JP4120452B2 - In-cylinder internal combustion engine - Google Patents

In-cylinder internal combustion engine Download PDF

Info

Publication number
JP4120452B2
JP4120452B2 JP2003111353A JP2003111353A JP4120452B2 JP 4120452 B2 JP4120452 B2 JP 4120452B2 JP 2003111353 A JP2003111353 A JP 2003111353A JP 2003111353 A JP2003111353 A JP 2003111353A JP 4120452 B2 JP4120452 B2 JP 4120452B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel
exhaust valve
valve
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003111353A
Other languages
Japanese (ja)
Other versions
JP2004316541A (en
Inventor
昌宏 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003111353A priority Critical patent/JP4120452B2/en
Publication of JP2004316541A publication Critical patent/JP2004316541A/en
Application granted granted Critical
Publication of JP4120452B2 publication Critical patent/JP4120452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、気筒(シリンダ)内に直接燃料を噴射する筒内噴射式内燃機関に関し、特に均質燃焼の際の混合気の均質度を高める技術に関するものである。
【0002】
【従来の技術】
内燃機関の気筒内に直接燃料を噴射する筒内噴射式火花点火内燃機関においては、筒内に直接燃料を噴射するため、吸気ポート内に燃料を噴射する場合と比較すると、燃料が気化・霧化する時間が短いので混合気の均質度が悪化するおそれがある。その場合は、燃焼状態が悪くなり、内燃機関の出力性能の低下、エミッション悪化、スモーク発生増等の不具合を生じさせてしまう。
【0003】
また、燃料は、高圧で筒内に噴射されるため、特に冷間時等は、燃料が気化・霧化する前に、直接、シリンダの対抗壁面やピストンの頭頂面に燃料が衝突し付着するおそれがある(図5参照)。このような場合も、混合気の均質度が悪化し、出力性能の低下、エミッション悪化、スモーク発生増等の不具合を生じさせてしまう。
【0004】
これに対して、吸気行程中に排気弁を開いて既燃焼ガスを気筒内に流入させ、気筒内温度を上げることで燃料の気化・霧化を促進させるものがある(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平06−280581号公報
【特許文献2】
特開2000−199440号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の技術においては、吸気行程の全行程あるいはほぼ全行程において排気弁を開いているため、気筒内に噴射された燃料が燃焼する前に排気ポートから流出して、充填効率が悪化するおそれがある。
【0007】
また、本発明者等の研究によると、吸気行程中であっても、燃料を噴射する前や燃料を噴射した後に排気弁を開弁させても、燃料の気化・霧化の促進効果は少ないことが判明した。
【0008】
本発明は、上記した問題点に鑑みてなされたものであり、その目的とするところは、充填効率を悪化させることなく気筒内に噴射された燃料の気化・霧化の促進を図ることができる筒内噴射式内燃機関を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る筒内噴射式内燃機関にあっては、気筒内に直接燃料を噴射する燃料噴射手段と、主に排気行程中に開き、前記気筒内から既燃焼ガスを排出させる排気弁と、当該排気弁を開閉させる排気弁駆動手段と、を備え、前記排気弁駆動手段が吸気行程中にも前記排気弁を開き、既燃焼ガスを気筒内に流入させる筒内噴射式内燃機関において、前記排気弁駆動手段は、吸気行程中であって前記燃料噴射手段が燃料を噴射する期間に、前記排気弁を開くことを特徴とする。
【0010】
気筒内に直接燃料を噴射する内燃機関にあっては、吸気ポートに燃料を噴射する場合と比較すると、燃料を噴射してから着火するまでの期間が短いため、噴射された燃料が十分に気化・霧化しないおそれがある。かかる場合、燃料と空気との混合が良好に行われなくなり、空気に対して燃料が均一にならずに偏在し、混合気の燃焼が不安定になる。その結果、内燃機関の出力性能の低下、エミッション悪化、スモークの発生等を生じさせてしまう。
【0011】
かかる現象は、冷間時等の気筒内の温度が低い場合に発生し易くなる。これは、気筒内の温度が低いと、噴射された燃料が気化・霧化し難いためである。さらに、噴射された燃料が、気筒の対抗壁面あるいはピストンの頭頂面に衝突し、それらの面に付着するため、燃料と空気との混合が良好に行われなくなるためである。また、内燃機関の出力軸の回転数が高いときにも、かかる現象は発生し易くなる。これは、出力軸の回転数が高いほど、燃料を噴射してから着火するまでの時間が短くなるので、噴射された燃料が気化・霧化し難くなるためである。
【0012】
そこで、排気弁駆動手段が、主に排気行程中に開き、気筒内から既燃焼ガスを排出させる排気弁を、吸気行程中にも開弁させる。すると、吸気行程においては気筒内が負圧になることから、高温の既燃焼ガスが再度気筒内に流入する。その結果、気筒内の温度が上昇し、気筒内に噴射された燃料が気化・霧化し易くなる。
【0013】
本発明に係る筒内噴射式内燃機関にあっては、排気弁駆動手段が、吸気行程中であって前記燃料噴射手段が燃料を噴射する期間に、前記排気弁を開くことを特徴とする。本発明によれば、燃料が噴射されている期間に、排気弁が開き高温の既燃焼ガスが流入してくると、気筒内が暖められるとともに、再度流入してくる高温の既燃焼ガスを、噴射後の飛行中の燃料と衝突させることができるので、燃料の気化・霧化を促進させることができる。
【0014】
一方、吸気行程中であっても、燃料が噴射される前や噴射された後に、既燃焼ガスを流入させても、上述したような燃料と既燃焼ガスとの衝突は生じないことから、燃料の気化・霧化の促進効果が小さい。また、長い間排気弁を開くと、吸気行程中であっても、噴射された燃料が燃焼する前に気筒内から排気ポートへ排出されるおそれもある。そして、かかる場合は、充填効率が悪化してしまう。
【0015】
そこで、本発明では、燃料噴射手段が燃料を噴射する期間に、排気弁を開くことで、充填効率を悪化させることなく、効果的に噴射された燃料の気化・霧化の促進を図るものとした。
【0016】
また、前記燃料噴射手段から噴射された燃料と、前記排気弁駆動手段が吸気行程中に前記排気弁を開いたことにより気筒内に流入する既燃焼ガスとが略直角に衝突することが好適である。かかる場合は、噴射後の飛行中の燃料の気化・霧化を効果的に促進させることができるとともに、飛行中の燃料の流速を減少させることができ、気筒の対抗壁面やピストンの頭頂面に衝突・付着する燃料を低減させて混合気の均質度を向上させることができる。
【0017】
前記排気弁駆動手段は、前記排気弁の開弁を、前記燃料噴射手段の噴射開始時期に開始させ噴射終了時期に終了させることが好適である。このようにすれば、噴射された燃料全てに高温の既燃焼ガスを衝突させることができるので、より確実に燃料の気化・霧化を促進することができる。
【0018】
また、前記排気弁駆動手段は、前記排気弁の開量を調節することができ、気筒内の温度が低い場合ほど開量を多くすることが好適である。上述したように、気筒内の温度が低いほど、噴射された燃料が気化・霧化し難くなる。そこで、気筒内の温度に応じて、吸気行程中に開弁させる排気弁の開量を調節することが好ましく、気筒内の温度が低いほど開量を多くするようにする。
【0019】
このようにすれば、気筒内の温度が低いほど、気筒内に高温の既燃焼ガスが多目に流入するので、早期に気筒内の温度を高めることができるとともに、飛行中の燃料に多目の既燃焼ガスが衝突し、燃料の気化・霧化の促進、燃料の気筒の壁面等への衝突・付着の防止を図ることができる。
【0020】
【発明の実施の形態】
以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0021】
以下、本発明の実施の形態に係る筒内噴射式火花点火内燃機関について説明する。
【0022】
内燃機関1は、シリンダブロック2とシリンダヘッド3とを備え、その内部にシリンダ(気筒)4を形成する。シリンダ4内には、ピストン5が往復動可能に収容されており、ピストン5の頭頂面5aと、シリンダ4の内壁と、シリンダヘッド3とに囲まれた空間で燃焼室6を形成している。
【0023】
また、シリンダヘッド3には点火プラグ7が設けられている。点火プラグ7は、イグナイタ8を介して適宜のタイミングで通電され、燃焼室6内に充填される燃料及び空気の混合気に点火する。また同じく、シリンダヘッド3には、燃焼室6内に直接その噴孔を臨ませた燃料噴射弁9が設けられている。燃料噴射弁9は、高圧ポンプ(図示省略)等によって加圧された加圧燃料を、燃焼室6内に適宜の量、適宜のタイミングで噴射供給する電磁駆動式開閉弁である。
【0024】
また、シリンダヘッド3には、燃焼室6に連通した吸気ポート10と、同じく燃焼室6に連通した排気ポート11とが形成され、さらに、吸気ポート10と燃焼室6との境界を開放・閉塞する吸気弁12や、排気ポート11と燃焼室6との境界を開放・閉塞する排気弁13が設けられている。
【0025】
吸気弁12は、軸部材12aの先端に弁体12bを備えて構成され、吸気弁駆動機構14によって開閉駆動される。この吸気弁駆動機構14は、基本的には内燃機関の出力軸であるクランクシャフト(図示省略)の回転に同期して往復運動(開閉弁動作)を繰り返すものであるが、吸気弁12の開閉タイミングや、弁リフト量(開弁量)を適宜変更することができる。
【0026】
また、排気弁13も、吸気弁12と同様に、軸部材13aの先端に弁体13bを備えて構成され、排気弁駆動機構15によって開閉駆動される。排気弁駆動機構15は、基本的にはクランクシャフトの回転に同期して往復運動(開閉弁動作)を繰り返すものであるが、排気弁13の開閉タイミングや、弁リフト量(開弁量)も適宜変更することができる。
【0027】
この吸気弁駆動機構14及び排気弁駆動機構15としては、様々な作動原理を利用した機構を採用し得る。例えば、クランクシャフトの回転に連動するカム機構であって、複数形状のカムを選択的に用いて吸気弁12あるいは排気弁13を駆動することのできる機構や、クランクシャフトの回転に連動するカムと、カムの動作を修正するメカニズムとを併せて活用し弁を駆動することのできる機構等を例示することができる。
【0028】
また、吸気弁12あるいは排気弁13に対し、その往復動作の方向に沿って電磁力を付与することのできる機構を採用することもできる。このような機構を採用した場合、吸気弁12あるいは排気弁13の動作をクランクシャフトの回転に連動させる必要がなくなるため、その動作範囲や動作速度の制御ついて、自由度が高まる。
【0029】
このような吸気弁駆動機構14及び排気弁駆動機構15の機能を活用することにより、後述する内燃機関1のECU16は、吸気弁12及び排気弁13の開閉タイミング及び弁リフト量(開弁量)を可変制御することができる。
【0030】
前記内燃機関1においては、吸気行程で吸気弁12が開弁することにより吸気ポート10からシリンダ4内に空気が吸入される。その後、シリンダ4内に吸入された空気と燃料噴射弁9から噴射された燃料とからなる混合気の燃焼が行われると、そのときの燃焼エネルギによってピストン5が往復動する。そして、このピストン5の往復運動を、ピストン5に連結されたコンロッド(図示省略)が、内燃機関1の出力軸であるクランクシャフト(図示省略)の回転運動に変換する。一方、シリンダ4内に存在する燃焼後の混合気(既燃焼ガス)は、排気行程で排気弁13が開弁することによりシリンダ4内から排気ポート11へ排出される。
【0031】
以上述べたように構成された内燃機関1には、当該内燃機関1を制御するための電子制御ユニット(ECU:ElectronicControl Unit)16が併設されている。このECU16は、CPU、ROM、RAM、バックアップRAMなどからなる算術論理演算回路である。
【0032】
ECU16には、内燃機関1に取り付けられた水温センサ17やクランクポジションセンサ(図示省略)等の各種センサが電気配線を介して接続され、上記した各種センサの出力信号がECU16に入力されるようになっている。
【0033】
一方、ECU16には、燃料噴射弁9、吸気弁駆動機構14、排気弁駆動機構15等が電気配線を介して接続され、ECU16が燃料噴射弁3、吸気弁駆動機構14、排気弁駆動機構15等を制御することが可能になっている。
【0034】
例えば、ECU16は、一定時間毎に実行すべき基本ルーチンにおいて、各種センサの出力信号の入力、機関回転数の演算、燃料噴射量の演算、燃料噴射時期の演算などを実行する。基本ルーチンにおいてECU16が入力した各種信号やECU16が演算して得られた各種制御値は、該ECU16のRAMに一時的に記憶される。
【0035】
更に、ECU16は、各種のセンサやスイッチからの信号の入力、一定時間の経過、あるいはクランクポジションセンサからのパルス信号の入力などをトリガとした割り込み処理において、RAMから各種制御値を読み出し、それら制御値に従って燃料噴射弁9を制御する。
【0036】
具体的には、燃料噴射量制御処理が開始されると、まず内燃機関1の運転状態、ここでは内燃機関の回転数、アクセル(図示省略)開度等がECU16のRAM内に設けられた作業領域に読み込まれる。そして、マップに基づいて、内燃機関の回転数及びアクセル開度等から燃料噴射量が算出される。
【0037】
そして、燃料噴射量及び燃料の圧力に基づいて燃料噴射弁9の開弁時間が決定される。その後、燃料噴射タイミングに該当する気筒に設けられた燃料噴射弁9が当該開弁時間だけ開弁するように制御され、算出された燃料噴射量に相当する燃料が該当するシリンダ内に噴射される。
【0038】
また、ECU16は、機関回転数や負荷等により変化する内燃機関の運転状態に応じて、燃焼室6内での混合気の燃焼形態を成層燃焼と均質燃焼との間で切り換える。成層燃焼の実行中には、主に圧縮行程での燃料噴射により点火プラグ7周りに可燃混合気が存在するようにされ、その状態での点火プラグ7による点火で混合気の燃焼が行われる。また、均質燃焼の実行中には、吸気行程での燃料噴射により空気に対し燃料が均等に混合された均質混合気を形成し、その状態での点火プラグ7による点火で均質混合気の燃焼が行われる。
【0039】
ところで、均質燃焼でのアイドル運転状態など、吸気行程での燃料噴射が行われ、かつ、燃料噴射量及び吸入空気量が共に少なくなり、シリンダ4内でのガスの流動(気流)も弱くなるという運転状態では、シリンダ4内に噴射された燃料が気化・霧化し難いため燃料と空気との混合が良好に行われなくなる。その結果、燃焼室6内にて燃料が均一にならずに偏在し、混合気の燃焼が不安定になり失火やトルク変動が生じ、内燃機関1の回転変動が大きくなるおそれがある。
【0040】
また、均質燃焼での高負荷運転状態等、内燃機関1の回転数が高い場合は、燃料が噴射されてから点火されるまでの時間が短いため、噴射された燃料が十分に気化・霧化されずに燃料と空気との混合が良好に行われないまま、点火されるおそれがある。その結果、燃焼が悪くなり、出力性能の低下、エミッション悪化、スモークの発生等を生じさせてしまう。
【0041】
上述したことは、冷間時等のシリンダ4内の温度が低い場合に発生し易くなる。これは、シリンダ4内の温度が低いと、噴射された燃料が気化・霧化し難いためである。さらに、冷間時においては、噴射された燃料が、シリンダ4の対抗壁面あるいはピストンの頭頂面5aに衝突し、その面に付着するため(図5参照)、燃料と空気との混合が良好に行われなくなるためである。
【0042】
そこで本実施の形態では、吸気行程で燃料噴射されるような均質燃焼が行われる燃焼形態のとき、燃料噴射弁9からの燃料噴射時期に合わせて排気弁13を開弁し、排気ポート11から高温の既燃焼ガスを流入させるようにする。具体的には、例えば、以下に説明するように実行される。
【0043】
図2は、クランクシャフト角度に対する弁のリフト量の変化を示した図であり、主に排気行程と吸気行程中の弁のリフト量を示している。本図に示すように、吸気弁19は主に吸気行程において開くように(リフトするように)駆動制御される(曲線N1)。一方、排気弁13は主に排気行程において開くように(リフトするように)駆動制御される(曲線E1)。
【0044】
さらに、本実施の形態に係る排気弁13は、吸気行程中に燃料噴射される均質燃焼領域である場合、吸気行程においても開くように(リフトするように)駆動制御される(曲線E2)。つまり、内燃機関1の吸気行程、圧縮行程、爆発行程及び排気行程の4行程からなる1周期中に、主に排気行程に1回開弁し、その後閉じた後に再度吸気行程中にも開くように制御される。
【0045】
そして、その吸気行程中に行われる開弁の開始時期は、燃料噴射弁9による燃料噴射の開始時期と同じであり、また、その開弁の終了時期は、燃料噴射弁9による燃料噴射の終了時期と同じである。すなわち、燃料噴射弁9による燃料噴射期間に、排気弁13は開くように駆動制御される。
【0046】
具体的には、図2に示すように、排気弁13は、排気行程が開始する下死点(BDC)のやや手前から1回目の開弁を開始し、既燃焼ガスをシリンダ内から排出させた後、排気行程終了の上死点をやや過ぎたときに1回目の開弁を終了する。
【0047】
その後、吸気行程中の燃料噴射弁9による燃料噴射期間に、2回目の開弁を行うように駆動制御される。すると、ピストン5が下降するのに伴いシリンダ4内が負圧になり、上述のように排気行程中に排出された既燃焼ガスが再度シリンダ内に流入する(図1中→印)。その結果、シリンダ4内が暖められるとともに、図1に示すように、再度流入してくる高温の既燃焼ガスが、噴射された後の飛行中の燃料と衝突するので、燃料の気化・霧化が促進される。
【0048】
また、図1に示すように、燃料の噴射角度と既燃焼ガスの流入角度とが略直行するような位置関係にある場合は、噴射された燃料の流速が、排気ポートから流入してくる既燃焼ガスにより減速させられるので、シリンダ壁面やピストン頭頂面に衝突・付着し難くなる。また、もし燃料がシリンダ壁面やピストン頭頂面に付着したとしても、排気ポートから流入する高温の既燃焼ガス流によりその蒸発が促進される。
【0049】
その結果、燃料と空気が良く混合し、燃焼が良好に行われるので、回転変動を安定させ、内燃機関1の出力の性能低下、エミッション悪化、スモークの発生等を抑制することができる。
【0050】
また、吸気弁12の開いている期間の全てにおいて排気弁13を開くのではなく、吸気行程中の燃料噴射弁9による燃料噴射期間と同じ期間だけ排気弁13を開弁させ、噴射される燃料を気化・霧化するのに必要最小限の既燃焼ガスを導入させるので、充填効率が悪化するのを抑制することができる。
【0051】
なお、上述したように、シリンダ4内に噴射される燃料量に応じて燃料噴射期間は変動するが、吸気行程中の燃料噴射期間に合わせて開弁させられる排気弁13の開弁期間も、同様に燃料噴射期間の変動に応じて変動するものである。
【0052】
ところで、上述したように、シリンダ4内の温度が低い程、噴射された燃料が気化・霧化し難くなる。そこで、シリンダ4内の温度に応じて、吸気行程中の燃料噴射期間に合わせて開弁させる排気弁13の開量を変更することが好ましい。つまり、シリンダ4内の温度が低い程、排気弁13の開量を多くし、シリンダ4内に高温の既燃焼ガスを多目に流入させて、早期にシリンダ4内の温度を高めるとともに、飛行中の燃料に多目の既燃焼ガスを衝突させて、燃料の気化・霧化の促進、燃料のシリンダ壁面等への衝突・付着の防止を図るようにすることが好ましい。
【0053】
具体的に、シリンダ4内の温度が低い場合に駆動制御される排気弁13のリフト量を示したのが、図2に破線で示した曲線E3であり、燃料噴射期間が同一である場合は、開弁開始時期及び開弁終了時期は変更せずに燃料噴射時期に合わせるようにし、単に各クランク角度に対するリフト量を変更するようにする。
【0054】
なお、排気弁13の開量とは、図2の曲線E2あるいはE3と弁リフト量が零である横軸とで囲まれた面積のことである。つまり、開弁期間が同一である場合は、排気弁のリフト量が高いほど開量が多くなる。ただし、吸気行程での燃料噴射期間は変動するので、ECU16は、開量を定めたら、逐一、燃料噴射期間つまり開弁期間を基に排気弁のリフト量を決定することとなる。
【0055】
また、シリンダ内温度と吸気行程中に開弁させる排気弁13の開量との関係を示したのが図3である。本図に示すように、シリンダ内温度が高くなるにつれ排気弁13の開量を少なくし、ある所定温度Tf以上となったら開弁させないようにする。
【0056】
所定温度Tfは、シリンダ内の温度が高く、噴射された燃料が気化・霧化し易く、燃料と空気が良く混合し、燃焼が良好に行われ、出力性能の低下、エミッション悪化、スモークの発生等を発生させることを防止できる温度の最低値であり、例えば90℃である。なお、当該所定温度Tfは、内燃機関毎に予め定められる値である。
【0057】
次に、内燃機関の吸気行程中に燃料が噴射される際に開弁される排気弁13の開量を設定するための制御ルーチンについて、図4のフローチャート図に沿って説明する。
【0058】
この制御ルーチンは、予めECU16のROMに記憶されているルーチンであり、一定時間の経過、あるいはクランクポジションセンサからのパルス信号の入力などをトリガとした割り込み処理としてECU16が実行するルーチンである。
【0059】
本ルーチンでは、ECU16は、先ずステップ100において、均質燃焼領域か否かを判別する。そして、均質燃焼領域であると判別された場合は、ステップ101に進む。一方、均質燃焼領域でないと判別された場合は、ステップ104へ進む。
【0060】
ステップ101においては、ECU16は、シリンダ内温度が上述した所定温度Tfより低いか否かを判別する。シリンダ内温度を認識するには、シリンダ内に温度センサを設けて直接検出しても良いし、水温センサ17の検出値に基づいてシリンダ内温度を推定しても良い。
【0061】
ステップ101において、シリンダ内温度が所定温度Tfより低いと判別した場合は、ステップ102へ進み、シリンダ内温度がTf以上であると判別した場合は、ステップ104へ進む。
【0062】
ステップ102においては、排気弁13の開量を決定する。これは、予め、図3のようなシリンダ内温度と排気弁13開量との相関関係を示すマップをROMに記憶しておき、該マップにステップ101にて認識したシリンダ内温度を代入して決定するものである。
【0063】
その後、ステップ103へ進み、ステップ102において決定した開量を吸気行程中の排気弁13の開量として設定し、本ルーチンを終了する。
【0064】
一方、ステップ104へは、ステップ100で均質燃焼領域ではないと判別された場合、つまり成層燃焼領域であると判別された場合、あるいはステップ101でシリンダ内温度がTf以上であると判別された場合に進むが、かかる場合は、吸気行程での開弁量を零と設定して本ルーチンの実行を終了する。
【0065】
このようにして、定期的に吸気行程中の排気弁13の開量が設定されると、均質燃焼領域である場合は、主に排気行程中の開弁とは別に、気筒毎の燃料噴射弁9の燃料噴射期間に合わせて、設定された開量だけ開弁するように、ECU16が、排気弁駆動機構15を制御し、排気弁13を駆動させる。又は、成層燃焼領域である場合は、吸気行程中には排気弁13が開弁しないように零に設定されているので、ECU16が、排気弁駆動機構15を制御し、4行程の1周期中に主に排気行程中の1回だけ開弁するように排気弁13を駆動させる。
【0066】
以上、本実施の形態においては、均質燃焼及び成層燃焼の両方の燃焼形態で運転される内燃機関に適用した場合について説明したが、本発明は、これに限定されるものではなく、吸気行程中に燃料噴射される均質燃焼のみにおいて運転される内燃機関に適用しても良い。かかる場合の制御ルーチンとしては、図4のフローチャート中のステップ100を省略して用いるものであり、具体的には、スタートした後すぐにステップ101へ進み、シリンダ内温度がTfより低いか否かを判別する。その後の処理は上述したのと同じであるのでその説明は省略する。
【0067】
また、本実施の形態においては、火花点火内燃機関に適用した場合について説明したが、本発明は、圧縮着火内燃機関に適用することもできる。一般的に、圧縮着火内燃機関においては、圧縮行程中に燃料が噴射されるが、ビゴム噴射等の副噴射が実施される内燃機関については、吸気行程中に燃料が噴射されることもある。かかる場合に、本発明を適用すると、上述したのと同様に、シリンダ内に噴射された燃料の気化・霧化が促進され、燃焼を安定させることができ、上述したのと同様な効果を得ることができる。
【0068】
また、本発明は、1気筒あたりの排気弁の数に関わらず適用することができるが、1気筒に複数本の排気弁を有する内燃機関においては、吸気行程中に燃料噴射される期間に開弁させる排気弁の本数は、少なくとも1本あればよく、内燃機関毎に任意に設定できる。また、その内燃機関の運転状態に応じて、適宜その本数を変更させても良い。
【0069】
【発明の効果】
以上説明したように、本発明に係る筒内噴射式内燃機関によれば、吸気行程において燃料が噴射される期間に排気弁を開くので、必要最小限の開弁量とすることができ、充填効率を悪化させることなく気筒内に噴射された燃料の気化・霧化の促進を図ることができる。
【図面の簡単な説明】
【図1】実施の形態に係る筒内噴射式火花点火内燃機関の概略構成を示す図である。
【図2】クランク角度に対する吸気弁及び排気弁のリフト量の推移を表した図である。
【図3】シリンダ内温度と吸気行程中に燃料が噴射される期間に開弁される排気弁の開量との関係を示す図である。
【図4】吸気行程中に燃料が噴射される期間に開弁される排気弁の開量を設定するために実行される制御ルーチンのフローチャート図である。
【図5】従来の技術に係る内燃機関の概略図である。
【符号の説明】
1 内燃機関
2 シリンダブロック
3 シリンダヘッド
4 シリンダ
5 ピストン
6 燃焼室
7 点火プラグ
8 イグナイタ
9 燃料噴射弁
10 吸気ポート
11 排気ポート
12 吸気弁
13 排気弁
14 吸気弁駆動機構
15 排気弁駆動機構
16 ECU
17 水温センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-cylinder injection internal combustion engine that directly injects fuel into a cylinder, and more particularly to a technique for increasing the homogeneity of an air-fuel mixture during homogeneous combustion.
[0002]
[Prior art]
An in-cylinder spark ignition internal combustion engine that injects fuel directly into the cylinder of the internal combustion engine injects fuel directly into the cylinder. There is a risk that the homogeneity of the air-fuel mixture is deteriorated because the time required for conversion is short. In this case, the combustion state is deteriorated, and problems such as a decrease in output performance of the internal combustion engine, deterioration in emissions, and increase in smoke generation are caused.
[0003]
In addition, since the fuel is injected into the cylinder at a high pressure, the fuel directly collides with and adheres to the opposing wall surface of the cylinder and the top surface of the piston before the fuel is vaporized and atomized, particularly during cold weather. There is a risk (see FIG. 5). Even in such a case, the homogeneity of the air-fuel mixture deteriorates, causing problems such as a decrease in output performance, deterioration in emissions, and an increase in smoke generation.
[0004]
On the other hand, there is an apparatus that accelerates fuel vaporization and atomization by opening the exhaust valve during the intake stroke to flow the already burned gas into the cylinder and raising the temperature in the cylinder (for example, see Patent Document 1). ).
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 06-280581 [Patent Document 2]
Japanese Patent Laid-Open No. 2000-199440
[Problems to be solved by the invention]
However, in the technique described in Patent Document 1, since the exhaust valve is opened during the entire stroke or almost the entire stroke of the intake stroke, the fuel injected into the cylinder flows out from the exhaust port before combustion and is charged. Efficiency may deteriorate.
[0007]
Further, according to the study by the present inventors, even if the exhaust valve is opened before fuel injection or after fuel injection even during the intake stroke, the effect of promoting fuel vaporization and atomization is small. It has been found.
[0008]
The present invention has been made in view of the above-described problems, and an object of the present invention is to promote the vaporization and atomization of the fuel injected into the cylinder without deteriorating the charging efficiency. An object of the present invention is to provide a direct injection internal combustion engine.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the direct injection internal combustion engine according to the present invention has a fuel injection means for directly injecting fuel into the cylinder, and opens mainly during the exhaust stroke, and is already burned from within the cylinder. A cylinder for exhausting the gas, and an exhaust valve driving means for opening and closing the exhaust valve, the exhaust valve driving means opening the exhaust valve even during the intake stroke, and allowing the burned gas to flow into the cylinder In the internal injection internal combustion engine, the exhaust valve driving means opens the exhaust valve during the intake stroke and the fuel injection means injects fuel.
[0010]
In an internal combustion engine that injects fuel directly into the cylinder, compared with the case of injecting fuel into the intake port, the period from injection of fuel to ignition is shorter, so the injected fuel is sufficiently vaporized.・ May not atomize. In such a case, the fuel and air are not mixed well, the fuel is unevenly distributed with respect to the air, and the combustion of the air-fuel mixture becomes unstable. As a result, the output performance of the internal combustion engine is deteriorated, emission is deteriorated, smoke is generated, and the like.
[0011]
Such a phenomenon is likely to occur when the temperature in the cylinder is low, such as when cold. This is because if the temperature in the cylinder is low, the injected fuel is difficult to vaporize and atomize. Further, the injected fuel collides with the opposing wall surface of the cylinder or the top surface of the piston and adheres to these surfaces, so that the fuel and air cannot be mixed well. Further, such a phenomenon is likely to occur even when the rotational speed of the output shaft of the internal combustion engine is high. This is because the higher the number of revolutions of the output shaft, the shorter the time from fuel injection to ignition, so that the injected fuel is less likely to vaporize and atomize.
[0012]
Therefore, the exhaust valve driving means opens mainly during the exhaust stroke and opens the exhaust valve that discharges the burnt gas from the cylinder during the intake stroke. Then, in the intake stroke, the pressure in the cylinder becomes negative, so that the high-temperature burned gas flows again into the cylinder. As a result, the temperature in the cylinder rises and the fuel injected into the cylinder is easily vaporized and atomized.
[0013]
The direct injection internal combustion engine according to the present invention is characterized in that the exhaust valve driving means opens the exhaust valve during the intake stroke and the fuel injection means injects fuel. According to the present invention, when the exhaust valve is opened and high-temperature burned gas flows in during the period when the fuel is being injected, the inside of the cylinder is warmed and the high-temperature burned gas flowing in again is Since it can be made to collide with the fuel in flight after injection, vaporization and atomization of fuel can be promoted.
[0014]
On the other hand, even during the intake stroke, the collision between the fuel and the burned gas does not occur even if the burned gas is introduced before or after the fuel is injected. The effect of promoting vaporization and atomization is small. Also, if the exhaust valve is opened for a long time, even during the intake stroke, the injected fuel may be discharged from the cylinder to the exhaust port before burning. In such a case, the filling efficiency is deteriorated.
[0015]
Therefore, in the present invention, during the period when the fuel injection means injects the fuel, the exhaust valve is opened to effectively promote the vaporization and atomization of the injected fuel without deteriorating the charging efficiency. did.
[0016]
In addition, it is preferable that the fuel injected from the fuel injection unit and the burned gas flowing into the cylinder due to the exhaust valve driving unit opening the exhaust valve during the intake stroke collide at substantially right angles. is there. In such a case, vaporization and atomization of the fuel during the flight after injection can be effectively promoted, and the flow velocity of the fuel during the flight can be reduced, and the cylinder wall or piston top surface can be reduced. It is possible to improve the homogeneity of the air-fuel mixture by reducing the fuel that collides and adheres.
[0017]
Preferably, the exhaust valve driving means starts opening the exhaust valve at an injection start timing of the fuel injection means and ends it at an injection end timing. In this way, since the high-temperature burned gas can collide with all the injected fuel, the vaporization and atomization of the fuel can be promoted more reliably.
[0018]
The exhaust valve driving means can adjust the opening amount of the exhaust valve, and it is preferable that the opening amount is increased as the temperature in the cylinder is lower. As described above, the lower the temperature in the cylinder, the more difficult it is for the injected fuel to vaporize and atomize. Therefore, it is preferable to adjust the opening amount of the exhaust valve that is opened during the intake stroke according to the temperature in the cylinder, and the opening amount is increased as the temperature in the cylinder is lower.
[0019]
In this way, the lower the temperature in the cylinder, the higher the temperature of the burned gas that flows into the cylinder, so the temperature in the cylinder can be increased earlier and the fuel in flight The already burned gas collides, fuel vaporization / atomization can be promoted, and the collision / attachment of the fuel to the cylinder wall surface can be prevented.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. Absent.
[0021]
Hereinafter, an in-cylinder injection spark ignition internal combustion engine according to an embodiment of the present invention will be described.
[0022]
The internal combustion engine 1 includes a cylinder block 2 and a cylinder head 3, and a cylinder (cylinder) 4 is formed therein. A piston 5 is accommodated in the cylinder 4 so as to be capable of reciprocating, and a combustion chamber 6 is formed in a space surrounded by the top surface 5 a of the piston 5, the inner wall of the cylinder 4, and the cylinder head 3. .
[0023]
The cylinder head 3 is provided with a spark plug 7. The spark plug 7 is energized at an appropriate timing via the igniter 8 and ignites the fuel / air mixture filled in the combustion chamber 6. Similarly, the cylinder head 3 is provided with a fuel injection valve 9 that directly faces the injection hole in the combustion chamber 6. The fuel injection valve 9 is an electromagnetically driven on / off valve that supplies pressurized fuel pressurized by a high-pressure pump (not shown) or the like into the combustion chamber 6 at an appropriate amount and at an appropriate timing.
[0024]
Further, an intake port 10 communicating with the combustion chamber 6 and an exhaust port 11 communicating with the combustion chamber 6 are formed in the cylinder head 3, and the boundary between the intake port 10 and the combustion chamber 6 is opened and closed. And an exhaust valve 13 that opens and closes the boundary between the exhaust port 11 and the combustion chamber 6 is provided.
[0025]
The intake valve 12 includes a valve body 12b at the tip of a shaft member 12a and is driven to open and close by an intake valve drive mechanism 14. The intake valve drive mechanism 14 basically repeats reciprocating motion (open / close valve operation) in synchronization with rotation of a crankshaft (not shown) that is an output shaft of the internal combustion engine. The timing and the valve lift amount (valve opening amount) can be changed as appropriate.
[0026]
Similarly to the intake valve 12, the exhaust valve 13 is also provided with a valve body 13b at the tip of the shaft member 13a, and is driven to open and close by the exhaust valve drive mechanism 15. The exhaust valve drive mechanism 15 basically repeats reciprocating motion (open / close valve operation) in synchronization with the rotation of the crankshaft, but the open / close timing of the exhaust valve 13 and the valve lift amount (valve open amount) are also different. It can be changed as appropriate.
[0027]
As the intake valve drive mechanism 14 and the exhaust valve drive mechanism 15, mechanisms using various operating principles can be adopted. For example, a cam mechanism that interlocks with the rotation of the crankshaft, which can selectively drive the intake valve 12 or the exhaust valve 13 using a plurality of cams, or a cam that interlocks with the rotation of the crankshaft. A mechanism or the like that can be used together with a mechanism for correcting the operation of the cam to drive the valve can be exemplified.
[0028]
Further, a mechanism capable of applying an electromagnetic force to the intake valve 12 or the exhaust valve 13 along the reciprocal movement direction can be employed. When such a mechanism is employed, there is no need to link the operation of the intake valve 12 or the exhaust valve 13 with the rotation of the crankshaft, so that the degree of freedom in controlling the operation range and operation speed is increased.
[0029]
By utilizing such functions of the intake valve drive mechanism 14 and the exhaust valve drive mechanism 15, the ECU 16 of the internal combustion engine 1, which will be described later, can open and close the intake valve 12 and the exhaust valve 13 and the valve lift amount (valve open amount). Can be variably controlled.
[0030]
In the internal combustion engine 1, air is sucked into the cylinder 4 from the intake port 10 by opening the intake valve 12 during the intake stroke. Thereafter, when combustion of an air-fuel mixture composed of air sucked into the cylinder 4 and fuel injected from the fuel injection valve 9 is performed, the piston 5 reciprocates by the combustion energy at that time. Then, the reciprocating motion of the piston 5 is converted into a rotational motion of a crankshaft (not shown) that is an output shaft of the internal combustion engine 1 by a connecting rod (not shown) connected to the piston 5. On the other hand, the burned air-fuel mixture (pre-combusted gas) existing in the cylinder 4 is discharged from the cylinder 4 to the exhaust port 11 by opening the exhaust valve 13 in the exhaust stroke.
[0031]
The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 16 for controlling the internal combustion engine 1. The ECU 16 is an arithmetic logic circuit including a CPU, ROM, RAM, backup RAM, and the like.
[0032]
Various sensors such as a water temperature sensor 17 and a crank position sensor (not shown) attached to the internal combustion engine 1 are connected to the ECU 16 via electric wiring so that output signals of the various sensors described above are input to the ECU 16. It has become.
[0033]
On the other hand, the fuel injection valve 9, the intake valve drive mechanism 14, the exhaust valve drive mechanism 15 and the like are connected to the ECU 16 via electric wiring, and the ECU 16 is connected to the fuel injection valve 3, the intake valve drive mechanism 14, and the exhaust valve drive mechanism 15. Etc. can be controlled.
[0034]
For example, the ECU 16 executes input of output signals of various sensors, calculation of engine speed, calculation of fuel injection amount, calculation of fuel injection timing, and the like in a basic routine to be executed at regular intervals. Various signals input by the ECU 16 and various control values obtained by the ECU 16 in the basic routine are temporarily stored in the RAM of the ECU 16.
[0035]
Further, the ECU 16 reads various control values from the RAM in the interrupt processing triggered by the input of signals from various sensors and switches, the passage of a fixed time, or the input of a pulse signal from the crank position sensor, and controls them. The fuel injection valve 9 is controlled according to the value.
[0036]
Specifically, when the fuel injection amount control process is started, first, the operation state of the internal combustion engine 1, in this case, the rotational speed of the internal combustion engine, the accelerator (not shown) opening degree, and the like are provided in the RAM of the ECU 16. Read into the area. Then, based on the map, the fuel injection amount is calculated from the rotational speed of the internal combustion engine, the accelerator opening, and the like.
[0037]
The valve opening time of the fuel injection valve 9 is determined based on the fuel injection amount and the fuel pressure. Thereafter, the fuel injection valve 9 provided in the cylinder corresponding to the fuel injection timing is controlled to open for the valve opening time, and fuel corresponding to the calculated fuel injection amount is injected into the corresponding cylinder. .
[0038]
The ECU 16 switches the combustion mode of the air-fuel mixture in the combustion chamber 6 between stratified combustion and homogeneous combustion in accordance with the operating state of the internal combustion engine that changes depending on the engine speed, load, and the like. During the execution of stratified combustion, a combustible air-fuel mixture is made to exist around the spark plug 7 mainly by fuel injection in the compression stroke, and the air-fuel mixture is combusted by ignition by the spark plug 7 in that state. Further, during the execution of the homogeneous combustion, a homogeneous mixture in which fuel is evenly mixed with air is formed by fuel injection in the intake stroke, and the homogeneous mixture is burned by ignition by the spark plug 7 in that state. Done.
[0039]
By the way, fuel injection is performed in the intake stroke, such as in an idling operation state in homogeneous combustion, and both the fuel injection amount and the intake air amount are reduced, and the gas flow (airflow) in the cylinder 4 is also weakened. In the operating state, the fuel injected into the cylinder 4 is difficult to vaporize and atomize, so that the fuel and air cannot be mixed well. As a result, the fuel is unevenly distributed in the combustion chamber 6 and is unevenly distributed, the combustion of the air-fuel mixture becomes unstable, misfires and torque fluctuations occur, and the rotational fluctuations of the internal combustion engine 1 may increase.
[0040]
In addition, when the rotational speed of the internal combustion engine 1 is high, such as in a high-load operation state in homogeneous combustion, the time from when the fuel is injected to when it is ignited is short, so the injected fuel is sufficiently vaporized and atomized. Otherwise, the fuel and air may not be well mixed and there is a risk of ignition. As a result, combustion worsens, resulting in a decrease in output performance, emission deterioration, smoke generation, and the like.
[0041]
What has been described above is likely to occur when the temperature in the cylinder 4 is low, such as during cold weather. This is because if the temperature in the cylinder 4 is low, the injected fuel is difficult to vaporize and atomize. Further, when the fuel is cold, the injected fuel collides with the opposing wall surface of the cylinder 4 or the top surface 5a of the piston and adheres to the surface (see FIG. 5), so that the fuel and air are well mixed. This is because it will not be performed.
[0042]
Therefore, in the present embodiment, in the combustion mode in which homogeneous combustion is performed such that fuel is injected in the intake stroke, the exhaust valve 13 is opened in accordance with the fuel injection timing from the fuel injection valve 9 and the exhaust port 11 is opened. Let the hot burned gas flow in. Specifically, for example, it is executed as described below.
[0043]
FIG. 2 is a diagram showing a change in the lift amount of the valve with respect to the crankshaft angle, and mainly shows the lift amount of the valve during the exhaust stroke and the intake stroke. As shown in the figure, the intake valve 19 is driven and controlled to open (lift) mainly in the intake stroke (curve N1). On the other hand, the exhaust valve 13 is driven and controlled to open (lift) mainly in the exhaust stroke (curve E1).
[0044]
Further, when the exhaust valve 13 according to the present embodiment is a homogeneous combustion region in which fuel is injected during the intake stroke, the exhaust valve 13 is driven and controlled to open (lift) during the intake stroke (curve E2). In other words, the valve is opened once in the exhaust stroke in one cycle consisting of the intake stroke, the compression stroke, the explosion stroke, and the exhaust stroke of the internal combustion engine 1, and then is closed and then opened again during the intake stroke. Controlled.
[0045]
The start timing of the valve opening performed during the intake stroke is the same as the start timing of the fuel injection by the fuel injection valve 9, and the end timing of the valve opening is the end of the fuel injection by the fuel injection valve 9. Same as the time. That is, the exhaust valve 13 is driven and controlled to open during the fuel injection period of the fuel injection valve 9.
[0046]
Specifically, as shown in FIG. 2, the exhaust valve 13 starts the first opening slightly before the bottom dead center (BDC) at which the exhaust stroke starts, and exhausts the burned gas from the cylinder. After that, when the top dead center of the exhaust stroke ends a little, the first valve opening is ended.
[0047]
Thereafter, drive control is performed so that the second valve opening is performed during the fuel injection period of the fuel injection valve 9 during the intake stroke. Then, as the piston 5 descends, the pressure in the cylinder 4 becomes negative, and the burned gas discharged during the exhaust stroke as described above flows into the cylinder again (→ in FIG. 1). As a result, the inside of the cylinder 4 is warmed and, as shown in FIG. 1, the high-temperature burned gas flowing in again collides with the fuel in flight after being injected, so that the fuel is vaporized and atomized. Is promoted.
[0048]
In addition, as shown in FIG. 1, when the fuel injection angle and the inflow angle of the already burned gas are substantially perpendicular to each other, the flow rate of the injected fuel is already flowing from the exhaust port. Since it is decelerated by the combustion gas, it is difficult to collide and adhere to the cylinder wall surface or the piston top surface. Further, even if the fuel adheres to the cylinder wall surface or the piston top surface, the evaporation is promoted by the high-temperature burned gas flow flowing from the exhaust port.
[0049]
As a result, since the fuel and air are well mixed and combustion is performed satisfactorily, rotational fluctuations can be stabilized, and output performance degradation, emission deterioration, smoke generation, and the like can be suppressed.
[0050]
In addition, the exhaust valve 13 is not opened during the entire period during which the intake valve 12 is open, but the exhaust valve 13 is opened only during the same period as the fuel injection period by the fuel injection valve 9 during the intake stroke, and the injected fuel. Since the minimum burned gas necessary for vaporizing and atomizing the gas is introduced, it is possible to suppress deterioration of the charging efficiency.
[0051]
As described above, the fuel injection period varies according to the amount of fuel injected into the cylinder 4, but the valve opening period of the exhaust valve 13, which is opened in accordance with the fuel injection period during the intake stroke, Similarly, it fluctuates according to the fluctuation of the fuel injection period.
[0052]
Incidentally, as described above, the lower the temperature in the cylinder 4, the harder the injected fuel is vaporized and atomized. Therefore, it is preferable to change the opening amount of the exhaust valve 13 to be opened according to the fuel injection period during the intake stroke according to the temperature in the cylinder 4. In other words, the lower the temperature in the cylinder 4, the more the opening amount of the exhaust valve 13 is increased, the hot burned gas is frequently flowed into the cylinder 4 to increase the temperature in the cylinder 4 early, and the flight It is preferable that a large number of already burned gases collide with the fuel in the fuel so as to promote fuel vaporization / atomization and prevent collision / adhesion of the fuel to the cylinder wall surface or the like.
[0053]
Specifically, the lift amount of the exhaust valve 13 that is driven and controlled when the temperature in the cylinder 4 is low is a curve E3 indicated by a broken line in FIG. 2, and the fuel injection period is the same. The valve opening start timing and the valve opening end timing are not changed, but are adjusted to the fuel injection timing, and the lift amount for each crank angle is simply changed.
[0054]
The opening amount of the exhaust valve 13 is an area surrounded by the curve E2 or E3 in FIG. 2 and the horizontal axis where the valve lift amount is zero. That is, when the valve opening period is the same, the amount of opening increases as the lift amount of the exhaust valve increases. However, since the fuel injection period in the intake stroke varies, the ECU 16 determines the lift amount of the exhaust valve on the basis of the fuel injection period, that is, the valve opening period, once the opening amount is determined.
[0055]
FIG. 3 shows the relationship between the in-cylinder temperature and the opening amount of the exhaust valve 13 that is opened during the intake stroke. As shown in this figure, the opening amount of the exhaust valve 13 is decreased as the temperature in the cylinder increases, and the valve is not opened when the temperature exceeds a predetermined temperature Tf.
[0056]
The predetermined temperature Tf is high in the cylinder, the injected fuel is easily vaporized and atomized, the fuel and air are mixed well, the combustion is performed well, the output performance is deteriorated, the emission is deteriorated, the smoke is generated, etc. Is the minimum value of the temperature at which generation of water is prevented, for example, 90 ° C. The predetermined temperature Tf is a value determined in advance for each internal combustion engine.
[0057]
Next, a control routine for setting the opening amount of the exhaust valve 13 that is opened when fuel is injected during the intake stroke of the internal combustion engine will be described with reference to the flowchart of FIG.
[0058]
This control routine is a routine that is stored in advance in the ROM of the ECU 16, and is a routine that is executed by the ECU 16 as an interrupt process triggered by elapse of a predetermined time or input of a pulse signal from the crank position sensor.
[0059]
In this routine, the ECU 16 first determines in step 100 whether or not it is a homogeneous combustion region. If it is determined that the region is a homogeneous combustion region, the process proceeds to step 101. On the other hand, if it is determined that the region is not the homogeneous combustion region, the routine proceeds to step 104.
[0060]
In step 101, the ECU 16 determines whether or not the in-cylinder temperature is lower than the predetermined temperature Tf described above. In order to recognize the in-cylinder temperature, a temperature sensor may be provided in the cylinder and directly detected, or the in-cylinder temperature may be estimated based on the detection value of the water temperature sensor 17.
[0061]
If it is determined in step 101 that the cylinder internal temperature is lower than the predetermined temperature Tf, the process proceeds to step 102. If it is determined that the cylinder internal temperature is equal to or higher than Tf, the process proceeds to step 104.
[0062]
In step 102, the opening amount of the exhaust valve 13 is determined. This is because a map showing the correlation between the in-cylinder temperature and the opening amount of the exhaust valve 13 as shown in FIG. 3 is stored in the ROM in advance, and the in-cylinder temperature recognized in step 101 is substituted into the map. To decide.
[0063]
Thereafter, the routine proceeds to step 103, where the opening amount determined in step 102 is set as the opening amount of the exhaust valve 13 during the intake stroke, and this routine is terminated.
[0064]
On the other hand, if it is determined in step 100 that the region is not a homogeneous combustion region, that is, if it is determined that the region is a stratified combustion region, or if it is determined in step 101 that the in-cylinder temperature is equal to or higher than Tf. In this case, the valve opening amount in the intake stroke is set to zero and the execution of this routine is terminated.
[0065]
Thus, when the opening amount of the exhaust valve 13 during the intake stroke is set periodically, in the homogeneous combustion region, the fuel injection valve for each cylinder is mainly separated from the valve opening during the exhaust stroke. The ECU 16 controls the exhaust valve drive mechanism 15 to drive the exhaust valve 13 so that the valve is opened by a set opening amount in accordance with the fuel injection period 9. Alternatively, in the stratified combustion region, since the exhaust valve 13 is set to zero so that the exhaust valve 13 does not open during the intake stroke, the ECU 16 controls the exhaust valve drive mechanism 15 to perform one cycle of four strokes. The exhaust valve 13 is driven so that the valve is opened only once during the exhaust stroke.
[0066]
As described above, in the present embodiment, the case where the present invention is applied to the internal combustion engine operated in both the homogeneous combustion and the stratified combustion mode has been described. However, the present invention is not limited to this, and the intake stroke is being performed. The present invention may be applied to an internal combustion engine that is operated only in homogeneous combustion where fuel is injected. As a control routine in this case, step 100 in the flowchart of FIG. 4 is omitted and used. Specifically, the process proceeds to step 101 immediately after starting, and whether or not the in-cylinder temperature is lower than Tf. Is determined. Since the subsequent processing is the same as described above, the description thereof is omitted.
[0067]
In the present embodiment, the case where the present invention is applied to a spark ignition internal combustion engine has been described. However, the present invention can also be applied to a compression ignition internal combustion engine. In general, in a compression ignition internal combustion engine, fuel is injected during a compression stroke. However, in an internal combustion engine in which sub-injection such as bi-rubber injection is performed, fuel may be injected during an intake stroke. In such a case, when the present invention is applied, vaporization / atomization of the fuel injected into the cylinder is promoted and combustion can be stabilized as described above, and the same effect as described above can be obtained. be able to.
[0068]
In addition, the present invention can be applied regardless of the number of exhaust valves per cylinder, but in an internal combustion engine having a plurality of exhaust valves per cylinder, it is opened during the period during which fuel is injected during the intake stroke. The number of exhaust valves to be valved may be at least one, and can be arbitrarily set for each internal combustion engine. Further, the number may be changed as appropriate according to the operating state of the internal combustion engine.
[0069]
【The invention's effect】
As described above, according to the direct injection internal combustion engine according to the present invention, the exhaust valve is opened during the period in which the fuel is injected in the intake stroke. It is possible to promote vaporization and atomization of the fuel injected into the cylinder without deteriorating the efficiency.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a direct injection spark ignition internal combustion engine according to an embodiment.
FIG. 2 is a graph showing changes in lift amounts of an intake valve and an exhaust valve with respect to a crank angle.
FIG. 3 is a diagram showing the relationship between the in-cylinder temperature and the opening amount of an exhaust valve that is opened during a period in which fuel is injected during an intake stroke.
FIG. 4 is a flowchart of a control routine that is executed to set an opening amount of an exhaust valve that is opened during a period in which fuel is injected during an intake stroke.
FIG. 5 is a schematic view of an internal combustion engine according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder block 3 Cylinder head 4 Cylinder 5 Piston 6 Combustion chamber 7 Spark plug 8 Igniter 9 Fuel injection valve 10 Intake port 11 Exhaust port 12 Intake valve 13 Exhaust valve 14 Intake valve drive mechanism 15 Exhaust valve drive mechanism 16 ECU
17 Water temperature sensor

Claims (2)

気筒内に直接燃料を噴射する燃料噴射手段と、
主に排気行程中に開き、前記気筒内から既燃焼ガスを排出させる排気弁と、
当該排気弁を開閉させる排気弁駆動手段と、
を備え、
前記排気弁駆動手段が吸気行程中にも前記排気弁を開き、既燃焼ガスを気筒内に流入させる筒内噴射式内燃機関において、
前記排気弁駆動手段は、吸気行程中であって前記燃料噴射手段が燃料を噴射する期間に、前記排気弁を開くように、前記排気弁の開弁を、前記燃料噴射手段の噴射開始時期に開始させ噴射終了時期に終了させると共に、
前記排気弁駆動手段は、前記排気弁の開量を調節することができ、気筒内の温度が低い場合ほど前記排気弁の開量を多くすることを特徴とする筒内噴射式内燃機関。
Fuel injection means for directly injecting fuel into the cylinder;
An exhaust valve that opens mainly during the exhaust stroke and exhausts the burned gas from within the cylinder;
Exhaust valve driving means for opening and closing the exhaust valve;
With
In the in-cylinder injection internal combustion engine in which the exhaust valve driving means opens the exhaust valve even during the intake stroke and flows the already burned gas into the cylinder.
The exhaust valve driving means opens the exhaust valve at an injection start timing of the fuel injection means so that the exhaust valve is opened during a period in which the fuel injection means injects fuel during an intake stroke. Start and end at the end of injection ,
The exhaust valve driving means, the open amount of the exhaust valve can be adjusted, cylinder injection type internal combustion engine characterized in that the temperature is much Hirakiryou enough if lower the exhaust valve in the cylinder.
前記燃料噴射手段から噴射された燃料と、前記排気弁駆動手段が吸気行程中に前記排気弁を開いたことにより気筒内に流入する既燃焼ガスとが略直角に衝突することを特徴とする請求項に記載の筒内噴射式内燃機関。The fuel injected from the fuel injection means and the burned gas flowing into the cylinder collide substantially at right angles when the exhaust valve driving means opens the exhaust valve during the intake stroke. Item 2. The cylinder injection internal combustion engine according to Item 1 .
JP2003111353A 2003-04-16 2003-04-16 In-cylinder internal combustion engine Expired - Fee Related JP4120452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111353A JP4120452B2 (en) 2003-04-16 2003-04-16 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111353A JP4120452B2 (en) 2003-04-16 2003-04-16 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004316541A JP2004316541A (en) 2004-11-11
JP4120452B2 true JP4120452B2 (en) 2008-07-16

Family

ID=33471930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111353A Expired - Fee Related JP4120452B2 (en) 2003-04-16 2003-04-16 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4120452B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591300B2 (en) * 2005-09-29 2010-12-01 マツダ株式会社 4-cycle spark ignition engine
FR2913065B1 (en) * 2007-02-26 2012-10-19 Inst Francais Du Petrole METHOD FOR FACILITATING VAPORIZATION OF A FUEL FOR A DIRECT INJECTION INTERNAL COMBUSTION ENGINE OF DIESEL TYPE

Also Published As

Publication number Publication date
JP2004316541A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
KR100241045B1 (en) Exhaust temperature up apparatus
US5207058A (en) Internal combustion engine
JP3500951B2 (en) Non-throttle compression-ignition internal combustion engine and control method thereof
US20060037563A1 (en) Internal combustion engine with auto ignition
WO1997013063A1 (en) Control device for an internal combustion engine
JP2002129990A (en) Combustion control device for compression ignition type engine
JP4161789B2 (en) Fuel injection control device
US6474291B2 (en) Clean shutdown for internal combustion engine with variable valve timing
JP4918910B2 (en) Internal combustion engine
CN110621871A (en) Method and device for controlling internal combustion engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4983747B2 (en) Internal combustion engine
JP3979376B2 (en) Engine control device
JP4120452B2 (en) In-cylinder internal combustion engine
JPWO2002031355A1 (en) Control method of spark ignition engine
JP4124101B2 (en) Engine control device
JP5240417B2 (en) Diffusion combustion start timing estimation device and diffusion combustion start timing control device for internal combustion engine
JPH0299736A (en) Fuel injection control device for diesel engine
JP2004346854A (en) Controller of compression ignition operation of internal combustion engine
JP5045600B2 (en) Internal combustion engine
JP2006052687A (en) Cylinder direct injection internal combustion engine
JP2010048108A (en) Internal combustion engine
JP2006257999A (en) Internal combustion engine
JP3635670B2 (en) Control apparatus and method for spark ignition internal combustion engine
WO2017110358A1 (en) Injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4120452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees