A publication Critical patent/JPS61205892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Catalysts (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、特に被覆管の応力腐食割れ防止構造を改良し
た核燃料要素に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention particularly relates to a nuclear fuel element having an improved structure for preventing stress corrosion cracking of a cladding tube.

〔発明の背景〕[Background of the invention]

核燃料要素の被覆管構成材料の元素に関してはAS’r
M規格、ASTM B553−71、が知られている。
Regarding the elements of the cladding material of nuclear fuel elements, AS'r
The M standard, ASTM B553-71, is known.

一般に、核燃料要素は被覆管内に複数個の核燃料ペレッ
トが積層収納されると共に1被覆管の両端開口が端栓に
より密閉されている。核燃料ペレットは核分裂性の酸化
物燃料粉末を、例えば、長さと直径との比が約1の円柱
状ペレットに成形焼結したものである。また、上記のよ
うに構成された核燃料要素における被覆管には、核燃料
ペレットとの間で、冷却材が接触すること及び化学反応
が生じることを阻止する機能と、燃料から放出された放
射性核分裂生成物が冷却材中に浸入することを阻止する
機能とが要求されている。従って、このような機能を満
足しない被覆管、即ち、被覆管が破損したような場合に
は、冷却系プラントの放射能レベルが上昇し、安全を確
保するために原子炉の運転を停止させなければならない
事態となる。
Generally, in a nuclear fuel element, a plurality of nuclear fuel pellets are stacked and stored in a cladding tube, and both openings of one cladding tube are sealed with end plugs. Nuclear fuel pellets are made by molding and sintering fissile oxide fuel powder into cylindrical pellets with a length to diameter ratio of about 1, for example. In addition, the cladding tube in the nuclear fuel element configured as described above has the function of preventing coolant from coming into contact with the nuclear fuel pellets and preventing chemical reactions from occurring, and the function of preventing radioactive fission products released from the fuel. A function is required to prevent substances from entering the coolant. Therefore, if the cladding tube does not satisfy these functions, that is, if the cladding tube is damaged, the radioactivity level in the cooling system plant will increase, and the reactor operation will have to be stopped to ensure safety. This is an unavoidable situation.

一方、水冷製原子炉に用いられる核燃料要素の被覆管は
、一般にジルコニウム及びそれらの合金系材料で形成さ
れている。ジルコニウム及びその合金は、中性子吸収断
面積が小さく、かつ、約400C以下の温度で強靭で延
性がよく、シかも、冷却材として用いられる水蒸気とも
反応しない特性を有している− しかしながら、現在までの運転経験によると、ジルコニ
ウム及びその合金で形成された被覆管にあっても、中性
子照射を受けることによる材料強度の低下及び核分裂生
成物との化学反応による腐食などの相互作用に基づく脆
性割れが発生している。このような望ましくない現象は
、次のようにして発生するものとして考えられる。即ち
、核燃以下に設定する必要がある。一方、運転時には、
核燃料ペレットが発熱するのでペレット自身が熱応力で
割れてその破面の喰い違いや、さらには燃焼とともに核
燃料ペレット内に核分裂生成物が累積して起こる体積膨
張などが原因して被覆管が核燃料ペレツ)Kよって押し
拡げられ応力をうける。
On the other hand, cladding tubes of nuclear fuel elements used in water-cooled nuclear reactors are generally made of zirconium and alloys thereof. Zirconium and its alloys have a small neutron absorption cross section, are strong and ductile at temperatures below about 400C, and have the characteristics of not reacting with heat or water vapor used as a coolant. According to the operational experience of zirconium and zirconium alloys, brittle cracking occurs due to interactions such as a decrease in material strength due to neutron irradiation and corrosion due to chemical reactions with fission products. It has occurred. Such an undesirable phenomenon is thought to occur as follows. In other words, it is necessary to set it below nuclear fuel. On the other hand, when driving,
As the nuclear fuel pellets generate heat, the pellets themselves crack due to thermal stress, resulting in misalignment of the fracture surfaces, and furthermore, the volume expansion caused by the accumulation of fission products within the nuclear fuel pellets during combustion causes the cladding tube to break into the nuclear fuel pellets. ) is expanded and subjected to stress by K.

被覆管が受ける歪の円周方向の平均値はさほど大きくは
ないが、核燃料ペレットに生じたクラック近傍の壁には
局部的に歪が集中し、この歪は降伏応力以上に達する。
Although the average value of the strain that the cladding receives in the circumferential direction is not very large, strain is locally concentrated on the wall near the cracks that occur in the nuclear fuel pellet, and this strain reaches more than the yield stress.

さらに1核分裂に伴なって核燃料ペレットからよう素及
びよう素化合物、セシウム及びセシウム化合物などの腐
食性ガスが発生し、この腐食性ガスは被覆管内の自由空
間、即ち、クラックなどに集まる。殊に、被覆管の特に
歪が集中している部分近傍に腐食性ガスが集まシ易い。
Furthermore, corrosive gases such as iodine and iodine compounds, cesium and cesium compounds are generated from nuclear fuel pellets as a result of nuclear fission, and these corrosive gases collect in free spaces within the cladding tube, such as cracks. In particular, corrosive gas tends to collect near parts of the cladding where strain is concentrated.

一般に、腐食性ガスの雰囲気中で応力(特に降伏応力以
上)が作用すると、材料の延性が低減し、応力腐食割れ
と呼称される脆性破壊現象が発生する。応力腐食割れは
、温度、応力、腐食性ガスの濃度、溶存酸素、合金の組
成、熱処理、加工度などによっても左右され、その発生
メカニズムは単一ではない。これらの好ましくない破壊
を防止する目的で、従来例として、被覆管を内張シする
概念は周知でア)、米国特許3502549号、同36
25821号明細書、特開昭51−69792号、同5
1−69795号、同51−69796号及び同51−
71497号公報において、ライナー材として、M o
 + W * N b m N l 、 F e + 
M g + Cu*純zr、ht、 Nt−cr金合金
アルミ化コーテング、珪素化コーテング等が示されてい
る。
Generally, when stress (particularly greater than yield stress) is applied in a corrosive gas atmosphere, the ductility of the material decreases and a brittle fracture phenomenon called stress corrosion cracking occurs. Stress corrosion cracking is influenced by temperature, stress, concentration of corrosive gas, dissolved oxygen, alloy composition, heat treatment, degree of processing, etc., and the mechanism by which it occurs is not unique. In order to prevent these undesirable destructions, the concept of lining the cladding tube as a conventional example is well known and is disclosed in a) U.S. Pat. Nos. 3,502,549 and 36
Specification No. 25821, JP-A-51-69792, JP-A No. 51-69792
No. 1-69795, No. 51-69796 and No. 51-
In Publication No. 71497, as a liner material, M o
+ W * N b m N l , F e +
Mg + Cu* pure zr, ht, Nt-cr gold alloy aluminized coating, silicided coating, etc. are shown.

しかしながら、上記の従来技術に述べである障壁材とし
てのライナー材のあるものは、中性子吸収断面積が大き
く炉の経済性を低下させるなどの欠点がある。また、ラ
イナー材を用いると、被覆管の製造工程が増すだけでな
く、固有の技術的問題及び経済的不利を生じる問題があ
った。
However, some of the liner materials used as barrier materials mentioned in the above-mentioned prior art have drawbacks such as a large neutron absorption cross section that reduces the economic efficiency of the reactor. Additionally, the use of liner materials not only increases the manufacturing process of the cladding, but also presents inherent technical problems and economic disadvantages.

〔発明の目的〕[Purpose of the invention]

本発明は上記の状況に鑑みなされたものであシ、耐応力
腐食割れ性能を著しく増大できると共に、信頼性、経済
性を向上できる核燃料要素を提供することを目的とした
ものである。
The present invention was made in view of the above situation, and an object of the present invention is to provide a nuclear fuel element that can significantly increase stress corrosion cracking resistance and improve reliability and economic efficiency.

〔発明の概要〕[Summary of the invention]

本発明の核燃料要素は、被覆管内に核燃料ペレットが充
填されると共に、該被覆管の両端開口が端栓を介して密
封されてなシ、上記被覆管の材料が、炭素含有量60重
量−以下のジルコニウム合金から形成されているものが
ある。本発明者は、ジルコニウム合金の不純物のうち、
従来、特に注意を払われていなかった炭素含有量を低く
制限したジルコニウム合金が、燃料と被覆管との相互作
用による応力腐食割れに対してすぐれていることを見い
出したものである。
In the nuclear fuel element of the present invention, the cladding tube is filled with nuclear fuel pellets, the openings at both ends of the cladding tube are sealed via end plugs, and the material of the cladding tube has a carbon content of 60% by weight or less. Some are made of zirconium alloy. The present inventor discovered that among the impurities of zirconium alloy,
It has been discovered that a zirconium alloy with a low carbon content, which has not received particular attention in the past, is excellent against stress corrosion cracking caused by the interaction between the fuel and the cladding.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の核燃料要素を実施例を用い第1図。 FIG. 1 shows an embodiment of the nuclear fuel element of the present invention.

第2図によシ説明する。第1図はジルコニウムを除いた
化学組成説明図、第2図は製造工程流れ図である。まず
、原子炉数ジルカロイ−2の化学組成規格(A8TM 
B−353Grade  RA−1) f満足する次の
量の合金元素をジルコニウム中に添加する。錫1.20
〜1.70重量%、鉄0,07〜α20重量%、クロム
0.05〜0.15重量%、ニッケルα03〜O,OS
重量%、鉄+クロムーニッケル0.18〜0.38重量
%である。次に、従来の上記規格では、炭素は270重
量−以下であるが、炭素含有量が50及び、60Fにな
るように、かつ、他の不純物は上記規格を満足している
ジルコニウムインゴットを選定した。尚、比較のために
、従来、炭素含有量が60重量−を越える20ツトのジ
ルコニウムインゴットを選び出した。このように組成を
調整したジルカロイ−2原料を第2図の流れ図に従って
ジルカロイ−2被覆管を製造した。
This will be explained with reference to FIG. FIG. 1 is an explanatory diagram of the chemical composition excluding zirconium, and FIG. 2 is a flowchart of the manufacturing process. First, the chemical composition standard for reactor number Zircaloy-2 (A8TM
B-353Grade RA-1) Add the following amounts of alloying elements satisfying f into zirconium. tin 1.20
~1.70% by weight, iron 0.07~α20% by weight, chromium 0.05~0.15% by weight, nickel α03~O,OS
% by weight, iron+chromium-nickel 0.18-0.38% by weight. Next, according to the above-mentioned conventional standards, the carbon content is 270% by weight or less, but we selected a zirconium ingot that had a carbon content of 50 and 60F and other impurities that met the above-mentioned standards. . For comparison, 20 zirconium ingots having a carbon content exceeding 60% by weight were selected. Using the Zircaloy-2 raw material whose composition was adjusted in this way, a Zircaloy-2 cladding tube was manufactured according to the flowchart shown in FIG.

尚、製造工程中での炭素の混入は極力避けた。Incidentally, the contamination of carbon during the manufacturing process was avoided as much as possible.

製造された低炭素ジルカロイ−2被覆管の特性を調べる
ため、この被覆管内に中空の核燃料ペレットを挿入する
。そして、この核燃料ペレットの中空部に円柱状の純ア
ルミニウム棒を挿入し、ヨウ素濃度3wq/c1!、被
覆管温度350Cの雰囲気下で、アルミニウム棒を長手
方向に圧縮し、中空の核燃料ペレットを介して被覆管に
円周方向応力を90えた。そして、このときに得られた
被覆管に生じた破断延びを求めた。これを、横軸に炭素
含有量をとシ縦軸に被覆管円周方向破断伸びをとって示
した第3図の本実施例破断伸びa、bに示される特性が
得られた。一方、比較のために、従来の被覆管を用意し
同様な実験を行った結果を第3図に従来破断伸びc、d
を示したが、破断伸びが前者よシ低いことが認められる
。即ち、ジルカロイ−2中の不純物である炭素を60重
量−以下に制限することによシ、腐食性ガス中において
燃料との相互作用によシ被覆管に応力が作用した場合に
被覆管Ω応力腐食割れが起こり難くなって太きな伸びを
許容してかる。
In order to investigate the properties of the manufactured low carbon Zircaloy-2 cladding tube, hollow nuclear fuel pellets are inserted into the cladding tube. Then, a cylindrical pure aluminum rod was inserted into the hollow part of this nuclear fuel pellet, and the iodine concentration was 3 wq/c1! In an atmosphere with a cladding tube temperature of 350 C, the aluminum rod was compressed in the longitudinal direction, and a circumferential stress of 90°C was applied to the cladding tube through the hollow nuclear fuel pellet. Then, the elongation at break that occurred in the cladding tube obtained at this time was determined. The characteristics shown in the elongations at break a and b of this example in FIG. 3, where the horizontal axis represents the carbon content and the vertical axis represents the elongation at break in the circumferential direction of the cladding tube, were obtained. On the other hand, for comparison, the results of a similar experiment using a conventional cladding tube are shown in Figure 3.
However, it is recognized that the elongation at break is lower than that of the former. That is, by limiting the amount of carbon, which is an impurity in Zircaloy-2, to less than 60% by weight, it is possible to reduce the Ω stress of the cladding when stress is applied to the cladding due to interaction with fuel in a corrosive gas. Corrosion cracking becomes less likely to occur and thick elongation is allowed.

このように本実施例の核燃料要素は、ジルコニウム合金
から形成された炭素含有量を60重量P以下にしたこと
により従来の被覆管に比び円周方向破断伸びが著しく犬
きくなシ、耐応力腐食割れ性能を著しく増大できると共
に経済性及・び信頼性を向上する。
As described above, the nuclear fuel element of this example is formed from a zirconium alloy with a carbon content of 60 weight P or less, so that the elongation at break in the circumferential direction is significantly lower than that of conventional cladding tubes, and the stress resistance is reduced. It can significantly increase corrosion cracking performance and improve economy and reliability.

〔発明の効果〕〔Effect of the invention〕

以上記述した如く本発明の核燃料要素は、耐応1力腐食
割れ性能を著しく増大できると共K、経済性、信頼性を
向上できる効果を有するものである。
As described above, the nuclear fuel element of the present invention has the effect of significantly increasing resistance to single force corrosion cracking, as well as improving K, economy, and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 1、燃料被覆管内に核燃料ペレットが充填されると共に
、該被覆管の両端開口が端栓を介して密封されてなるも
のにおいて、上記被覆管の材料が、炭素含有量60重量
μm以下のジルコニウム合金から形成されていることを
特徴とする核燃料要素。
1. A fuel cladding tube is filled with nuclear fuel pellets and the openings at both ends of the cladding tube are sealed via end plugs, and the material of the cladding tube is a zirconium alloy with a carbon content of 60 μm or less by weight. A nuclear fuel element characterized in that it is formed from.
JP60046598A 1985-03-11 1985-03-11 Nuclear fuel element Pending JPS61205892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046598A JPS61205892A (en) 1985-03-11 1985-03-11 Nuclear fuel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046598A JPS61205892A (en) 1985-03-11 1985-03-11 Nuclear fuel element

Publications (1)

Publication Number Publication Date
JPS61205892A true JPS61205892A (en) 1986-09-12

Family

ID=12751734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046598A Pending JPS61205892A (en) 1985-03-11 1985-03-11 Nuclear fuel element

Country Status (1)

Country Link
JP (1) JPS61205892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227535A (en) * 1985-07-29 1987-02-05 Toshiba Corp Zirconium base alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227535A (en) * 1985-07-29 1987-02-05 Toshiba Corp Zirconium base alloy

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
US4022662A (en) Nuclear fuel element having a metal liner and a diffusion barrier
US4200492A (en) Nuclear fuel element
US5247550A (en) Corrosion resistant zirconium liner for nuclear fuel rod cladding
US4894203A (en) Nuclear fuel element having oxidation resistant cladding
US4406012A (en) Nuclear fuel elements having a composite cladding
JPH07146388A (en) Improved lining for fuel coating provided with zirconium barrier layer
JP2846266B2 (en) Cladding tube
JPH0213280B2 (en)
EP0651396A1 (en) Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding
CA1198231A (en) Zirconium alloy barrier having improved corrosion resistance
KR910003286B1 (en) Zirconium alloy barrier having improved corrosion resistance
JPS63284490A (en) Fuel element for pressurized water type reactor
JPS61205892A (en) Nuclear fuel element
GB1569078A (en) Nuclear fuel element
US5867552A (en) Zirconium-based two-phase alloys for hydride resistant nuclear reactor components
JPS62194490A (en) Nuclear fuel element
JPS62298791A (en) Nuclear fuel element
JPS5958389A (en) Nuclear fuel element
SE462308B (en) Nuclear fuel elements with composite casing containers and composite casing containers with zirconium and zirconium alloy cladding
JPS5940195A (en) Nuclear fuel element for fast breeder
JPH0439630B2 (en)
JPH0137463B2 (en)
JPS61201191A (en) Nuclear fuel element
Adamson et al. Zirconium alloy barrier having improved corrosion resistance