JPS61205322A - Fuel injection control method of direct-injection diesel engine - Google Patents

Fuel injection control method of direct-injection diesel engine

Info

Publication number
JPS61205322A
JPS61205322A JP4376585A JP4376585A JPS61205322A JP S61205322 A JPS61205322 A JP S61205322A JP 4376585 A JP4376585 A JP 4376585A JP 4376585 A JP4376585 A JP 4376585A JP S61205322 A JPS61205322 A JP S61205322A
Authority
JP
Japan
Prior art keywords
fuel
injection
dead center
top dead
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4376585A
Other languages
Japanese (ja)
Inventor
Satoru Watabe
哲 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4376585A priority Critical patent/JPS61205322A/en
Publication of JPS61205322A publication Critical patent/JPS61205322A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To promote the quick ignition of fuel and its complete combustion, by executing preliminary injection of a small amount of fuel in the vicinity of the intake top dead center prior to the main injection of fuel executed in the vicinity of the compression top dead center and forming a fuel vapor phase in the vicinity of the wall surface of a combustion chamber. CONSTITUTION:A piston 2 forms in its top surface a combustion chamber 8 consisting of a spherical hollowed part. While a cylinder head 3 mounts a fuel nozzle 9, and its jet 9a is opened in an tangential direction of the combustion chamber 8. Further an intake port 10 forms a swirl port. An engine in the above connects a fuel receiving port 9b of the fuel nozzle 9 with a fuel pipe 11 further the fuel pipe 11 with different fuel injection pumps 12a, 12b by each branch pipe 11a, 11b. And the engine sets the pump 12a to execute main injection from the fuel nozzle 9 in the vicinity of the compression top dead center of the piston 2 further the pump 12b to execute preliminary injection from the fuel nozzle 9 in the vicinity of the intake top dead center of the piston 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は直接噴射式ディーゼル機関の燃料噴射制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control method for a direct injection diesel engine.

〔従来の技術〕[Conventional technology]

吸気行程に於いて、シリンダヘッドに設けられたスワー
ルボートにより燃焼室内に惹起されたスワール中に、圧
縮上死点にて、燃料噴射ノズルにより燃料を噴射し自己
着火させる方式の直接噴射式ディーゼル機関においては
各種の燃焼方式が提案されている(例えば長屋不二夫著
“内燃機関”参照)、その中で、ピストンに設けられた
燃焼室の形状を略球形とし、スワールボートにより該燃
焼室に惹起されたスワール流中に、該スワール流の接線
方向に燃焼室の略底部方向に向かって単一の噴孔を有す
る噴射ノズルより燃料を噴射する方式(以下単−項霧方
式と称す)があり既に中型以上の機関で実用されている
A direct injection diesel engine that injects fuel through a fuel injection nozzle at compression top dead center during the intake stroke, causing self-ignition during the swirl created in the combustion chamber by a swirl boat installed in the cylinder head. Various combustion methods have been proposed (for example, see "Internal Combustion Engine" by Fujio Nagaya). Among them, the shape of the combustion chamber provided in the piston is approximately spherical, and the combustion chamber is created by a swirl boat. There is already a method (hereinafter referred to as a single-term fog method) in which fuel is injected into the swirl flow from an injection nozzle having a single injection hole toward the bottom of the combustion chamber in the tangential direction of the swirl flow. It is used in medium-sized and larger engines.

単−噴霧燃焼方式においては、既に述べたように単一の
噴霧をスワール流に乗せて噴射し、燃料の一部はその貫
徹力のために燃焼室壁面に到達して壁面を濡らし、残り
はスワール流に乗って燃焼室内を拡散する。この為スワ
ール流速の速い、高エンジン回転域゛では、壁面を濡ら
した燃料は速やかに蒸1発し、また壁面に到達しない燃
料も流速の速いスワール流に乗って速やかに拡散し迅速
な着火燃焼が行われ、吐煙濃度の低い良好な燃焼が得ら
れ、高い平均有効圧が得られる。ところが、低回転域で
はスワール流速が遅く、燃料の蒸発拡散とも遅い為、着
火、燃焼が不良になり吐煙濃度が高くなり、また未燃焼
HC成分の排出量が多くなる等極めて燃焼状態が悪化し
、低い平均有効圧力しか得られない。低速におけるこれ
らの欠点は、例えばスワール流を強化することや、燃料
の噴射時間を長くする等の対策によりある程度改善でき
るが、前者の対策は高速域の体積効率の低下を招き、ま
た後者の対策は高速域で噴射期間が長くなり過ぎ、混合
不良、燃費悪化を招く、従って、従来方式では低速から
窩速まで吐煙濃度を低くし高°    い平均有効圧力
を得ることができないという問題点がある。
In the single-spray combustion method, as mentioned above, a single spray is injected in a swirl flow, and part of the fuel reaches the wall of the combustion chamber due to its penetration power and wets the wall, while the rest is It spreads inside the combustion chamber in a swirl flow. Therefore, in the high engine rotation range where the swirl flow velocity is high, the fuel that wets the wall surface quickly evaporates, and the fuel that does not reach the wall surface is quickly diffused in the high-velocity swirl flow, resulting in rapid ignition and combustion. This results in good combustion with low smoke concentration and high average effective pressure. However, in the low rotation range, the swirl flow rate is slow and the evaporation and diffusion of fuel is also slow, resulting in poor ignition and combustion, resulting in high smoke concentration and a large amount of unburned HC components, resulting in extremely poor combustion conditions. However, only a low average effective pressure can be obtained. These shortcomings at low speeds can be improved to some extent by measures such as strengthening the swirl flow or lengthening the fuel injection time, but the former measures lead to a decrease in volumetric efficiency at high speeds, and the latter measures The injection period becomes too long in the high-speed range, leading to poor mixing and deterioration of fuel efficiency.Therefore, the conventional method has the problem that it is not possible to lower the smoke concentration and obtain a high average effective pressure from low to low speeds. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、略球形をした燃焼室をピストン頂部に
備え、吸気行程にスワール流を生じさせるスワールポー
トが設けられ、燃焼室の接線方向に燃料噴射を行う一個
の燃料噴射ノズルを備えた直接噴射式ディーゼル機関に
おいて、圧縮上死点近傍で実行される主噴射に先立って
、吸気上死点の近傍で小量の予備噴射を実行するように
した燃料噴射制御方法が提供される。
According to the present invention, a substantially spherical combustion chamber is provided at the top of the piston, a swirl port is provided for generating a swirl flow during the intake stroke, and a single fuel injection nozzle is provided for injecting fuel in the tangential direction of the combustion chamber. A fuel injection control method is provided in a direct injection diesel engine, in which a small amount of preliminary injection is performed near intake top dead center prior to main injection performed near compression top dead center.

〔作 用〕[For production]

吸気上死点の近傍で実行される小量の予備噴射によって
燃焼室の底壁面号濡らした!料は、吸夙行程中にスワー
ルポートからのスワール流によって燃焼室壁面の全体に
フィルム状に拡がる。次に圧縮行程に移行すると、その
フィルム状の燃料は蒸発し、燃焼室壁面近傍に燃料蒸気
相を形成する。
The bottom wall of the combustion chamber was wetted by a small amount of preliminary injection performed near intake top dead center! During the suction stroke, the fuel is spread in the form of a film over the entire wall surface of the combustion chamber by the swirl flow from the swirl port. Next, when the compression stroke begins, the film-like fuel evaporates, forming a fuel vapor phase near the wall surface of the combustion chamber.

該蒸気相はピストンが圧縮上死点に到るに先立って着火
され、又は着火準備状態となる。圧縮上死点付近でノズ
ルより主噴射が実行され、壁面付近が着火又はその準備
状態にあるため主噴射により噴射された燃料の迅速着火
が行われる。
The vapor phase is ignited or ready to ignite before the piston reaches compression top dead center. The main injection is performed from the nozzle near the compression top dead center, and since the area near the wall surface is in a state of ignition or preparation for ignition, the fuel injected by the main injection is quickly ignited.

〔実施例〕〔Example〕

以下図面によって説明すると、1はシリンダブロック、
2はピストン、3はシリンダヘッド、4は吸気弁、5は
バルブスプリング、6はスブリ゛ングシム、7はカム軸
、10は吸気ポートである。
To explain with reference to the drawings below, 1 is a cylinder block;
2 is a piston, 3 is a cylinder head, 4 is an intake valve, 5 is a valve spring, 6 is a sparkling shim, 7 is a camshaft, and 10 is an intake port.

ピストン2の頂面ば球状の凹所が形成され、燃焼室8を
形成している。燃料ノズルは9で示されシリンダヘッド
3に取付けられ、その噴口9aは燃焼室8の接線方向に
開口している。   ′吸気ボート10はいわゆるスワ
ールボードであり、吸気スワールを形成することができ
る。 ゛燃料ノズル9はその燃料受取口9bが燃料パイ
プ11に接続され、燃料パイプ11は枝管11a。
A spherical recess is formed in the top surface of the piston 2, forming a combustion chamber 8. A fuel nozzle, designated by 9, is attached to the cylinder head 3, and its injection port 9a opens in the tangential direction of the combustion chamber 8. 'The intake boat 10 is a so-called swirl board, and can form an intake swirl. ``The fuel nozzle 9 has its fuel receiving port 9b connected to a fuel pipe 11, and the fuel pipe 11 is a branch pipe 11a.

11bによって別々の燃料噴射ポンプ12a。Separate fuel injection pump 12a by 11b.

12bに接続される。第1の燃料噴射ポンプ12aは、
ピストン2の圧縮上死点付近で燃料ノズル9より主噴射
を実行し、第2の燃料噴射ポンプ12bはピストン2の
吸気上死点付近で燃料ノズル′9より予備噴射を実行す
る。する。第2図は第1のポンプ12a第2のポンプ1
2bからの燃料噴射特性をクランク角に対して示す。こ
こにクランク角O°を吸気上死点とし、クランク角18
o°は吸気下死点、クランク角360°は圧縮上死点と
なる。また第2図には示さないが、クランク角540゜
が爆”□発下死点となる。吸気上死点近傍(吸気上死点
後5−10℃A)で、第2のポンプ12bがらの燃料に
よってノズル9より小量の予備噴射■。
12b. The first fuel injection pump 12a is
The main injection is performed from the fuel nozzle 9 near the compression top dead center of the piston 2, and the second fuel injection pump 12b performs preliminary injection from the fuel nozzle '9 near the intake top dead center of the piston 2. do. FIG. 2 shows the first pump 12a and the second pump 1.
2b shows the fuel injection characteristics versus crank angle. Here, the crank angle 0° is taken as the intake top dead center, and the crank angle is 18
o° is the intake bottom dead center, and a crank angle of 360° is the compression top dead center. Although not shown in Fig. 2, a crank angle of 540° is the explosion bottom dead center. Near the intake top dead center (5-10°C after the intake top dead center), the second pump 12b ■ A small amount of preliminary injection from nozzle 9 depending on the fuel.

が゛行わ″れ、圧縮上死点近傍で第1のポンプ12aか
らの燃□゛料によってノズル9より主噴射!意が行われ
る。第2図に示すように第2のポンプ12bによ墨予備
噴射量′は第1のポンプによる主噴射量の略’10%〜
30%程度である。また噴射時期は吸気上死点近傍にお
いて弁重合期間があるi、゛排気弁の閉弁□時期後とす
る。即ち、上死点後□略10’CA程度とする。更に噴
射期間は噴射燃料の壁面付着分布を良くする為できるだ
け長い方が望ましいが、該燃料方式の内燃機関ではビン
トルノズルを用いるのが通常であり、クランク角で5〜
1゜℃A程度とする。
is carried out, and the main injection is performed from the nozzle 9 using the fuel from the first pump 12a near the compression top dead center.As shown in FIG. The preliminary injection amount' is approximately 10% of the main injection amount by the first pump.
It is about 30%. In addition, the injection timing is set to i, which has a valve overlapping period near the intake top dead center, and after the exhaust valve closing period □. That is, it is approximately □ approximately 10' CA after top dead center. Furthermore, it is desirable that the injection period be as long as possible in order to improve the wall surface adhesion distribution of the injected fuel, but in internal combustion engines using this fuel system, a bottle nozzle is usually used, and the crank angle
The temperature should be approximately 1°℃.

尚、燃料噴射ポンプ12a、12bとしては副型その他
のタイプとすることができ、その回動軸はプーリ16a
、16b及びベルト18によってクランク軸に連結され
る。主噴射と予備噴射との間に約360℃Aの噴射時期
のずれが必要であり、例えば4サイクル4気筒機関の場
合の第1気筒目の噴射ノズルには第1の噴射ポンプ12
aの第1気筒用と第2の噴射ポンプの第4気筒用とを噴
射パイプで接続することになる。第1の噴射ポンプ12
aは通常の圧縮着火式ディーゼル機関とほぼ同様の回転
数−噴射量特性、及び噴射時期特性を持つように調整せ
られ、一方第2の噴射ポンプ12bは前述のように吸気
上死点近傍において少量の燃料を噴射するよう噴射量特
性と噴射時期が調整されている。第4図の(a)に第2
の噴射ポンプ12bの回転数−噴射量特性及び(b)に
噴射時期特性の例を示す。
Incidentally, the fuel injection pumps 12a and 12b may be of a sub-type or other types, and their rotational shafts are connected to the pulley 16a.
, 16b and a belt 18 to the crankshaft. A difference in injection timing of approximately 360°C is required between main injection and preliminary injection. For example, in the case of a 4-stroke, 4-cylinder engine, the injection nozzle of the first cylinder is
The injection pipe for the first cylinder of a and the fourth cylinder of the second injection pump are connected. First injection pump 12
a is adjusted to have almost the same rotation speed-injection amount characteristics and injection timing characteristics as a normal compression ignition diesel engine, while the second injection pump 12b is adjusted to have approximately the same rotation speed-injection amount characteristics and injection timing characteristics as a normal compression ignition diesel engine, while the second injection pump 12b The injection amount characteristics and injection timing are adjusted to inject a small amount of fuel. Figure 4 (a) shows the second
Examples of the rotational speed-injection amount characteristic of the injection pump 12b and the injection timing characteristic are shown in (b).

以下この発明の燃料噴射制御方法を、機関の作動を追い
ながら説明する。
The fuel injection control method of the present invention will be explained below while following the operation of the engine.

ピストン2の吸気上死点において第2の燃料噴射ポンプ
12bから少量の燃料が燃料噴射ノズル9より燃料室8
にその接線方向より第5図iのように導入される。第2
の噴射ポンプ12bの吐出作用により噴射された燃料は
、掻く少量であるため、噴射圧力が弱く貫徹力も小さい
が雰囲気温度が低い為、蒸発せずに液体のままであり、
また未だ燃料室内のスワール流もほとんど生起されてい
ない為、燃焼室壁面8′に至り、fのようにここに付着
する。
At the intake top dead center of the piston 2, a small amount of fuel is discharged from the second fuel injection pump 12b through the fuel injection nozzle 9 into the fuel chamber 8.
is introduced from the tangential direction as shown in Fig. 5i. Second
Since the fuel injected by the discharge action of the injection pump 12b is a small amount, the injection pressure is weak and the penetration force is small, but since the ambient temperature is low, it does not evaporate and remains a liquid.
Furthermore, since almost no swirl flow has been generated in the fuel chamber yet, the swirl flow reaches the combustion chamber wall surface 8' and is deposited there as shown in f.

第6図において吸入工程ではピストン2は下降し、吸気
ポートより吸気弁4を介しスワールSを形成しながら導
入される。そのためピストン燃焼室内8中にもスワール
Sが惹起される。吸入工程では雰囲気温度が低く壁面に
耐着した燃料は液体状態のまま燃焼室壁8′上をスワー
ルSによりフィルム状f′になって拡がる。
In FIG. 6, during the intake process, the piston 2 descends and is introduced from the intake port through the intake valve 4 while forming a swirl S. Therefore, a swirl S is also induced in the piston combustion chamber 8. During the intake process, the ambient temperature is low and the fuel adhering to the wall surface is spread in a film form f' by the swirl S on the combustion chamber wall 8' while remaining in a liquid state.

次に第7図の圧縮行程に入るとピストン2は上昇に移り
、圧縮により雰囲気の温度が上昇し、このため燃焼室壁
8′上に拡がった燃料は蒸発するが、スワールSにより
燃焼室中心に向っての拡散が抑制され、燃焼室壁面近辺
に燃料蒸気相Vを形成する。
Next, when entering the compression stroke shown in Fig. 7, the piston 2 moves upward, and the temperature of the atmosphere rises due to the compression.As a result, the fuel that has spread on the combustion chamber wall 8' evaporates, but the swirl S causes the center of the combustion chamber to rise. Diffusion toward the combustion chamber is suppressed, and a fuel vapor phase V is formed near the wall surface of the combustion chamber.

圧縮上死点(360℃A)附近で第1のポンプ12aに
より圧送された燃料による主噴射が行われる。この主噴
射は燃焼室壁面近傍の蒸気相Vに向って噴射され、該蒸
気相は圧縮上死点近傍ですでに着火し塗炭状態にあるか
もしくは着火準備階段を終えているため主噴射燃料は壁
面8′近傍にて活性化され迅速に着火すること゛はなる
。こめため、機関の低回転域のような極めて着火条件が
悪′く、燃焼の進行が遅く、低負荷でも吐煙濃度が高い
という前記した問題点は解決され、低速から高速まで吐
煙濃度が低く、高い平均有効圧力が得られることになる
Main injection of fuel pumped by the first pump 12a is performed near compression top dead center (360° C.A). This main injection is injected toward the vapor phase V near the wall surface of the combustion chamber, and this vapor phase has already been ignited near the compression top dead center and is in a coal-coated state or has completed the ignition preparation stage, so the main injected fuel is It is activated near the wall surface 8' and ignites quickly. As a result, the above-mentioned problems of extremely poor ignition conditions such as the low rotational speed range of the engine, slow progress of combustion, and high smoke concentration even at low loads have been solved, and the smoke concentration remains low from low to high speeds. A low and high average effective pressure will be obtained.

以上述べた第1実施例では燃料噴射ノズル9は1段開弁
圧のものを前提としている。この代りに、2段開弁圧ノ
ズルを用いることができる。2段開弁圧ノズル9は第8
図のようにばねを20と22のように2つ備え、第1の
ばね20により決まる第1の開弁圧でストッパ24に当
るところまでニードル24の1段目のリフトが行われ、
ばね22により決まる第2の開弁圧(〉第1の開弁圧)
で2段目のリフトが行われる。吸気上死点における予備
噴射時はこの第1段目のリフトのみで受は持たれる。こ
の第1段目の噴射はリフトが少ないので噴口流量係数が
低く押えられ、予備噴射量を第1実施例と同じとすれば
第3図Il ′のように噴射機関を延長せしめられる。
In the first embodiment described above, it is assumed that the fuel injection nozzle 9 has a one-step valve opening pressure. Alternatively, a two-stage open pressure nozzle can be used. The two-stage valve opening pressure nozzle 9 is the eighth
As shown in the figure, two springs 20 and 22 are provided, and the first stage lift of the needle 24 is performed until it hits the stopper 24 at the first valve opening pressure determined by the first spring 20.
Second valve opening pressure determined by spring 22 (>first valve opening pressure)
The second lift will take place. During preliminary injection at intake top dead center, the bridge is held only by this first stage lift. Since this first-stage injection has a small lift, the nozzle flow rate coefficient can be kept low, and if the preliminary injection amount is the same as in the first embodiment, the injection engine can be extended as shown in FIG. 3I'.

そのため、より広範囲に、燃料を燃焼室壁面に到達させ
うるというメリットがある。主噴射は圧縮上死点付近で
2段目□ま主噴射が行われ・こ0ときの噴射時特性番よ
第3°↓富=二許;tFRI’Jt’l+# 7.’e
lllJj射用と予備噴射用とで12a、12bのよう
に2個使用している。しかしながら、燃料噴射ポンプを
2個をイ門用することに限定さ、れず、□予備噴14t
、=□主噴射とで共用することができる。この場合は副
型ポンプとすればカム及びピストンの組合せが夫々の気
筒につき予備噴射と主噴射とで2つ必要となる。
Therefore, there is an advantage that the fuel can reach the wall surface of the combustion chamber over a wider range. The main injection is performed in the second stage near the top dead center of the compression.The characteristic number at the time of injection at 0 is 3°↓ wealth = 2 degrees; tFRI'Jt'l+# 7. 'e
Two such as 12a and 12b are used for IllJj injection and preliminary injection. However, it is not limited to using only two fuel injection pumps;
, =□ Can be shared with main injection. In this case, if a sub-type pump is used, two cam and piston combinations are required for each cylinder, one for preliminary injection and one for main injection.

〔効 果〕〔effect〕

吸気上死点近傍で少量の燃料を予備的に噴射し燃焼室壁
面に耐着させ、圧縮行程に於いて該燃料を蒸発させかつ
燃焼室内に生起された強力なスワールにより燃焼室壁近
傍に蒸気相を形成させ、圧縮上死点にて該蒸気相に向は
主噴射を行い、迅速な着火燃焼を行わせることにより低
回転域から高回転域まで吐煙濃度が低く、高い平均有効
圧力が得られる。また始動性が改善され、始動時の青、
白煙が低減される。更に、壁面クエンチングよるTHC
生成が減少し、完全燃焼の促進によりCOも低減される
。その上、迅速な着火によりNOxが低減される。
A small amount of fuel is preliminarily injected near the intake top dead center to prevent it from adhering to the combustion chamber wall, and during the compression stroke, the fuel is evaporated and a strong swirl generated within the combustion chamber creates steam near the combustion chamber wall. By forming a phase, main injection is performed on the vapor phase at compression top dead center, and rapid ignition combustion occurs, the smoke concentration is low from low rotation range to high rotation range, and high average effective pressure is achieved. can get. In addition, starting performance has been improved, and the blue color when starting,
White smoke is reduced. Furthermore, THC due to wall quenching
CO is also reduced by reducing production and promoting complete combustion. Moreover, rapid ignition reduces NOx.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の燃料噴射システム全体図。 第2図はこの発明の第1実施例におけるクランク角に対
する噴射率特性図。 第3図は第2実施例における噴射率特性図。 第4図は予備噴射において(a)は噴射量、(b)は噴
射タイミング特性をそれぞれ示す図。 第5図、第6図、第7図は各行程におけるこの発明の詳
細な説明する斜視図。 第8図は2段噴射ノズルの噴口部分の断面図。 2・・・ピストン 4・・・吸気弁 8・・・燃焼室 9・・・燃料噴射ノズル lO・・・吸気ボート
FIG. 1 is an overall diagram of the fuel injection system of this invention. FIG. 2 is an injection rate characteristic diagram with respect to crank angle in the first embodiment of the present invention. FIG. 3 is an injection rate characteristic diagram in the second embodiment. FIG. 4 is a diagram showing (a) the injection amount and (b) the injection timing characteristics in preliminary injection, respectively. FIG. 5, FIG. 6, and FIG. 7 are perspective views illustrating details of the present invention in each step. FIG. 8 is a sectional view of the nozzle part of the two-stage injection nozzle. 2... Piston 4... Intake valve 8... Combustion chamber 9... Fuel injection nozzle lO... Intake boat

Claims (1)

【特許請求の範囲】[Claims] 略球形をした燃焼室をピストン頂部に備え、吸気行程に
スワール流を生じさせるスワールポートが設けられ、燃
焼室の接線方向に燃料噴射を行う一個の燃料噴射ノズル
を備えた直接噴射式ディーゼル機関において、圧縮上死
点近傍で実行される主噴射に先立って、吸気上死点の近
傍で小量の予備噴射を実行するようにした燃料噴射制御
方法。
In a direct injection diesel engine that is equipped with a roughly spherical combustion chamber at the top of the piston, a swirl port that generates a swirl flow during the intake stroke, and a single fuel injection nozzle that injects fuel in the tangential direction of the combustion chamber. , a fuel injection control method in which a small amount of preliminary injection is performed near intake top dead center prior to main injection performed near compression top dead center.
JP4376585A 1985-03-07 1985-03-07 Fuel injection control method of direct-injection diesel engine Pending JPS61205322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4376585A JPS61205322A (en) 1985-03-07 1985-03-07 Fuel injection control method of direct-injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4376585A JPS61205322A (en) 1985-03-07 1985-03-07 Fuel injection control method of direct-injection diesel engine

Publications (1)

Publication Number Publication Date
JPS61205322A true JPS61205322A (en) 1986-09-11

Family

ID=12672849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4376585A Pending JPS61205322A (en) 1985-03-07 1985-03-07 Fuel injection control method of direct-injection diesel engine

Country Status (1)

Country Link
JP (1) JPS61205322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767303B1 (en) * 1995-10-02 2001-05-09 Hino Motors, Ltd. Diesel engine
JP2014020278A (en) * 2012-07-18 2014-02-03 Hino Motors Ltd Internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142956A (en) * 1979-04-25 1980-11-07 Nissan Motor Co Ltd Fuel injection device
JPS57119126A (en) * 1980-11-26 1982-07-24 Bayerische Motoren Werke Ag Combustion of piston internal combustion engine having direct injector
JPS5848710A (en) * 1981-09-14 1983-03-22 Toyota Motor Corp Diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142956A (en) * 1979-04-25 1980-11-07 Nissan Motor Co Ltd Fuel injection device
JPS57119126A (en) * 1980-11-26 1982-07-24 Bayerische Motoren Werke Ag Combustion of piston internal combustion engine having direct injector
JPS5848710A (en) * 1981-09-14 1983-03-22 Toyota Motor Corp Diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767303B1 (en) * 1995-10-02 2001-05-09 Hino Motors, Ltd. Diesel engine
JP2014020278A (en) * 2012-07-18 2014-02-03 Hino Motors Ltd Internal combustion engine

Similar Documents

Publication Publication Date Title
US5535716A (en) Compression ignition type gasoline engine injecting fuel inside intake port during exhaust stroke
US20060124104A1 (en) Methods for operating a spark-ignition internal combustion engine
EP1234965A2 (en) Control system for direct fuel injection engine
WO1987000580A1 (en) Timing of fuel injected engines
US4532899A (en) Internal combustion engine fuel-injection system
JP2010024917A (en) Spark ignition type direct injection engine
JPS58107871A (en) Fuel injection device of internal-combustion engine
JPH11141371A (en) Direct cylinder fuel injection type two-cycle engine
JP3770015B2 (en) In-cylinder direct injection compression ignition engine
JP2006257921A (en) Control device and control method of cylinder direct injection type spark ignition internal combustion engine
JPS61205322A (en) Fuel injection control method of direct-injection diesel engine
JPH0299736A (en) Fuel injection control device for diesel engine
JPH04166612A (en) Cylinder injection type internal combustion engine
JP2000265891A (en) Cylinder injection control device
JPH04232328A (en) Internal combustion engine and its control method
JP2000110646A (en) Diesel engine
JP2004316449A (en) Direct injection spark ignition type internal combustion engine
JPH1182029A (en) Stratified charge combustion of internal combustion engine
JP2936806B2 (en) In-cylinder internal combustion engine
JP4120452B2 (en) In-cylinder internal combustion engine
JPH0295742A (en) Fuel injection controller for diesel engine
JPH1136872A (en) Combustion chamber structure of cylindrical injection type 2-stroke engine
JP3280431B2 (en) In-cylinder fuel injection engine
JP2000297682A (en) Internal combustion engine of cylinder injection type
JPH0510137A (en) Cylinder injection type internal combustion engine