JPS5958389A - Nuclear fuel element - Google Patents

Nuclear fuel element

Info

Publication number
JPS5958389A
JPS5958389A JP57168385A JP16838582A JPS5958389A JP S5958389 A JPS5958389 A JP S5958389A JP 57168385 A JP57168385 A JP 57168385A JP 16838582 A JP16838582 A JP 16838582A JP S5958389 A JPS5958389 A JP S5958389A
Authority
JP
Japan
Prior art keywords
cladding tube
nuclear fuel
zircaloy
tube
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57168385A
Other languages
Japanese (ja)
Other versions
JPH0373832B2 (en
Inventor
雅文 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP57168385A priority Critical patent/JPS5958389A/en
Publication of JPS5958389A publication Critical patent/JPS5958389A/en
Publication of JPH0373832B2 publication Critical patent/JPH0373832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Glass Compositions (AREA)
  • Catalysts (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、核燃料要素の改良に関するものである。[Detailed description of the invention] TECHNICAL FIELD This invention relates to improvements in nuclear fuel elements.

一般に、核燃料要素は、第1図に示すように被覆管1内
に複数個の核燃料ペレット2を積層収納するとともに、
被覆管1の両端開口がj’!!A栓3a。
Generally, a nuclear fuel element stores a plurality of nuclear fuel pellets 2 in a stack in a cladding tube 1 as shown in FIG.
The openings at both ends of the cladding tube 1 are j'! ! A plug 3a.

3bKより密ビυさ牙1ている。上記燃料ペレット2は
核分裂性の酸化物燃料粉末?、fi=llえは長さと直
径との比が約1の円柱状ペレットに成型焼結しまたもの
でをンる。尚、・4τ1図中4は、iす”:’多管1内
にガス溜め用ブレナム5を形成する機能と、核燃料ペレ
ット2r安定に支持する機能とをもたぜたスプリングで
ある。
It's more dense than 3bK. Is the above fuel pellet 2 a fissile oxide fuel powder? , fi=lle can also be formed and sintered into cylindrical pellets with a length to diameter ratio of about 1. 4τ1 In the figure, 4 is a spring that has the function of forming a gas reservoir brenum 5 in the multi-tube 1 and the function of stably supporting the nuclear fuel pellets 2r.

ところで、上記のように構成された核燃料要素におい−
C1被覆管1には、核燃料ペレット2との間で冷却材が
接メ・連すること及び化学反応が生じることを阻止する
機能と、燃料から放出された放射性核分裂生成物が冷却
材中に混入するのを阻止する機能とが要求される。従っ
て、このような機hドを満足し々い彼愛育、即ち、被覆
管が破拶したような場合に(d、冷却系プラントの放射
能レベルが上昇し、安全を確保するために原子炉の運転
を停止させなければならない7態となる。
By the way, in the nuclear fuel element configured as above-
The C1 cladding tube 1 has the function of preventing the coolant from coming into contact with the nuclear fuel pellets 2 and preventing chemical reactions from occurring, and the function of preventing radioactive fission products released from the fuel from mixing in the coolant. A function is required to prevent this from occurring. Therefore, in the event that the cladding tube ruptures (d), the radioactivity level in the cooling system plant increases and the nuclear reactor is shut down to ensure safety. There are seven conditions in which the operation of the vehicle must be stopped.

一方、水冷型原子炉に用いられる核惚料安素の#覆管ば
、一般にジルコニウム及びその合金系材料で形成されて
いる。ジルコニウム及びその合金は、中性子吸収断面積
が小さく、かつ、約400C以下の温度で強靭で延性が
よく、シかも、冷却材として用いられる水蒸気とも反応
しない特性を有している。
On the other hand, cladding tubes for nuclear fuel used in water-cooled nuclear reactors are generally made of zirconium and zirconium alloy materials. Zirconium and its alloys have a small neutron absorption cross section, are strong and ductile at temperatures below about 400 C, and have the characteristics of not reacting with heat or water vapor used as a coolant.

しかしながら、視1在までの運転経験によると、ジルコ
ニウム及びその合金で形成された被覆管にあっても、中
性子照射を受けることによる材料強度の低下及び核分裂
生成物との化学反応による腐食などの相互作用に基づく
#性割れが発生している。このような望廿しくない」、
象は次のようにして て発生すめものとじ老えられる。1.、!l]ち、核燃
料ペレット2で発生した熱を被覆管1の外表面に効率よ
く伝えるには、イトワ覆官1の内側面と核燃料ペレット
2との間に形成されるギヤツブ10十ミクロン以下に設
定する必要がある。一方、運転時には、核燃料ペレット
2が発熱するのでペレット自身が熱応力で割れ、その破
面の喰い違いや、さらには燃焼とともに核燃料ペレット
内に核分裂生成物が蓄積して起こる体積膨張などが原因
して第2図に示すようにイ皮横管1が核燃料ペレット2
によって押し拡げられ応力?受ける。被び管1が受ける
止の周方向の平均値はさほど大きくはないが、核燃料ペ
レット2に生じたクラック6近篩の壁には局部的に歪が
集中し、この歪は降伏応力以上に達する。さらに、核分
裂に伴なって核・燃料ペレット2からよう素及びよう素
化合物、セシウム及びセシウム化合物などの腐食性ガス
が発生し、この腐食性ガスは被覆管1内の自由空間、即
ち、クラック6などに集まる。つまり、ネ皮覆管1の特
に歪が集中している部分近傍に腐食性ガスが集まり易い
However, according to the operating experience up to the present day, even with cladding made of zirconium and its alloys, there is a risk of interaction such as a decrease in material strength due to neutron irradiation and corrosion due to chemical reactions with nuclear fission products. #Sexual cracking occurs due to action. It's not that hopeful.''
Elephants are born and grow old in the following way. 1. ,! In order to efficiently transfer the heat generated by the nuclear fuel pellet 2 to the outer surface of the cladding tube 1, the gear formed between the inner surface of the cladding tube 1 and the nuclear fuel pellet 2 should be set to a thickness of 100 microns or less. There is a need to. On the other hand, during operation, the nuclear fuel pellet 2 generates heat, which causes the pellet itself to crack due to thermal stress, resulting in discrepancies in the fracture surfaces, and furthermore, volumetric expansion caused by the accumulation of fission products within the nuclear fuel pellet as it burns. As shown in FIG.
Stress expanded by force? receive. Although the average value of the stress in the circumferential direction that the jacket tube 1 receives is not very large, strain is locally concentrated on the wall of the sieve near the crack 6 that occurs in the nuclear fuel pellet 2, and this strain reaches more than the yield stress. . Further, with nuclear fission, corrosive gases such as iodine and iodine compounds, cesium and cesium compounds are generated from the nuclear/fuel pellet 2, and this corrosive gas is absorbed into the free space within the cladding tube 1, that is, the crack 6. etc. In other words, corrosive gas tends to collect near the part of the skinned pipe 1 where strain is particularly concentrated.

一般に、11モ食性ガスの雰囲気中で応力(特に降伏応
力以上)が作用すると、材料の延性が低減し、応力腐食
割れと呼称される脆性破壊り1□象が発生する。応力腐
食割れは、温度、応力、腐食性ガスの濃度、溶存酸累、
合金の組成、熱処理、加工度などによっても左右され、
その発生メカニズムは単一ではない。
In general, when stress (particularly greater than yield stress) is applied in an atmosphere of 11 mo corrosive gas, the ductility of the material decreases and a brittle fracture phenomenon called stress corrosion cracking occurs. Stress corrosion cracking is caused by temperature, stress, corrosive gas concentration, dissolved acid accumulation,
It also depends on the composition of the alloy, heat treatment, degree of processing, etc.
The mechanism by which it occurs is not unique.

これらの好ましくない破壊を防止する目的で、従来例と
して、例えば燃料ペレット2と被覆管1との間に潤滑剤
を挿入する方法が米国特許3018238号明細書に示
されており、また、被覆管1と燃料ペレット2間に障壁
を設けた例として1)AS1238115ではチタン層
を述べている。さらに、Nb、Ta、Mo、Zrの金網
状11% f 燃料を包囲した核燃料棒も知られている
。その他の障壁材として、ステンレス蛭、ガラス質物質
、At。
In order to prevent these undesirable destructions, for example, as a conventional example, a method of inserting a lubricant between the fuel pellet 2 and the cladding tube 1 is shown in US Pat. No. 3,018,238, and As an example of providing a barrier between fuel pellet 1 and fuel pellet 2, 1) AS1238115 describes a titanium layer. Further, nuclear fuel rods surrounding a wire mesh 11% f fuel of Nb, Ta, Mo, and Zr are also known. Other barrier materials include stainless steel leeches, glassy substances, and At.

Be、Mg、Cu等が米国特許3080893号、同3
085059−号、同3212788号、同32917
00号同3230150号明細書及び特開昭50−10
9397号公報で公知になっている。
Be, Mg, Cu, etc. are disclosed in US Pat. No. 3,080,893 and US Pat.
No. 085059-, No. 3212788, No. 32917
No. 00 No. 3230150 specification and JP-A-1989-10
It is publicly known from the publication No. 9397.

同様に被覆管を内張すする概念は周知であり、米国特許
3502549号、同3625821号明細書、特開昭
51−69792号、同51−69795号、同51−
69796号及び同51−71497 号公報において
、内張り月としてMo、W、Nb、 C1,NH。
Similarly, the concept of lining the cladding tube is well known, and is disclosed in U.S. Pat. No. 3,502,549, U.S. Pat.
In No. 69796 and No. 51-71497, Mo, W, Nb, C1, and NH are used as the inner lining.

Fe、Mg、Cu、純7 r、ΔA、Ni−Cr合金、
アルミ化コーテング、珪素化コーテング等が示されてい
る。
Fe, Mg, Cu, pure 7r, ΔA, Ni-Cr alloy,
Aluminized coatings, silicided coatings, etc. are shown.

さらに、上記摩擦力に原因する応力集中を緩和させる目
的で、例えQ」:、グラファイト、二硫化モリブデン等
の高(l゛ηη滑剤体で、もしくは障壁と呼ばれる他の
金楓材とともに燃料ペレット2と被4jt’E#1との
中間に挿入する4!i′案が、それぞれ米国時¥T’3
018238号明細跡及び特開昭50−109396 
号公報に記載されている。
Furthermore, for the purpose of alleviating the stress concentration caused by the above-mentioned frictional force, the fuel pellet 2 is coated with a high lubricant such as Q':, graphite, molybdenum disulfide, etc., or with another gold maple material called a barrier. The 4!i' plan inserted between 4jt'E#1 is ¥T'3 US time.
018238 specification trace and JP-A-50-109396
It is stated in the No.

しかしながら、以上の従来技術に述べである障壁材及び
内張り材のあるものは中1’t+吸tlt7断面稍が太
6〈炉の経済性′fc低下させるかどの欠点がある。ま
た、上記引用した堤案の幾つかは障壁とし防用する物質
が核燃料ペレットと両立し婢い物質であるか、被覆管と
両立し難い物質である場合があり、上記引用した提案は
いずれもfυ、近問題となっている核燃料と被覆管との
間の局部的な化学的−機械的相互作用に対する根本的な
解決法捷で達しているとは云えない。
However, some of the barrier materials and lining materials mentioned in the above prior art have the disadvantage that the cross-sectional size of the medium 1't+suction tlt7 decreases the economical efficiency of the furnace. Additionally, in some of the above-cited levee proposals, the material used as a barrier and defense may be an ugly material that is compatible with nuclear fuel pellets, or a material that is difficult to be compatible with cladding. fυ, it cannot be said that a fundamental solution to the local chemical-mechanical interaction between the nuclear fuel and the cladding, which is a recent problem, has been reached.

本発明は上記の状況に鑑みなされたものであり、腐食性
ガス中において燃料との相互作用により被覆管に応力が
作用した場合に、応力腐食割れが起り難く、被覆管破損
時の管内表面の急激外酸化を防止でき信頼性を向上でき
る核燃料要素を析供すること?目的としたものである。
The present invention has been developed in view of the above circumstances, and is designed to prevent stress corrosion cracking from occurring when stress is applied to the cladding tube due to interaction with fuel in corrosive gases, and to prevent stress from occurring on the inner surface of the tube when the cladding tube is damaged. Providing nuclear fuel elements that can prevent rapid external oxidation and improve reliability? This is the purpose.

本発明の核燃料要素をゴ、ジルコニウム合金系の同村か
0なる被覆管内に燃料ペレットが充填され、上記被覆管
の両端開口が端栓?介し密閉されてなり、上記被覆管の
内表面の少たくとも一部に低酸素ジルコニウム合金系の
材料から形成されたライナ一層が内張すされてなるもの
である。本発明者らは、水に灼する耐腐食性にすぐれた
ジルコニウム合金のうち、低酸素濃度のジルコニウム合
金が、燃料の相互作用による応力腐食割れに対してもす
ぐれていることを見い出し、ジルコニウム合金系被覆管
内表面上にこの低酸素ジルコニウム合金を内張りにした
ものである。
In the nuclear fuel element of the present invention, fuel pellets are filled in a zirconium alloy-based cladding tube of the same size, and the openings at both ends of the cladding tube are end plugs. At least a portion of the inner surface of the cladding tube is lined with a liner made of a low-oxygen zirconium alloy material. The present inventors have discovered that among zirconium alloys that have excellent corrosion resistance when burned in water, zirconium alloys with low oxygen concentrations also have excellent resistance to stress corrosion cracking due to interaction with fuel. This low-oxygen zirconium alloy is lined on the inner surface of the system cladding tube.

以下本発明の核燃料要素の一実施例を従来と同構造の説
明は省略し?f23図により説明する。第3図は横軸に
酸素#度をとり縦411にビッカース硬度をとってジル
カロイ−2の含有酸素濃度とビッカース硬度との関係を
示すグラフである。低酸素スポンジジルコニウムにそれ
ぞれ重楚%で、il、59%、鉄0.16 ’3’o、
クロム0.11%、ニッケル0.06%!!−添加し、
酸素a度が5001−以下の低酸素ジルカロイ−2のイ
ンゴット♀得た区、厚肉円面状に形成加工した。次に、
酸素?約13001−含んだジルカロイ−2厚肉・Uの
内面に上記の低酸素ジルカロイ−2厚肉管?挿入し、ピ
ルガ−圧延機による冷間加工と、焼鈍とを組み合せなが
ら、外径12.52m、肉厚0.86mmの彼M管に仕
上げた。このように加工されたジルカロイ−2被涜管に
おいては、その内表面に[氏酸、嘘ジルカロイ−2のラ
イナーが形成されている。上記低酸素ジルカロイ−2ラ
イナ一部のオートクレーブ試験結果から、高温水に対す
る耐腐食性は、従来の12001%程度の酸素を含んだ
ジルカロイ−2と同等であることが判った。
In the following, explanation of one embodiment of the nuclear fuel element of the present invention having the same structure as the conventional one will be omitted. This will be explained using diagram f23. FIG. 3 is a graph showing the relationship between the oxygen concentration of Zircaloy-2 and the Vickers hardness, with the horizontal axis representing the degree of oxygen and the vertical axis representing the Vickers hardness. Hypoxic sponge zirconium contains 1% il, 59% iron, 0.16'3'o iron, respectively.
Chromium 0.11%, nickel 0.06%! ! -added;
A low-oxygen Zircaloy-2 ingot with an oxygen a degree of 5001 or less was obtained and processed into a thick circular shape. next,
oxygen? Approximately 13001-containing Zircaloy-2 thick-walled pipe with the above-mentioned low-oxygen Zircaloy-2 thick-walled tube on the inner surface of U? The tube was inserted into a tube having an outer diameter of 12.52 m and a wall thickness of 0.86 mm by a combination of cold working using a Pilger rolling mill and annealing. In the Zircaloy-2 sterilized tube processed in this way, a liner of phosphoric acid and Zircaloy-2 is formed on its inner surface. From the autoclave test results of a portion of the above-mentioned low-oxygen Zircaloy-2 liner, it was found that the corrosion resistance against high-temperature water was equivalent to that of the conventional Zircaloy-2 containing about 12001% oxygen.

更に、低酸素ジルカロイ−2ライナ一部の硬度は、第3
図の曲線Aに示したように、酸化濃度の減少とともに低
下することがわかった。硬度は、拐料の変形のし易さ、
例えば、降伏応力と比例関係にあることはよく知られて
いる。従って、ライナ一部の低酸素ジルカロイ−2は被
覆肯刊材より低い降伏応力を持つことになり、被覆管と
燃料ペレットの力学的相互作用による燃料徘覆管の応力
腐食割れに対してすぐれた材料であると云える。
Furthermore, the hardness of some of the hypoxic Zircaloy-2 liners is
As shown by curve A in the figure, it was found that the oxidation concentration decreased as the oxidation concentration decreased. Hardness is the ease with which the material can be deformed,
For example, it is well known that there is a proportional relationship with yield stress. Therefore, the low-oxygen Zircaloy-2 liner, which is part of the liner, has a lower yield stress than the cladding material, and is highly effective against stress corrosion cracking of the fuel cladding caused by the mechanical interaction between the cladding and fuel pellets. It can be said that it is a material.

このように、低酸素ジルカロイ−2を内張すした被覆管
の特性を調べるために、被覆管内に中空の核燃料ペレッ
ト全挿入すると共に、核燃料ペレットの中空部に円柱状
の純アルミニウム棒を充填し、よう素濃度3+ng/l
cc、被覆管温度350Cの雰囲気下でアルミニウム棒
を長手方向に圧縮し、中空の核燃料ペレットを介して被
覆管に円周方向応力を加えた。そして、このときに祠ら
れた被覆管に生じた破断伸びを求めた。その結果、第4
図の棒グラフの棒線Bに示す特性が得られた。
In order to investigate the characteristics of a cladding tube lined with low-oxygen Zircaloy-2, we inserted the entire hollow nuclear fuel pellet into the cladding tube and filled the hollow part of the nuclear fuel pellet with a cylindrical pure aluminum rod. , iodine concentration 3+ng/l
cc, the aluminum rod was compressed in the longitudinal direction in an atmosphere with a cladding tube temperature of 350 C, and circumferential stress was applied to the cladding tube through the hollow nuclear fuel pellet. Then, the elongation at break that occurred in the cladding tube that was polished at this time was determined. As a result, the fourth
The characteristics shown in bar line B of the bar graph in the figure were obtained.

一方、比較のために、従来の被覆管と用意し、同様の実
験2行った結果、第4図の棒線Cで示すように破断伸び
が減少していることが認められた。
On the other hand, for comparison, a similar experiment 2 was conducted using a conventional cladding tube, and as a result, it was observed that the elongation at break had decreased as shown by bar C in FIG. 4.

第4図の結果から明らかなように本実施例の核燃料要素
は、腐食性ガス中において燃料との相互作用により被覆
管に応力が作用した場合、′FfJ覆管の応力腐食割れ
が起り酢く、即ち、低酸素ジルカロイ−2のライナーが
応力腐食割れ防止に1効に1動き、抵抗力が強く大きな
伸び全許容している。
As is clear from the results shown in Figure 4, in the nuclear fuel element of this example, when stress is applied to the cladding due to interaction with fuel in corrosive gas, stress corrosion cracking of the 'FfJ cladding occurs and That is, the low-oxygen Zircaloy-2 liner has a one-to-one movement in preventing stress corrosion cracking, and has strong resistance and allows full elongation.

また、被覆有向に水が浸入した場合の管内表面の急激な
酸化を防止でき、信頼性を向上できる。
Further, rapid oxidation of the inner surface of the pipe when water enters in the direction of the coating can be prevented, and reliability can be improved.

上記実施例は、ジルカロイ−2からなる被覆管と、ジル
カロイ−2からなるライナー材の場合について説明した
が、他のジルカロイ−4なトノジルコニウム合金系で構
成された被覆管の場合も同様の作用効果を有する。また
、ライナ一層は、被覆管の軸方向の中間部分が最も腐食
割れが生じ易いのでこの中間部分だけに配置しても効果
がある。
In the above embodiment, a cladding tube made of Zircaloy-2 and a liner material made of Zircaloy-2 were explained, but the same effect can be obtained in the case of a cladding tube made of other zirconium alloys such as Zircaloy-4. have an effect. Furthermore, since corrosion cracking is most likely to occur in the axially intermediate portion of the cladding tube, it is effective to arrange the liner only in this intermediate portion.

以上記述した如く本発明の核燃料要素は、腐食性ガス中
において燃料との相互作用により被覆管に応力が作用し
た場合に、応力腐食割れが起り難く、被覆管破損時の管
内表面の急激な酸化も防止でき、信頼性を向上できる効
果?有するものである。
As described above, the nuclear fuel element of the present invention is resistant to stress corrosion cracking when stress is applied to the cladding tube due to interaction with fuel in corrosive gas, and rapid oxidation of the inner surface of the tube when the cladding tube breaks. Is there an effect that can prevent this and improve reliability? It is something that you have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通常の核燃料要素の断面図、第2図は第1図の
核燃料要素に起り易い問題点の説明図、第3図は本発明
の核燃料要素の実施例のライナー拐のジルカロイ−2の
含有酸素、υ度とビッカース硬度との関係説明図、第4
図は本発明の核燃料要素の実施例の被覆管の特性と従来
の被覆管の特性比較用の説明図である。 1・・・被覆管、2・・・核燃料ペレット、3・・・端
栓。 奮1図
FIG. 1 is a sectional view of a normal nuclear fuel element, FIG. 2 is an explanatory diagram of problems that tend to occur in the nuclear fuel element of FIG. Explanatory diagram of the relationship between oxygen content, υ degree, and Vickers hardness, Part 4
The figure is an explanatory diagram for comparing the characteristics of the cladding tube of the embodiment of the nuclear fuel element of the present invention and the characteristics of a conventional cladding tube. 1... Cladding tube, 2... Nuclear fuel pellet, 3... End plug. 1st figure

Claims (1)

【特許請求の範囲】 1、 ジルコニウム合金系の材料・からなる被覆管内に
燃料ペレットが充填され、上記披彷管の両端開口が端栓
を介し密閉されてなるものにおいて、上記被覆管の内表
面の少々くとも一部に低酸素ジルコニウム合金系の材料
から形成されたライナ一層が形成されてなることt%徴
とする核燃料要素。 2、 上記′ti11管がジルカロイ−2もしくはジル
カロイ−4の利刺から形成されるとともに、酸素濃度が
500 P頃下のジルカロイ−2もしくはジルカロイ−
4の月利から形成されたライナ一層が上記ネ皮覆管内表
面全面に内張すされている特許請求の範囲第1項記載の
核燃料要素。
[Scope of Claims] 1. A cladding tube made of a zirconium alloy material is filled with fuel pellets, and both openings of the cladding tube are sealed via end plugs, wherein the inner surface of the cladding tube is sealed with end plugs. A nuclear fuel element characterized by having a liner layer formed from a low-oxygen zirconium alloy material in at least a portion of the element. 2. The above 'ti11 tube is formed from Zircaloy-2 or Zircaloy-4 ribs, and is made of Zircaloy-2 or Zircaloy-4 with an oxygen concentration of about 500 P or less.
4. The nuclear fuel element according to claim 1, wherein a single layer of liner formed from a material with a monthly rate of 4.5% is lined over the entire inner surface of said nuclear cladding tube.
JP57168385A 1982-09-29 1982-09-29 Nuclear fuel element Granted JPS5958389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168385A JPS5958389A (en) 1982-09-29 1982-09-29 Nuclear fuel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168385A JPS5958389A (en) 1982-09-29 1982-09-29 Nuclear fuel element

Publications (2)

Publication Number Publication Date
JPS5958389A true JPS5958389A (en) 1984-04-04
JPH0373832B2 JPH0373832B2 (en) 1991-11-25

Family

ID=15867121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168385A Granted JPS5958389A (en) 1982-09-29 1982-09-29 Nuclear fuel element

Country Status (1)

Country Link
JP (1) JPS5958389A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223291A2 (en) 1985-11-07 1987-05-27 Akzo N.V. Reinforcing element of synthetic material for use in reinforced concrete, more particularly prestressed concrete, reinforced concrete provided with such reinforcing elements, and processes of manufacturing reinforcing elements, and reinforced and prestressed concrete
US4751045A (en) * 1985-10-22 1988-06-14 Westinghouse Electric Corp. PCI resistant light water reactor fuel cladding
US4775508A (en) * 1985-03-08 1988-10-04 Westinghouse Electric Corp. Zirconium alloy fuel cladding resistant to PCI crack propagation
US4933136A (en) * 1985-03-08 1990-06-12 Westinghouse Electric Corp. Water reactor fuel cladding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744886A (en) * 1980-07-04 1982-03-13 Asea Atom Ab Nuclear fuel rod
JPS58195185A (en) * 1982-03-31 1983-11-14 ゼネラル・エレクトリツク・カンパニイ Zirconium alloy membrane having improved corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744886A (en) * 1980-07-04 1982-03-13 Asea Atom Ab Nuclear fuel rod
JPS58195185A (en) * 1982-03-31 1983-11-14 ゼネラル・エレクトリツク・カンパニイ Zirconium alloy membrane having improved corrosion resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775508A (en) * 1985-03-08 1988-10-04 Westinghouse Electric Corp. Zirconium alloy fuel cladding resistant to PCI crack propagation
US4933136A (en) * 1985-03-08 1990-06-12 Westinghouse Electric Corp. Water reactor fuel cladding
US4751045A (en) * 1985-10-22 1988-06-14 Westinghouse Electric Corp. PCI resistant light water reactor fuel cladding
EP0223291A2 (en) 1985-11-07 1987-05-27 Akzo N.V. Reinforcing element of synthetic material for use in reinforced concrete, more particularly prestressed concrete, reinforced concrete provided with such reinforcing elements, and processes of manufacturing reinforcing elements, and reinforced and prestressed concrete
EP0223291B1 (en) * 1985-11-07 1991-07-31 Akzo N.V. Reinforcing element of synthetic material for use in reinforced concrete, more particularly prestressed concrete, reinforced concrete provided with such reinforcing elements, and processes of manufacturing reinforcing elements, and reinforced and prestressed concrete

Also Published As

Publication number Publication date
JPH0373832B2 (en) 1991-11-25

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
JP3143015B2 (en) Improved lining for fuel cladding with zirconium barrier layer
FI92355C (en) Nuclear fuel element and method for handling a nuclear fuel composite cladding tank
US4022662A (en) Nuclear fuel element having a metal liner and a diffusion barrier
KR100274767B1 (en) Corrosion resistance zirconium liner for nuclear fuel rod cladding
JP2846266B2 (en) Cladding tube
JPH0213280B2 (en)
US4971753A (en) Nuclear fuel element, and method of forming same
EP0651396B1 (en) Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding
JPH07301687A (en) Coating pipe
JPH033917B2 (en)
CA1209726A (en) Zirconium alloy barrier having improved corrosion resistance
JPS5958389A (en) Nuclear fuel element
US5867552A (en) Zirconium-based two-phase alloys for hydride resistant nuclear reactor components
JPS58216988A (en) Buried zirconium layer
JPH0439630B2 (en)
JPH067099U (en) Nuclear fuel element
JPS61201191A (en) Nuclear fuel element
JPS6165187A (en) Nuclear fuel element
JPH0137463B2 (en)
JPS58147677A (en) Nuclear fuel element
JPS61205892A (en) Nuclear fuel element
Adamson et al. Zirconium alloy barrier having improved corrosion resistance
JPH0528797B2 (en)
JPS60183584A (en) Nuclear fuel element