JPS61205492A - Production of fuel gas - Google Patents

Production of fuel gas

Info

Publication number
JPS61205492A
JPS61205492A JP60048852A JP4885285A JPS61205492A JP S61205492 A JPS61205492 A JP S61205492A JP 60048852 A JP60048852 A JP 60048852A JP 4885285 A JP4885285 A JP 4885285A JP S61205492 A JPS61205492 A JP S61205492A
Authority
JP
Japan
Prior art keywords
gas
hydrogen gas
aerobic
liquid
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60048852A
Other languages
Japanese (ja)
Other versions
JPH064032B2 (en
Inventor
Tatsuji Kobayashi
小林 達治
Koichi Mochida
晃一 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Production Development
Original Assignee
Research Institute for Production Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development filed Critical Research Institute for Production Development
Priority to JP60048852A priority Critical patent/JPH064032B2/en
Publication of JPS61205492A publication Critical patent/JPS61205492A/en
Publication of JPH064032B2 publication Critical patent/JPH064032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To enable the cleaning of waste water, the reutilization of the produced precipitate of bacterial cells, and the production of fuel gas economically on an industrial scale, by transferring a liquid containing large amount of proliferated aerobic bacterial cells quickly to an anaerobic state to effect the generation of hydrogen gas. CONSTITUTION:For example, the waste water of a starch-processing plant is aerated to proliferate a large amount of aerobic bacterial cells (e.g. Escherichia coli) and is transferred quickly to an anaerobic state to effect the generation of a large volume of hydrogen gas preferably in the presence of a phytosynthetic bacterial (e.g. Rhodopseudomonas capsulata). The objective fuel gas is produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃焼用ガスの製造法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing combustion gas.

更に詳しく述べれば、本発明は好気性菌体が大量に増殖
した液から大量の水素ガスとメタンガスを発生させる燃
焼用ガスの製造法に関するものである。
More specifically, the present invention relates to a method for producing combustion gas that generates a large amount of hydrogen gas and methane gas from a liquid in which aerobic bacteria have grown in large quantities.

そして、本発明は廃水の処理に応用することができると
いう特徴を有する。また燃焼用ガスの製造過程でできる
菌体の沈殿物はそのま\で資源として再活用できるとい
う特徴を有する。
The present invention is characterized in that it can be applied to wastewater treatment. In addition, the bacterial precipitate formed during the combustion gas production process can be reused as a resource.

〔従来の技術〕[Conventional technology]

光合成細菌その他の微生物に水素ガスを発生する能力の
あることは公知の事実であシ、この方面の基礎研究は余
シにも多い。しかし、これ迄基礎研究が多数にのぼった
にも拘らず、その実用化に成功しなかったのは、水素ガ
スの発生条件の設定が困難であシ、また発生量も少なく
、とても経済的生産には結びつかなかったことに原因が
あった。
It is a well-known fact that photosynthetic bacteria and other microorganisms have the ability to generate hydrogen gas, and there is much basic research in this direction. However, despite a large amount of basic research, it has not been successfully put into practical use because it is difficult to set the conditions for generating hydrogen gas, and the amount of hydrogen gas generated is small, making it very economical to produce. The reason was that it was not connected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は上記原因を取り除くために、水素ガスの発生
条件の設定が容易であシ、且つ水素ガスの発生量が大量
に得られるような水素ガスの製造法をいろいろと研究し
、以下に説明する本発明に到達した。
In order to eliminate the above-mentioned causes, the present inventor has researched various hydrogen gas production methods that allow easy setting of hydrogen gas generation conditions and that can generate a large amount of hydrogen gas. We have arrived at the invention described.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の3発明からなる。 The present invention consists of the following three inventions.

(1)好気性菌体が大量に増殖した液を急速に嫌気性状
態下におき、水素ガスを発生させることを特徴とする燃
焼用ガスの製造法。
(1) A method for producing combustion gas, which comprises rapidly placing a liquid in which aerobic bacteria have grown in large quantities under anaerobic conditions to generate hydrogen gas.

(2)好気性菌体が大量に増殖した液を急速に嫌気性状
態下におき、水素ガスを発生させるに際して、光合成細
菌を共存させることを特徴とする燃焼用ガスの製造法。
(2) A method for producing combustion gas, which comprises rapidly placing a liquid in which aerobic bacteria have grown in large quantities under anaerobic conditions, and allowing photosynthetic bacteria to coexist when generating hydrogen gas.

(5)好気性菌体が大量に増殖した液を急速に嫌気性状
態下におき、前記液に光合成細菌を共存させ、水素ガス
を発生させた後、さらに嫌気性状態下におき、メタンガ
スを発生させることを特徴とする燃焼用ガスの製造法。
(5) The liquid in which aerobic bacteria have grown in large quantities is rapidly placed under anaerobic conditions, photosynthetic bacteria are allowed to coexist in the liquid, hydrogen gas is generated, and then the liquid is placed under anaerobic conditions to generate methane gas. A method for producing combustion gas, characterized by generating combustion gas.

〔作 用〕[For production]

好気性菌体としてはバチルス メガテリウム、アゾトバ
クタービネ2ンディー、サツカロミセスセレビシアエ、
アスペルギルス オリーゼ、カンディダニ−ティリス、
ロドトリラ ルブラ シウドモナス エルギノサ、スト
レプトミセス グリセウス、大腸菌等でその種類は問題
でなく、上記の倒起した好気性菌体は通常各種の廃水中
に含まれている。
Aerobic bacteria include Bacillus megaterium, Azotobacter vinii, Satucharomyces cerevisiae,
Aspergillus oryzae, Candidani tillis,
The type of bacteria does not matter, such as Rhodotorilla rubra Pseudomonas aeruginosa, Streptomyces griseus, and Escherichia coli, and the above-mentioned inverted aerobic bacteria are usually contained in various wastewaters.

好気性菌体が大量に増殖した液を急速に嫌気性状態下に
おくと、好気性菌体が自己消化をする。
When a liquid containing a large number of aerobic bacteria is rapidly placed under anaerobic conditions, the aerobic bacteria undergo self-digestion.

すると液面からぶくぶく泡が出る。この泡の多くが水素
ガスである。
Then bubbles will appear from the liquid surface. Most of these bubbles are hydrogen gas.

好気性菌体が大量に増殖した液を急速に嫌気性状態下に
おくと、大量の水素ガスが発生するという知見は、本発
明者によシ見出された新知見である。
The finding that a large amount of hydrogen gas is generated when a liquid in which a large amount of aerobic bacterial cells have grown is rapidly placed under anaerobic conditions is a new finding discovered by the present inventor.

また好気性菌体が大量に増殖した液を急速に嫌気性状態
下におき、水素ガスを発生させるに際して、光合成細菌
を共存させると、一段と水素ガスの発生が増加する。な
お、光合成細菌自体が少量の水素ガスを発生することは
公知であるが、上記において、光合成細菌を共存させる
と一段と水素ガスの発生が増加する時の発生量とは問題
にならない程の大差がある。光合成細菌を共存させると
一段と水素ガスの発生が増加するその理由の詳細は明ら
かではないが、本発明者は自己消化した好気性菌体が光
合成細菌の基質となシ、それが何らかの理由で光合成細
菌の水素発生能力を向上させるのではないかと考えてい
る。
Further, when a liquid in which aerobic bacteria have grown in large quantities is rapidly placed under anaerobic conditions to generate hydrogen gas, if photosynthetic bacteria are allowed to coexist, the generation of hydrogen gas will further increase. It is known that photosynthetic bacteria themselves generate a small amount of hydrogen gas, but in the above case, when photosynthetic bacteria coexist, the amount of hydrogen gas generated increases even more. be. Although the details of the reason why hydrogen gas generation increases when photosynthetic bacteria coexist are not clear, the present inventors believe that self-digested aerobic bacterial cells do not serve as a substrate for photosynthetic bacteria, and for some reason, photosynthesis increases. We believe that this may improve the ability of bacteria to generate hydrogen.

好気性菌体が大量に増殖した液を急速に嫌気性状態下に
おき、水素ガスを発生させるに際して、光合成細菌を共
存させると、一段と水素ガスの発生が増加するという知
見も、本発明者によシ見出された新知見である。
The present inventor also learned that when photosynthetic bacteria coexist when a liquid containing a large amount of aerobic bacteria is rapidly brought under anaerobic conditions to generate hydrogen gas, the amount of hydrogen gas generated increases even further. This is a new finding.

光合成細菌としては、ロドスビリリウム ルブツム(R
hodospirilltm ru’brum −−−
一微工研菌寄第878号)、ロドシウドモナス カプシ
為うタ(phoaopseudomonas caps
ulata −−一一微工研菌寄IK a71 ) 、
クロマチ晶−ム ピノサム(ah −romatitu
n yinostun −一−−微工研菌寄第890号
)その他の公知公用のものが使用できる。
As a photosynthetic bacterium, Rhodosvirilium rubtum (R
hodospirilltm ru'brum ---
Ichigoken Bacteria Collection No. 878), phoaopseudomonas caps
ulata--Eleventh Technology Research Institute IK a71),
Chromatis pinosum (ah-romatitu)
(No. 890) and other publicly known materials can be used.

なお、本発明の内、光合成細菌を供存させた発明の実施
後、即ち、嫌気槽の液から水素ガスの発生がはy完了し
た後も嫌気状態を維持していると、今度は大量のメタン
ガスが発生する。例えば後記した実施例2.4.7.9
及びUの場合で、水素ガスを発生させた後、次の嫌気槽
へ廃水を移行(連続処理のため第1嫌気槽、第2嫌気槽
を設けた場合)させ、更に72時間ゆるやかに攪拌しな
から嫌気状態においた場合のメタンガスの発生量は後記
した表1の通シであった。
Furthermore, if the anaerobic state is maintained even after the invention in which photosynthetic bacteria are present, that is, after the generation of hydrogen gas from the liquid in the anaerobic tank has been completed, a large amount of Methane gas is generated. For example, Example 2.4.7.9 described below
In the case of and U, after generating hydrogen gas, the wastewater is transferred to the next anaerobic tank (if a first anaerobic tank and a second anaerobic tank are provided for continuous treatment), and is gently stirred for another 72 hours. Therefore, the amount of methane gas generated when placed in an anaerobic state was as shown in Table 1 below.

この際のメタン菌の液への接種はもちろん積極的に行な
ってもよいが、好気性菌体の大量増殖過程の中で自然に
混入されるメタン菌の存在で十分である。
Of course, the methane bacteria may be actively inoculated into the liquid at this time, but the presence of the methane bacteria that is naturally mixed in during the mass multiplication process of aerobic bacteria is sufficient.

本発明の実施例2.4.7.9及び11でメタンガスを
採取した後の廃水はEOD値数100ppn程度にまで
浄化されておシ、この後通常の廃水浄化処理工程、即ち
沈M[、曝気槽、沈殿槽へ順次移行して放流可能な清水
とすることができる。さらに副産物としての菌体沈殿物
はそのま\で資源として再活用できるものである。とこ
ろで、メタン発酵によシ発生したメタンガスで発電する
方法は世界的に実施されてきた技術であるが、この場合
にはメタン発酵後の排出水が非常に不潔なものであシ、
そのま\放置すれば、再び汚染を引起すことになるので
、どうしても再浄化処理をする必要があった。しかし折
角発生させたエネルギーを再びその浄化処理に消費する
というのでは、生産という意味からはマイナスになシ、
メタン発酵によるエネルギー生産技術はそれ程優れた技
術とはい−難いものであったことに鑑みれば、前記した
本発明の水素ガス発生後に、メタンガスを発生させる技
術は大変優れているといえる。
The wastewater after collecting methane gas in Examples 2.4.7.9 and 11 of the present invention is purified to an EOD value of about 100 ppn, and then the normal wastewater purification process, namely sedimentation M[, The water can be sequentially transferred to an aeration tank and a settling tank to produce fresh water that can be discharged. Furthermore, the bacterial cell precipitate as a by-product can be reused as a resource. By the way, the method of generating electricity from methane gas generated by methane fermentation is a technology that has been implemented worldwide, but in this case, the waste water after methane fermentation is extremely unclean.
If left as is, contamination would occur again, so repurification was necessary. However, if the energy that has been generated is consumed again for the purification process, it will be negative from the point of view of production.
In view of the fact that the energy production technology by methane fermentation is not a very good technology, the technology of the present invention for generating methane gas after generating hydrogen gas as described above can be said to be very excellent.

なお、またメタンガスを発生させた後の菌体沈殿物がそ
のま\資源として再活用できるという説明をしたが、実
施例2.4.7.9及びl!の水素ガスを発生させた後
の菌体沈殿物も、そのま\資源として再活用できるもの
である。
Furthermore, although we have explained that the bacterial cell precipitate after generating methane gas can be reused as a resource, Example 2.4.7.9 and l! The bacterial cell precipitate after generating hydrogen gas can also be reused as a resource.

〔実施例〕〔Example〕

実施例 1゜ 殿粉工場廃水(BOD 10.000ppm)1000
1を曝気槽に導き、n時間激しく曝気して、廃水に含ま
れていた好気性菌体を大量に増殖させた。この好気性菌
体が大量に増殖した液を急速に(5分間で)嫌気槽へ移
行させ、嫌気性状態下で72時間ゆるやかに攪拌した。
Example 1゜Starch factory wastewater (BOD 10.000ppm) 1000
1 was introduced into an aeration tank and vigorously aerated for n hours to cause a large amount of aerobic bacterial cells contained in the wastewater to proliferate. The liquid in which a large amount of aerobic bacterial cells had grown was rapidly transferred (in 5 minutes) to an anaerobic tank, and gently stirred for 72 hours under anaerobic conditions.

その間、発生した燃焼用ガスが嫌気槽上方に溜まるのを
ガス貯溜タンクに導き貯溜した。発生したガス量は1気
圧0.2 m’で、その内、水素ガスは50チ、炭酸ガ
スは50%であった。
During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated was 1 atm and 0.2 m', of which 50% was hydrogen gas and 50% carbon dioxide gas.

実施例 2 殿粉工場廃水(BOD 10.000 ppm)100
01を曝気槽に導き、別に大量培養した光合成#1MT
:1ドシヘドモナス カプシ^ラタの培養液を201添
加して、n時間激しく曝気して、廃水に含まれていた好
気性菌体と別に加えた光合成細菌を大量に増殖させた。
Example 2 Starch factory wastewater (BOD 10.000 ppm) 100
Photosynthesis #1MT was introduced into an aeration tank and cultured separately in large quantities.
:201 of a culture solution of Dosyhedomonas capsi^rata was added and vigorously aerated for n hours to grow a large amount of aerobic bacteria contained in the wastewater and photosynthetic bacteria added separately.

この好気匪菌体と光合成細菌の増殖した液を急速に(5
分間で)嫌気槽へ移行させ、嫌気性状態下で72時間ゆ
るやかに攪拌した。その間、発生した燃焼用ガスが嫌気
槽上方に溜まるのをガス貯溜タンクに導き貯溜した。発
生したガス量は1気圧1.2m’で、その内、水素ガス
は80飢炭酸ガスは20%であった。
The liquid in which the aerobic cells and photosynthetic bacteria have grown is rapidly (5
The mixture was transferred to an anaerobic tank (for 72 minutes) and gently stirred under anaerobic conditions for 72 hours. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated was 1 atm and 1.2 m', of which 80% was hydrogen gas and 20% was carbon dioxide gas.

実施例 3゜ アルコール工場廃水(EOD 10,000 ppm、
 C/N比50)1000J  を曝気槽に導きn時間
激しく曝気して、廃水に含まれていた好気性菌体を大量
に増殖させた。この好気性菌体が大量に増殖した液を急
速に(5分間で)嫌気槽へ移行させ、嫌気性状態下で7
2時間ゆるやかに攪拌した。その間、発生した燃焼用ガ
スが嫌気槽上方に溜まるのをガス貯溜タンクに導き貯溜
した。発生したガス量は1気圧0.25がで、その内、
水素ガスは65%、炭酸ガスは30%、窒素ガスは5%
であった。
Example 3 Alcohol factory wastewater (EOD 10,000 ppm,
A C/N ratio of 50) 1000 J was introduced into the aeration tank and vigorously aerated for n hours to cause a large amount of aerobic bacterial cells contained in the wastewater to proliferate. The liquid in which a large amount of aerobic bacterial cells have grown is rapidly transferred (in 5 minutes) to an anaerobic tank, and is kept under anaerobic conditions for 70 minutes.
The mixture was gently stirred for 2 hours. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated was 0.25 per atmosphere, of which
Hydrogen gas is 65%, carbon dioxide gas is 30%, nitrogen gas is 5%
Met.

実施例 4゜ アルコール工場廃水(B OD 10 e OOOpP
sシ乍比50) 10001を曝気槽に導き、別に大量
培養した光合成細菌ロドシ島トモナス カプシ為うタの
培養液を2ol添加して、n時間激しく曝気して、廃水
に含まれていた好気性菌体と光合成細菌を大量に増殖さ
せた。この好気性菌体と光合成細菌の増殖した液を急速
に(5分間で)嫌気槽へ移行させ、嫌気性状態下で72
時間ゆるやかに攪拌した。その間、発生した燃焼用ガス
が嫌気槽上方に溜まるのをガス貯溜タンクに導き貯溜し
た。発生したガス量は1気圧1.5TIlで、その内、
水素ガスは70%、炭酸ガスは25%、窒素ガスは5%
であった。
Example 4゜ Alcohol factory wastewater (B OD 10 e OOOpP
10,001 was introduced into an aeration tank, 2 ol of a culture solution of the photosynthetic bacterium Rhodosium tomonas capsita which had been separately mass-cultured was added, and vigorous aeration was carried out for n hours to remove the aerobic energy contained in the wastewater. A large amount of fungal cells and photosynthetic bacteria were grown. The liquid in which the aerobic cells and photosynthetic bacteria have grown is rapidly transferred (within 5 minutes) to an anaerobic tank, and is kept under anaerobic conditions for 72 hours.
Stir gently for an hour. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated was 1 atm 1.5 TIl, of which
Hydrogen gas is 70%, carbon dioxide gas is 25%, nitrogen gas is 5%
Met.

実施例 5゜ 豆腐工場廃水(BOD 10,000 ppn) 10
00Jを曝気槽に導き、n時間激しく曝気して、廃水に
含まれていた好気性菌体を大蓋に増殖させた。この好気
性菌体が大量に増殖した液を急速に(5分間で)嫌気槽
へ移行させ、嫌気性状態下で72時間ゆるやかに攪拌し
た。その間、発生した燃焼用ガスが嫌気槽上方に溜まる
のをガス貯溜タンクに導き貯溜した。発生したガス量は
1.5ばて、その内、水素ガスは20%1炭酸ガス50
%、窒素ガス30チであった。
Example 5 Tofu factory wastewater (BOD 10,000 ppn) 10
00J was introduced into the aeration tank and vigorously aerated for n hours to allow aerobic bacterial cells contained in the wastewater to proliferate in the large lid. The liquid in which a large amount of aerobic bacterial cells had grown was rapidly transferred (in 5 minutes) to an anaerobic tank, and gently stirred for 72 hours under anaerobic conditions. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated was 1.5%, of which hydrogen gas was 20%, carbon dioxide gas was 50%
%, nitrogen gas was 30 cm.

実施例 6゜ 豆腐工場廃水(EOD 5,000 ppm) 100
01 を曝気槽に導き、豆腐工場廃水の処理工程中に設
置されている沈殿槽から沈殿物を採取し、この沈殿物5
 kgを前記曝気槽へ投入し、n時間激しく曝気して、
前記廃水及び沈殿物に含まれていた好気性菌体を大量に
増殖させた。この好気性菌体が大量に増殖した液を急速
に(5分間で)嫌気槽へ移行させ、嫌気性状態下で72
時間ゆるやかに攪拌した。
Example 6゜Tofu factory wastewater (EOD 5,000 ppm) 100
01 is introduced into the aeration tank, the precipitate is collected from the sedimentation tank installed during the treatment process of tofu factory wastewater, and this precipitate 5
kg into the aeration tank and vigorously aerated for n hours,
The aerobic bacteria contained in the wastewater and sediment were grown in large quantities. The liquid in which a large amount of aerobic bacterial cells have grown is rapidly transferred (in 5 minutes) to an anaerobic tank, and is kept under anaerobic conditions for 72 hours.
Stir gently for an hour.

その間、発生した燃焼用ガスが嫌気槽上方に溜まるのを
ガス貯溜タンクに導き貯溜した。発生したガス量は1.
5ばて、その内、水素ガスは20q6、炭酸ガスは50
%、窒素ガスは30t%であった。
During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated is 1.
5 parts, of which hydrogen gas is 20q6 and carbon dioxide gas is 50
%, and nitrogen gas was 30t%.

実施例 7゜ 豆腐工場廃水(BOD 5,000 ppm) 100
0Jを曝気槽に導き、豆腐工場廃水の処理工程中に設置
されている沈R#1から沈殿物を採取し、この沈殿物5
 kgを前記曝気槽へ投入し、別に大量培養した光合成
細菌ロドシ為トモナス カプシ凰うタの培養液を207
添加して、n時間激しく曝気して、廃水に含まれていた
好気性菌体と光合成細菌を大量に増殖させた。
Example 7゜Tofu factory wastewater (BOD 5,000 ppm) 100
0J is introduced into the aeration tank, the precipitate is collected from Sediment R#1 installed during the tofu factory wastewater treatment process, and this precipitate 5
207 kg of the photosynthetic bacterium Rhodosium tomonas capsifolia, which had been separately mass-cultured, was added to the aeration tank.
was added and vigorously aerated for n hours to cause aerobic bacterial cells and photosynthetic bacteria contained in the wastewater to proliferate in large quantities.

この好気性菌体と光合成a菌の増殖しだ液を急速に(5
分間で)嫌気槽へ移行させ、嫌気性状態下で72時間ゆ
るやかに攪拌した。その間、発生した燃焼用ガスが嫌気
槽上方に溜まるのをガス貯溜タンクに導き貯溜した。発
生したガス量は1気圧1.7ゴで、その内、水素ガスは
6Ei %、炭酸ガスはmチ、窒素ガスは15%であっ
た。
This aerobic bacterial body and photosynthetic A bacteria rapidly proliferate (5
The mixture was transferred to an anaerobic tank (for 72 minutes) and gently stirred under anaerobic conditions for 72 hours. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated was 1.7 g/atm, of which hydrogen gas accounted for 6 Ei%, carbon dioxide gas accounted for 6 Ei%, and nitrogen gas accounted for 15%.

実施例 & 化学繊維工場廃水(BOD 10,000 pyn、有
機酸−一一一酢酸が90%−m−−)1aao lを曝
気槽に導き、その工場の活性汚泥を採取し、この活性汚
泥5#を前記曝気槽へ投入し、n時間激しく曝気して、
前記廃水及び活性汚泥に含まれていた好気性菌体を大量
に増殖させた。この好気性菌体が大量に増殖した液を急
速に(5分間で)嫌気槽へ移行させ、嫌気性状態下で7
2時間ゆるやかに攪拌した。その間、発生した燃焼用ガ
スが嫌気槽上方に溜まるのをガス貯溜タンクに導き貯溜
した。発生したガス量は1気圧1.2m’でその内、水
素ガス40%、炭酸ガスは45%、窒素ガスは15%で
あった0実施例 9゜ 化学繊維工場廃水(BOD 10.000 %、有機酸
−−−−−酢酸が90チー−−−) 1000Jを曝気
槽に導き、その工場の活性汚泥を採取し、この活性汚泥
5#を前記曝気槽へ投入し、更に別に大量培養した光合
成細菌ロドスプリラムの培養液を201添加して、n時
間激しく曝気して、廃水に含まれていた好気性菌体と光
合成細菌を大量に増殖させた。との好気性菌体と光合成
細菌の増殖した液を急速に(5分間で)嫌気槽へ移行さ
せ、嫌気性状態下で72時間ゆるやかに撹拌した。その
間、発生した燃焼用ガスが嫌気槽上方に溜まるのをガス
貯溜タンクに導き貯溜した。発生したガスの量は1気圧
1.2がで、その内、水素ガスは70チ、炭酸ガスは2
0チ、窒素ガスは10チであった。
Example & 1 aaol of chemical fiber factory wastewater (BOD 10,000 pyn, 90% organic acid-11-monoacetic acid) was introduced into an aeration tank, activated sludge from the factory was collected, and this activated sludge 5 # into the aeration tank and vigorously aerated for n hours,
The aerobic bacteria contained in the wastewater and activated sludge were grown in large quantities. The liquid in which a large amount of aerobic bacterial cells have grown is rapidly transferred (in 5 minutes) to an anaerobic tank, and is kept under anaerobic conditions for 70 minutes.
The mixture was gently stirred for 2 hours. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated was 1 atm 1.2 m', of which 40% hydrogen gas, 45% carbon dioxide gas, and 15% nitrogen gas.0Example 9゜Chemical fiber factory wastewater (BOD 10.000%, Organic acid --- Acetic acid is 90 Chi ---) 1000 J was introduced into the aeration tank, the activated sludge of the factory was collected, this activated sludge 5 # was put into the aeration tank, and the photosynthesis was further mass-cultured. 20 liters of a culture solution of the bacterium Rhodosprirum was added and vigorously aerated for n hours to proliferate a large amount of aerobic bacterial cells and photosynthetic bacteria contained in the wastewater. The solution in which the aerobic cells and photosynthetic bacteria had grown was rapidly transferred (in 5 minutes) to an anaerobic tank, and gently stirred for 72 hours under anaerobic conditions. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated is 1 atm 1.2, of which hydrogen gas is 70 in and carbon dioxide gas is 2 in.
The amount of nitrogen gas was 10.

実施例10゜ 水産加工(魚類解体)工場廃水で、熱処理直後の濃厚廃
水(BOD 10.000 ppm、80℃)を熱交換
器に通して水温を30t−まで下げる。上記廃水に好気
性菌バチルス・メガテリウム、アゾトバクタ−ビネラン
ディ、サツカロミセス・セレ ビシアエを接種し、12
時間激しく曝気して、接種した好気性菌体を大量に増殖
させた。との好気性菌体が大量に増殖した液を急速に(
5分間で)嫌気槽へ移行させ、嫌気性状態下で72時間
ゆるやかに攪拌した。
Example 10: Concentrated wastewater (BOD 10.000 ppm, 80°C) from a fisheries processing (fish butchering) factory immediately after heat treatment is passed through a heat exchanger to lower the water temperature to 30 t-. The above wastewater was inoculated with aerobic bacteria Bacillus megaterium, Azotobacter vinelandii, and Satucharomyces cerevisiae.
The inoculated aerobic bacterial cells were grown in large quantities by vigorous aeration for hours. The liquid in which a large amount of aerobic bacterial cells have grown is rapidly (
The mixture was transferred to an anaerobic tank (for 5 minutes) and gently stirred under anaerobic conditions for 72 hours.

その間発生した燃焼用ガスが嫌気槽上方に溜まるのをガ
ス貯溜タンクに導き貯溜した。発生したガス量は1.5
ゴで、その内、水素ガスは20%、炭酸ガスは50%、
窒素ガスは30%であった。
Combustion gas generated during that time accumulated above the anaerobic tank and was led to the gas storage tank and stored there. The amount of gas generated is 1.5
Of this, 20% is hydrogen gas, 50% is carbon dioxide gas,
Nitrogen gas was 30%.

実施例11゜ 水産加工(魚類解体)工場廃水で、熱処理直後の濃厚廃
水(BOD 10.000 pyn、 80℃)を熱交
換器に通して水温を50℃まで下げる。上記廃水に好気
性菌バチルス・メガテリウム、アゾトバクタービネラン
デイ、サツカロミセス・セレビシアエを接種し、更に別
に大量培養した光合成細菌 クロマチーウの培養液を2
1を添加して、n時間激しぐ曝気して、廃水に接種した
好気性菌体と光合成細菌を大量に増殖させた。この好気
性菌体と光合成細菌の増殖した液を急速に(5分間で)
嫌気槽へ移行させ、嫌気性状態下で72時間ゆるやかに
攪拌した。その間、発生した燃焼用ガスが嫌気槽上方に
溜まるのをガス貯溜タンクに導き貯溜した。
Example 11: Concentrated wastewater (BOD 10.000 pyn, 80°C) from a fisheries processing (fish butchering) factory immediately after heat treatment is passed through a heat exchanger to lower the water temperature to 50°C. The above wastewater was inoculated with the aerobic bacteria Bacillus megaterium, Azotobacter vinellandii, and Satucharomyces cerevisiae, and then a culture solution of the photosynthetic bacterium Chromatiu, which had been mass-cultured, was added to the water.
1 was added and vigorously aerated for n hours to grow a large amount of aerobic bacterial cells and photosynthetic bacteria inoculated into the wastewater. Rapidly (in 5 minutes) liquid in which aerobic cells and photosynthetic bacteria have grown
The mixture was transferred to an anaerobic tank and gently stirred under anaerobic conditions for 72 hours. During this time, the generated combustion gas accumulated above the anaerobic tank and was led to the gas storage tank and stored there.

発生したガス量は1気圧1.7!lI′で、その内、水
素ガスは65q111炭酸ガスは20%、窒素ガスは1
5%であった。
The amount of gas generated is 1 atm and 1.7! lI', of which hydrogen gas is 65q111 carbon dioxide is 20%, nitrogen gas is 1
It was 5%.

表   1 〔発明の効果〕 以上説明したように、本発明に係る燃焼用ガスの製造法
によれば簡単な方法で、大量の水素ガス、メタンガスが
製造でき、エネルギー源の減少著しい今日にあって見れ
ば、優れたエネルギー生産手段として産業利用価値が高
い。
Table 1 [Effects of the Invention] As explained above, according to the method for producing combustion gas according to the present invention, a large amount of hydrogen gas and methane gas can be produced in a simple manner, which is useful in today's world where energy sources are rapidly decreasing. If you look at it, it has high industrial value as an excellent means of energy production.

また本発明に係る燃焼用ガスの製造法を実施すれば廃水
の浄化が同時に進行しているので、との廃水の浄化効果
に着眼すれば、廃水の浄化施設の運転エネルギーを生産
しながら廃水の浄化を実施できるという優れた効果があ
シ、この点からも本発明は産業利用価値が高いといえる
Furthermore, if the method for producing combustion gas according to the present invention is carried out, the purification of wastewater will proceed at the same time. The present invention has an excellent effect of being able to carry out purification, and from this point of view as well, it can be said that the present invention has high industrial utility value.

さらに、また燃焼用ガスの製造過程でできる副産物とし
ての菌体沈殿物はそのま\で資源として再活用できる利
点があシ、この点からも本発明は産業利用価値が高いと
いえる。
Furthermore, the bacterial cell precipitate as a by-product produced in the process of producing combustion gas has the advantage of being reusable as a resource, and from this point of view as well, the present invention can be said to have high industrial utility value.

Claims (3)

【特許請求の範囲】[Claims] (1)好気性菌体が大量に増殖した液を急速に嫌気性状
態下におき、水素ガスを発生させることを特徴とする燃
焼用ガスの製造法。
(1) A method for producing combustion gas, which comprises rapidly placing a liquid in which aerobic bacteria have grown in large quantities under anaerobic conditions to generate hydrogen gas.
(2)好気性菌体が大量に増殖した液を急速に嫌気性状
態下におき、水素ガスを発生させるに際して、光合成細
菌を共存させることを特徴とする燃焼用ガスの製造法。
(2) A method for producing combustion gas, which comprises rapidly placing a liquid in which aerobic bacteria have grown in large quantities under anaerobic conditions, and allowing photosynthetic bacteria to coexist when generating hydrogen gas.
(3)好気性菌体が大量に増殖した液を急速に嫌気性状
態下におき、前記液に光合成細菌を共存させ、水素ガス
を発生させた後、さらに嫌気性状態下におき、メタンガ
スを発生させることを特徴とする燃焼用ガスの製造法。
(3) The liquid in which aerobic bacteria have grown in large quantities is rapidly placed under anaerobic conditions, photosynthetic bacteria are allowed to coexist in the liquid, hydrogen gas is generated, and then the liquid is placed under anaerobic conditions to generate methane gas. A method for producing combustion gas, characterized by generating combustion gas.
JP60048852A 1985-03-11 1985-03-11 Combustion gas manufacturing method Expired - Lifetime JPH064032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048852A JPH064032B2 (en) 1985-03-11 1985-03-11 Combustion gas manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048852A JPH064032B2 (en) 1985-03-11 1985-03-11 Combustion gas manufacturing method

Publications (2)

Publication Number Publication Date
JPS61205492A true JPS61205492A (en) 1986-09-11
JPH064032B2 JPH064032B2 (en) 1994-01-19

Family

ID=12814794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048852A Expired - Lifetime JPH064032B2 (en) 1985-03-11 1985-03-11 Combustion gas manufacturing method

Country Status (1)

Country Link
JP (1) JPH064032B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169186A (en) * 1990-11-02 1992-06-17 Fumiaki Taguchi Production of hydrogen by utilization of microorganism
WO2004074495A1 (en) * 2003-02-24 2004-09-02 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
WO2005087911A1 (en) * 2004-03-16 2005-09-22 Sharp Kabushiki Kaisha Microbe culturing apparatus and utilizing the same, hydrogen production apparatus and fuel cell system
US7258938B2 (en) 2001-03-06 2007-08-21 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
JP2009261401A (en) * 2009-06-19 2009-11-12 Research Institute Of Innovative Technology For The Earth Method and device for culturing microorganism, biological method for producing hydrogen and fuel cell system
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624514A (en) * 1979-08-07 1981-03-09 Toshiba Corp Automatic selector for optimum gain in measuring system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624514A (en) * 1979-08-07 1981-03-09 Toshiba Corp Automatic selector for optimum gain in measuring system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169186A (en) * 1990-11-02 1992-06-17 Fumiaki Taguchi Production of hydrogen by utilization of microorganism
US7258938B2 (en) 2001-03-06 2007-08-21 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
US7527883B2 (en) 2001-03-06 2009-05-05 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
WO2004074495A1 (en) * 2003-02-24 2004-09-02 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
US7432091B2 (en) 2003-02-24 2008-10-07 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
WO2005087911A1 (en) * 2004-03-16 2005-09-22 Sharp Kabushiki Kaisha Microbe culturing apparatus and utilizing the same, hydrogen production apparatus and fuel cell system
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen
JP2009261401A (en) * 2009-06-19 2009-11-12 Research Institute Of Innovative Technology For The Earth Method and device for culturing microorganism, biological method for producing hydrogen and fuel cell system

Also Published As

Publication number Publication date
JPH064032B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JP2594751B2 (en) Organic matter decomposition method
US3780471A (en) Water reclamation-algae production
Heubeck et al. Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond
CN110157639B (en) High-salt-tolerance denitrifying bacterium and preparation method and application of microbial inoculum thereof
CN108996832A (en) A kind of technique using microbial inoculum processing industrial wastewater
CN109052822A (en) A kind of microbial inoculum treatment process of town sewage
CN110129224A (en) The preparation method and application of a kind of salt tolerant denitrifying bacterium and its microbial inoculum
JPS61205492A (en) Production of fuel gas
CN108773912A (en) A kind of microbial inoculum treatment process of livestock and poultry cultivation sewage
CN102465106B (en) Bacterial strain used for short-cut denitrification for nitrogen removal and its application
US1751459A (en) Process for biological purification of waste water
CN113104991B (en) Two-stage co-anaerobic treatment process for simultaneously treating N, N-dimethylformamide and sludge
CN115181694A (en) Moderately halophilic bacteria with high-salinity wastewater assimilation denitrification function and application thereof
JP2885643B2 (en) Decomposition method of phenolic compound
CN111943441A (en) Ecological combined turtle breeding wastewater recovery method
JPS5860992A (en) Preparation of hydrogen from green alga utilizing light and darkness cycle
Heukelekian et al. Studies on the Methane-Producing Bacteria: III. Digestion of Sewage Solids by the Addition of Enriched Cultures of Methane-Producing Organisms
JPH07275890A (en) Decomposition method of dimethylformamide
CN114480159A (en) Synchronous heterotrophic nitrification aerobic denitrification phosphorus removal bacterium and application thereof
SU1336454A1 (en) Method of biological purification of waste water from ethylene glycol
JPS6058089A (en) Production of xanthan gum
CN116655159A (en) Purification and recycling method and application of eel culture wastewater
JPH02227192A (en) Treatment of waste water
JPH04173089A (en) New microorganism
GB284267A (en) Process for the biological purification of waste waters from yeast and sugar factories, distilleries and other factories