JPS62194490A - Nuclear fuel element - Google Patents

Nuclear fuel element

Info

Publication number
JPS62194490A
JPS62194490A JP61017975A JP1797586A JPS62194490A JP S62194490 A JPS62194490 A JP S62194490A JP 61017975 A JP61017975 A JP 61017975A JP 1797586 A JP1797586 A JP 1797586A JP S62194490 A JPS62194490 A JP S62194490A
Authority
JP
Japan
Prior art keywords
nuclear fuel
cladding tube
cladding
ppm
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61017975A
Other languages
Japanese (ja)
Other versions
JPH0528797B2 (en
Inventor
雅文 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP61017975A priority Critical patent/JPS62194490A/en
Publication of JPS62194490A publication Critical patent/JPS62194490A/en
Publication of JPH0528797B2 publication Critical patent/JPH0528797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Glass Compositions (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は核燃料要素に関するものである。[Detailed description of the invention] [Field of application of the invention] TECHNICAL FIELD This invention relates to nuclear fuel elements.

〔発明の背景〕[Background of the invention]

核燃料要素の被覆管構成材料の元素に関してはASTM
規格、ASTMB353−77aが知られている。
ASTM for elements of cladding materials of nuclear fuel elements
The standard ASTM B353-77a is known.

一般に、核燃料要素は被覆管内に複数個の核燃料ペレッ
トが積層収納されると共に、被覆管の両端開口が端栓に
より密閉されている。核燃料ペレットは核分裂性の酸化
物燃料粉末を、例えば長さと直径との比が約1の円柱状
ペレットに成形焼結されたものである。また、このよう
に構成された核燃料要素の被覆管には、核燃料ペレット
との間で冷却材が接触することおよび化学反応が生じる
ことを阻止する機能と、燃料から放出された放射性核分
裂生成物が冷却材中に侵入するのを阻止する機能とが要
求されている。従ってこのような機能を満足しない被覆
管、すなわち被覆管が破損したような場合には、冷却系
プラントの放射能レベルが上昇し、安全を確保するため
に原子炉の運転を停止しなければならなくなる。
Generally, in a nuclear fuel element, a plurality of nuclear fuel pellets are stacked and stored in a cladding tube, and both openings of the cladding tube are sealed with end plugs. Nuclear fuel pellets are made by molding and sintering fissile oxide fuel powder into cylindrical pellets with a length-to-diameter ratio of about 1, for example. In addition, the cladding tube of the nuclear fuel element configured in this way has the function of preventing the coolant from coming into contact with the nuclear fuel pellets and preventing chemical reactions from occurring, and the function of preventing radioactive fission products released from the fuel. A function is required to prevent the coolant from entering the coolant. Therefore, in the event that the cladding tube does not satisfy these functions, that is, the cladding tube is damaged, the radioactivity level in the cooling system plant will increase, and reactor operation must be stopped to ensure safety. It disappears.

一方、水冷型原子炉に用いられる核燃料要素の被覆管は
、一般にジルコニウムおよびそれらの合金系材料で形成
されている。ジルコニウムおよびその合金は中性子吸収
断面積が小さく、かつ約400℃以下の温度で強靭で延
性がよく、冷却材として用いられる水蒸気とも反応しな
い特性を有している。
On the other hand, cladding tubes of nuclear fuel elements used in water-cooled nuclear reactors are generally made of zirconium and alloys thereof. Zirconium and its alloys have a small neutron absorption cross section, are strong and ductile at temperatures below about 400° C., and have characteristics that do not react with water vapor used as a coolant.

しかし乍ら現在までの運転経験によると、ジルコニウム
およびその合金で形成された被覆管でも、中性子照射を
受けることによる材料強度の低下および核分裂生成物と
の化学反応による腐食などの相互作用に基づく脆性割れ
が発生している。このような望ましくない現象は次のよ
うにして発生するものと考えられる。
However, according to operational experience to date, even cladding made of zirconium and its alloys is susceptible to brittleness due to a decrease in material strength due to neutron irradiation and corrosion due to chemical reactions with nuclear fission products. Cracks have occurred. It is thought that such an undesirable phenomenon occurs as follows.

すなわち核燃料ペレットで発生した熱を被覆管の外表面
に効率よく伝えるには、被覆管の内側面と核燃料ペレッ
トとの間に形成されるギャップを数十ミクロン以下に設
定する必要がある。一方、運転時には核燃料ペレットが
発熱するので、ペレット自身が熱応力で割れてその破面
の喰い違いや、さらには燃焼と共に核燃料ペレット内に
核分裂生成物が累積して起こる体積膨張などが原因して
、被覆管が核燃料ペレットによって押し拡げられ応力を
受ける。被′III管が受ける歪の円周方向の平均値は
さほど大きくはないが、核燃料ペレットに生じたクラッ
ク近傍の壁には帰部的に歪が集中するのみならず、この
歪は降伏応力以上に達する。さく3) らに、核分裂に伴なって核燃料ペレットからヨウ素およ
びヨウ素化合物、セシウムおよびセシウム化合物などの
腐食性ガスが発生し、この腐食性ガスは被覆管内の自由
空間、すなわちクラックなどに集まる。とりわけ被覆管
の特に歪が集中している部分近傍に腐食性ガスが集まり
易い。
That is, in order to efficiently transfer the heat generated by the nuclear fuel pellets to the outer surface of the cladding tube, it is necessary to set the gap formed between the inner surface of the cladding tube and the nuclear fuel pellets to several tens of microns or less. On the other hand, as nuclear fuel pellets generate heat during operation, the pellets themselves crack due to thermal stress, resulting in misalignment of the fracture surfaces, and furthermore, fission products accumulate within the nuclear fuel pellets during combustion, resulting in volumetric expansion. , the cladding tube is expanded by the nuclear fuel pellets and subjected to stress. Although the average value of the strain in the circumferential direction that the tube 'III is subjected to is not very large, not only does the strain locally concentrate on the wall near the crack that occurs in the nuclear fuel pellet, but this strain exceeds the yield stress. reach. 3) In addition, corrosive gases such as iodine and iodine compounds, cesium and cesium compounds are generated from nuclear fuel pellets as a result of nuclear fission, and these corrosive gases collect in free spaces within the cladding, such as cracks. In particular, corrosive gas tends to collect near parts of the cladding where strain is particularly concentrated.

一般に、腐食性ガスの雰囲気中で応力(特に降伏応力以
上)が作用すると、材料の延性が低減し。
Generally, when stress (especially above yield stress) acts in a corrosive gas atmosphere, the ductility of the material decreases.

応力腐食割れと称される脆性破壊現象が発生する。A brittle fracture phenomenon called stress corrosion cracking occurs.

応力腐食割れは温度、応力、腐食性ガスの濃度。Stress corrosion cracking depends on temperature, stress, and concentration of corrosive gas.

溶存酸素9合金の組成、熱処理、加工度などによっても
左右され、その発生メカニズムは単一ではない。これら
の望ましくない破壊を防止する目的で被覆管を内張すす
る概念は周知であり、米国特許3502549号公報、
米国特許3625821号公報、特開昭51−6979
2号公報、特開昭51−69795号公報、特開昭51
−69796号公報および特開昭51−71497号公
報において、ライナー材としてMo+WtNb、Ni、
Fe、Mg、Cu、純Zr、AQ。
The mechanism by which dissolved oxygen occurs depends on the composition of the dissolved oxygen 9 alloy, heat treatment, degree of processing, etc., and there is no single mechanism for its occurrence. The concept of lining the cladding tube for the purpose of preventing such undesirable destruction is well known, and is disclosed in U.S. Pat. No. 3,502,549,
U.S. Patent No. 3,625,821, Japanese Patent Application Publication No. 51-6979
No. 2, JP-A-51-69795, JP-A-Sho 51
In JP-A-69796 and JP-A-51-71497, Mo+WtNb, Ni,
Fe, Mg, Cu, pure Zr, AQ.

Ni−Cr合金、アルミ化コーテング、珪素化コ−テン
プ等が示されている。
Ni--Cr alloys, aluminized coatings, silicided coatings, etc. are shown.

しかし乍らこのような障壁材としてのライナー材のある
ものは、中性子吸収断面積が大きく炉の経済性を低下さ
せるなどの欠点がある。また、ライナー材を用いると被
覆管の製造工程が増すだけでなく、固有の技術的問題お
よび経済的不利を生じる問題があった。
However, some liner materials used as barrier materials have drawbacks such as a large neutron absorption cross section, which reduces the economic efficiency of the reactor. Additionally, the use of liner materials not only increases the manufacturing process of the cladding, but also presents inherent technical problems and economic disadvantages.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり、耐応力腐
食割れ性能を増大し、信頼性、経済性を向上することを
可能とした核燃料要素を提供することを目的とするもの
である。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a nuclear fuel element that can increase stress corrosion cracking resistance and improve reliability and economic efficiency.

〔発明の概要〕[Summary of the invention]

すなわち本発明は被覆管の内部に核燃料ペレットが密封
されている核燃料要素において、前記被覆管が炭素濃度
80M量ppm以下で、かつ酸素濃度600重量ppm
以下のジルコニウム合金から形成されたものであること
を特徴とするものであり、これによって被覆管の応力腐
食割れが起こり難くなる。
That is, the present invention provides a nuclear fuel element in which nuclear fuel pellets are sealed inside a cladding tube, wherein the cladding tube has a carbon concentration of 80M ppm or less and an oxygen concentration of 600 ppm by weight.
It is characterized by being formed from the following zirconium alloy, which makes stress corrosion cracking of the cladding less likely to occur.

発明者はどのようにすれば耐応力腐食割れ性が向上でき
るかを検討した。ジルコニウム合金を構成する元素のう
ち、高温(約350℃)における強度を増加させるのは
ジルコニウム中に固溶する主として酸素などの元素であ
る。この他に結晶粒内に分散し、被覆管の強度を増加さ
せる主要な元素に炭素がある。従来、炭素は約140重
量ppm程度含まれているが、この濃度をさらに低下さ
せることは工業的に可能である。また、従来酸素濃度は
被覆管の使用初期の強度を確保するための約1100か
ら1300重量ppmムこ定めていたが、本発明では被
覆管の高温強度を低く押えるためには炭素と共に酸素の
濃度を制限すれば、燃料と被覆管との相互作用に起因す
る応力腐食割れに対してすぐれた被覆管が得られる点に
着目した6〔発明の実施例〕 第1表には本発明の実施例で用いるジルコニウム合金の
ジルコニウムを除いた化学組成が示してあり、イ11ロ
、ハ二のうちハ、二は従来例、イ。
The inventor investigated how stress corrosion cracking resistance could be improved. Among the elements constituting the zirconium alloy, the elements that increase the strength at high temperatures (approximately 350° C.) are mainly elements such as oxygen, which are dissolved in zirconium. In addition, carbon is a major element that is dispersed within the crystal grains and increases the strength of the cladding. Conventionally, carbon is contained at about 140 ppm by weight, but it is industrially possible to further reduce this concentration. Furthermore, in the past, the oxygen concentration was set at about 1100 to 1300 ppm by weight to ensure the strength of the cladding tube in the initial stage of use, but in the present invention, in order to keep the high temperature strength of the cladding tube low, the concentration of oxygen as well as carbon We focused on the point that by restricting the cladding tube, a cladding tube with excellent resistance to stress corrosion cracking caused by the interaction between the fuel and the cladding tube can be obtained6 [Embodiments of the Invention] Table 1 shows examples of the present invention. The chemical composition excluding zirconium of the zirconium alloy used in the above is shown.

口は実施例である。まず、原子炉級ジルカロイ−2の化
学組成規格(A S T M * R353+ Gra
de HRA−1,)を満足する次の量の合金元素をジ
ルコニウム中に添加する。すなわち錫1.20 から1
−.70 重量%、鉄0.07から0.20重量%、ク
ロム0.05から0.15重量%、ニッケル0.03か
ら0.08 重量%、鉄+クロムーニッケル0.18か
ら0.38重量%である。次に従来の上記規格では炭素
は270重量ppm以下であるが、実施例42口は炭素
濃度が夫々50.80重量ppm 、酸素濃度が夫々4
00,600重量ppmとし、他の不純物元素は上記規
格を満足するようなジルコニウムインゴットとした。従
来例ハ、二は炭素濃度が夫々140,170重量ppm
 、酸素濃度が夫々1100.1300重量ppmと」
二連のように従来の炭素濃度約140重量p叩、酸素濃
度約1100から1300重量ppmを満足するインゴ
ットとした。
The mouth is an example. First, the chemical composition standard for nuclear reactor grade Zircaloy-2 (ASTM*R353+ Gra
The following amounts of alloying elements satisfying HRA-1,) are added to zirconium. i.e. tin 1.20 to 1
−. 70 wt%, iron 0.07 to 0.20 wt%, chromium 0.05 to 0.15 wt%, nickel 0.03 to 0.08 wt%, iron + chromium-nickel 0.18 to 0.38 wt% %. Next, according to the above-mentioned conventional standards, the carbon content is 270 ppm by weight or less, but in Example 42, the carbon concentration was 50.80 ppm by weight, and the oxygen concentration was 4 ppm by weight.
00,600 ppm by weight, and other impurity elements were made into a zirconium ingot that satisfied the above specifications. Conventional examples C and 2 have carbon concentrations of 140 and 170 ppm by weight, respectively.
, the oxygen concentration is 1100 and 1300 ppm by weight, respectively.''
The ingot was made to satisfy the conventional carbon concentration of about 140 ppm by weight and oxygen concentration of about 1,100 to 1,300 ppm by weight, as in the case of two series.

第1表 このように組成を調整したイ99ロ、ハ二のジルカロイ
−2[料から第1図に示しである製造工程で夫々被覆管
を製造した。すなわちイ22ロ、ハ二のジルカロイ−2
M料を夫々溶解(インゴット)、鍛造・成形(中空ビレ
ット)、熱間押出(素管)、冷間圧延、焼純の工程で被
覆管を製造した。
Table 1 Cladding tubes were manufactured from the Zircaloy-2 materials of I99 and H2 whose compositions were adjusted as described above, according to the manufacturing process shown in FIG. That is, I22 Ro, H2's Zircaloy-2
Cladding tubes were manufactured from M materials through the steps of melting (ingot), forging/forming (hollow billet), hot extrusion (base tube), cold rolling, and sintering.

なおこの場合の最終焼純を480から500℃の範囲内
の温度から選定して行った。これは高温の使用温度にお
ける強度を低下させ、かつ使用初期にも所定の強度が得
られるようにするためである。
In this case, the final sintering temperature was selected from within the range of 480 to 500°C. This is to reduce the strength at high operating temperatures and to ensure that a predetermined strength can be obtained even at the initial stage of use.

なお  、製造工程中での炭素の混入は極力避けた。Furthermore, the contamination of carbon during the manufacturing process was avoided as much as possible.

このようにして製造したジルカロイ−2被覆管の特性を
調べるため、これら被覆管内に中空の核燃料ペレットを
挿入した。そしてこの核燃料ペレットの中空部に円柱状
の純アルミニウム棒を挿入し、ヨウ素濃度3mg/cc
、被覆管温度350℃の雰囲気下でアルミニウム棒を長
手方向に圧縮し、中空の核燃料ペレットを介して被覆管
に円周方向応力を加え、破断伸びを求めた。
In order to investigate the properties of the Zircaloy-2 cladding tubes produced in this manner, hollow nuclear fuel pellets were inserted into these cladding tubes. Then, a cylindrical pure aluminum rod was inserted into the hollow part of this nuclear fuel pellet, and the iodine concentration was 3 mg/cc.
An aluminum rod was compressed in the longitudinal direction in an atmosphere with a cladding tube temperature of 350° C., and stress in the circumferential direction was applied to the cladding tube through a hollow nuclear fuel pellet, and the elongation at break was determined.

破断伸びの測定結果を第2図に示した。同図は縦軸に円
周方向破断伸びをとり、横軸に試料すなわち実施例42
口、従来例ハ、二の化学組成で作った被覆管を夫々イ0
9ロ0.ハ0.二〇としたものをとって、実施例被NI
管イ02口0、従来例被覆管ハ0.二〇の円周方向破断
伸びの変化特性を示した。
The measurement results of elongation at break are shown in FIG. In this figure, the vertical axis shows the elongation at break in the circumferential direction, and the horizontal axis shows the sample, i.e., Example 42.
First, the cladding tubes made with the chemical compositions of conventional examples C and 2 were
9ro 0. Ha0. Taking the number 20, the example subject NI
Pipe A 02 port 0, Conventional example cladding pipe C 0. The change characteristics of the elongation at break in the circumferential direction of 20 samples were shown.

同図から明らかなように実施例被覆管404口0の破断
伸びは従来例被覆管ハ0.二〇のそれより大きいのが認
められた。
As is clear from the figure, the elongation at break of the example cladding tube 404 is 0.0 compared to that of the conventional example cladding tube. It was recognized that it was larger than that of 20.

このようにジルカロイ−2中の炭素濃度を80゜50と
80重量ppI11以下に、酸素濃度を600゜400
と600重量ppm以下に制限することにより、腐食性
ガス中において燃料との相互作用により被覆管に応力が
作用した場合に、その破断伸びが大きくなって応力腐食
割れが起こり難くなることが確められた。なおジルカロ
イ−2だけでなく他のジルカロイ、ジルコニウム−ニオ
ブ合金についても同様である。
In this way, the carbon concentration in Zircaloy-2 was reduced to 80°50 and 80% by weight ppI11, and the oxygen concentration was reduced to 600°400.
By limiting the amount to 600 ppm by weight or less, it has been confirmed that when stress is applied to the cladding tube due to interaction with fuel in corrosive gas, its elongation at break increases and stress corrosion cracking becomes less likely to occur. It was done. The same applies not only to Zircaloy-2 but also to other Zircaloys and zirconium-niobium alloys.

これら実施例が示す如く被覆管を炭素濃度80重量pp
m以下で、かつ酸素濃度600重量ppm以下のジルコ
ニウム合金で形成した核燃料要素は、円周方向破断伸び
が従来のそれより著しく大きくなり、耐応力腐食割れ性
能が増大し、信頼性、経済性が向上する。
As shown in these examples, the cladding tube had a carbon concentration of 80 pp by weight.
A nuclear fuel element made of a zirconium alloy with an oxygen concentration of less than 600 ppm by weight and an oxygen concentration of less than 600 ppm by weight has a circumferential elongation at break that is significantly larger than that of a conventional one, has increased stress corrosion cracking resistance, and is highly reliable and economical. improves.

〔発明の効果〕〔Effect of the invention〕

−1−述のように本発明は耐応力腐食割わ性能が増大し
、信頼性、経済性が向上するようになって。
-1- As mentioned above, the present invention has increased stress corrosion cracking resistance, improved reliability and economical efficiency.

耐応力腐食割れ性能を増大し、信頼性、経済性を向」ニ
することを可能とした核燃料要素を得ることができる。
It is possible to obtain a nuclear fuel element that has increased stress corrosion cracking resistance and improved reliability and economic efficiency.

図面の簡litな説明 第1図は本発明の核燃料要素の一実施例の被覆管製造工
程図、第2図は同じく一実施例の製造した被覆管の円周
方向破断伸び特性図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram for manufacturing a cladding tube according to one embodiment of the nuclear fuel element of the present invention, and FIG. 2 is a diagram showing the elongation characteristics at break in the circumferential direction of the cladding tube manufactured according to the same embodiment.

Claims (1)

【特許請求の範囲】 1、被覆管の内部に核燃料ペレットが密封されている核
燃料要素において、前記被覆管が炭素濃度80重量pp
m以下で、かつ酸素濃度600重量ppm以下のジルコ
ニウム合金から形成されたものであることを特徴とする
核燃料要素。 2、前記ジルコニウム合金が、ジルカロイから形成され
たものである特許請求の範囲第1項記載の核燃料要素。
[Claims] 1. A nuclear fuel element in which nuclear fuel pellets are sealed inside a cladding tube, wherein the cladding tube has a carbon concentration of 80 pp by weight.
A nuclear fuel element, characterized in that it is formed from a zirconium alloy with an oxygen concentration of 600 ppm or less and an oxygen concentration of 600 ppm or less by weight. 2. The nuclear fuel element according to claim 1, wherein the zirconium alloy is formed from Zircaloy.
JP61017975A 1986-01-31 1986-01-31 Nuclear fuel element Granted JPS62194490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61017975A JPS62194490A (en) 1986-01-31 1986-01-31 Nuclear fuel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61017975A JPS62194490A (en) 1986-01-31 1986-01-31 Nuclear fuel element

Publications (2)

Publication Number Publication Date
JPS62194490A true JPS62194490A (en) 1987-08-26
JPH0528797B2 JPH0528797B2 (en) 1993-04-27

Family

ID=11958726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61017975A Granted JPS62194490A (en) 1986-01-31 1986-01-31 Nuclear fuel element

Country Status (1)

Country Link
JP (1) JPS62194490A (en)

Also Published As

Publication number Publication date
JPH0528797B2 (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
US4022662A (en) Nuclear fuel element having a metal liner and a diffusion barrier
US5247550A (en) Corrosion resistant zirconium liner for nuclear fuel rod cladding
JP3215112B2 (en) Reactor fuel rod with two-layer cladding
US4200492A (en) Nuclear fuel element
EP0326896B1 (en) Nuclear fuel element having oxidation resistant cladding
US5026516A (en) Corrosion resistant cladding for nuclear fuel rods
US4406012A (en) Nuclear fuel elements having a composite cladding
JP2846266B2 (en) Cladding tube
KR930009987B1 (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
JPH0213280B2 (en)
US5578145A (en) Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding
CA1198231A (en) Zirconium alloy barrier having improved corrosion resistance
KR910003286B1 (en) Zirconium alloy barrier having improved corrosion resistance
JP4982654B2 (en) Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance
JPS62194490A (en) Nuclear fuel element
JPS61205892A (en) Nuclear fuel element
JPS5958389A (en) Nuclear fuel element
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JPH02263943A (en) Corrosion-resistant zirconium alloy any nuclear fuel composite cladding tube
JPS62298791A (en) Nuclear fuel element
US3145098A (en) Beryllium alloys
JPH0439630B2 (en)
JPH0137463B2 (en)
CN117280066A (en) Uranium-based alloy (variant)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term