JP2000297682A - Internal combustion engine of cylinder injection type - Google Patents

Internal combustion engine of cylinder injection type

Info

Publication number
JP2000297682A
JP2000297682A JP11108833A JP10883399A JP2000297682A JP 2000297682 A JP2000297682 A JP 2000297682A JP 11108833 A JP11108833 A JP 11108833A JP 10883399 A JP10883399 A JP 10883399A JP 2000297682 A JP2000297682 A JP 2000297682A
Authority
JP
Japan
Prior art keywords
injection
fuel
engine
main injection
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11108833A
Other languages
Japanese (ja)
Inventor
Tamon Tanaka
多聞 田中
Hiroshi Mushigami
広志 虫上
Michihiro Hatake
道博 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP11108833A priority Critical patent/JP2000297682A/en
Publication of JP2000297682A publication Critical patent/JP2000297682A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize combustion and suppress generation of hazardous substances by preliminarily injecting a small amount of fuel at the intermediate stage of compression stroke prior to main injection within the predetermined operation range of an internal combustion engine under medium load or higher, and then conducting main injection near the top dead center. SOLUTION: An ECU 21 decides the current operation state of an engine 17 based on an engine speed Ne and a target load, whether it is in a pilot injection range A of low engine speed and load, a main injection range B of medium engine speed and load or lower, or preliminary injection ranges C, D of medium engine speed and load or higher. In the operation range A, a pilot injection P is conducted in the latter stage of compression stroke of the engine 17, and then a main injection M is conducted near the top dead center of compression. In the operation range B, only the main injection M is conducted near the top dead center of compression of the engine 17. In the operation ranges C, D, a preliminary injection S is conducted in the intermediate stage of compression stroke of the engine 17, and then the main injection M is conducted near the top dead center of compression. Therefore, in the operation range C, the amount of fuel injected during the main injection M is reduced, and generation of black smoke is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼における1サ
イクルで2回の燃料噴射を行うようにした筒内噴射式内
燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection type internal combustion engine which performs two fuel injections in one cycle of combustion.

【0002】[0002]

【従来の技術】燃料をシリンダ内へ直接噴射する方式の
内燃機関として、ディーゼルエンジンが広く知られてい
る。このディーゼルエンジンは、ガソリンエンジンのよ
うに火花着火させずに、高圧縮によって高温となった空
気に直接燃料を噴射して自然着火させるものである。と
ころが、このディーゼルエンジンにあっては、高負荷時
にはエンジン出力を上昇させるために燃焼室に大量の燃
料を噴射しようとするため、燃焼室が酸欠状態となって
黒煙が発生したり、高温高圧の雰囲気中で酸素と窒素が
結合して窒素酸化物(NOx)が生成されたりして、排
気ガス特性が圧下してしまい、燃焼室内に噴射できる燃
料量が制約されていた。
2. Description of the Related Art A diesel engine is widely known as an internal combustion engine in which fuel is directly injected into a cylinder. This diesel engine does not spark-ignite like a gasoline engine, but injects fuel directly into air heated to a high temperature by high compression to spontaneously ignite. However, in this diesel engine, when a high load is applied, a large amount of fuel is injected into the combustion chamber in order to increase the engine output. Oxygen and nitrogen are combined in a high-pressure atmosphere to form nitrogen oxides (NOx), and the exhaust gas characteristics are reduced, thereby restricting the amount of fuel that can be injected into the combustion chamber.

【0003】そこで、燃焼室での黒煙の発生や窒素酸化
物の生成を抑制したものとして、例えば、特開平6−3
36945号公報に開示されたものがある。この公報に
開示された「ディーゼルエンジンにおける燃焼方法」
は、吸気行程で吸気した燃焼空気中に燃焼噴射手段によ
り1回目の燃焼噴射を行って混合気を生成し、圧縮行程
でこの混合気を圧縮し、次いで圧縮上死点近傍の適宜時
期に燃焼噴射手段により2回目の燃焼噴射を行って燃料
を燃焼させて爆発を得て、膨張行程及び排気行程を経る
ようにしたものである。
[0003] In order to prevent the generation of black smoke and nitrogen oxides in the combustion chamber, Japanese Patent Application Laid-Open No.
There is one disclosed in Japanese Patent No. 36945. "Combustion method in diesel engine" disclosed in this publication
Performs a first combustion injection by combustion injection means into combustion air sucked in during an intake stroke to generate an air-fuel mixture, compresses the air-fuel mixture in a compression stroke, and then burns the air-fuel mixture at an appropriate time near a compression top dead center. The fuel is burned by performing a second combustion injection by the injection means to obtain an explosion, and the explosion stroke and the exhaust stroke are performed.

【0004】従って、燃料を予め吸気行程で噴射するこ
とで、圧縮行程で燃料は完全に気化されて燃焼に好適な
混合気体状態となって、完全な燃焼を得ることができ、
また、圧縮上死点近傍で噴射される燃焼は少量でよいの
で理想的に一体となって完全燃焼させることで、黒煙の
発生や窒素酸化物の生成を抑制するというものである。
Therefore, by injecting the fuel in the intake stroke in advance, the fuel is completely vaporized in the compression stroke to be in a mixed gas state suitable for combustion, and complete combustion can be obtained.
Further, since a small amount of combustion is injected near the compression top dead center, the generation of black smoke and the generation of nitrogen oxides are suppressed by ideally performing complete combustion in an integrated manner.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述した従
来の「ディーゼルエンジンにおける燃焼方法」にあって
は、1回目の燃料噴射を低温な吸気行程で多量に噴射し
ている。この吸気行程噴射では、筒内温度が燃料の沸点
よりかなり低いために、燃料が飛しょう中に気化される
ことなく壁面に付着する。この壁面付着燃料は、その
後、圧縮に伴って上昇する筒内温度により気化させら
れ、混合気を形成していくも壁面付着部では濃混合気を
生じて過早着火となり、ノックが発生し易くなるという
問題がある。また、1回目の噴射燃料の一部がシリンダ
ライナに付着してエンジンオイルを希釈させ、エンジン
耐久性を低下させるという問題もある。このため、黒煙
の発生や窒素酸化物の十分な抑制効果が得られていない
のが現状である。
However, in the above-mentioned conventional "combustion method in a diesel engine", a large amount of the first fuel injection is performed in a low-temperature intake stroke. In this intake stroke injection, since the temperature in the cylinder is much lower than the boiling point of the fuel, the fuel adheres to the wall surface without being vaporized during flying. This wall-adhered fuel is then vaporized by the in-cylinder temperature that rises with the compression, forming an air-fuel mixture. However, a rich air-fuel mixture is generated at the wall-adhered portion, premature ignition occurs, and knock is liable to occur. Problem. There is also a problem that part of the first injected fuel adheres to the cylinder liner to dilute the engine oil and reduce engine durability. For this reason, at present, the effect of suppressing generation of black smoke and nitrogen oxide has not been sufficiently obtained.

【0006】本発明は、このような問題を解決するもの
であって、中負荷以上の所定運転領域で少なくとも2回
の燃料噴射を行うことで、有害物質の発生を抑制した筒
内噴射式内燃機関を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves such a problem. A direct injection type internal combustion engine in which the generation of harmful substances is suppressed by performing at least two fuel injections in a predetermined operating region of a medium load or higher. The purpose is to provide institutions.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めの本発明の筒内噴射式内燃機関は、内燃機関のシリン
ダ内に嵌挿されるピストンとシリンダヘッドの下面とで
区画される燃焼室内に燃料を直接噴射する燃料噴射弁を
設け、ピストンの圧縮上死点位置近傍で主噴射制御手段
により燃料噴射弁を駆動して主噴射を行うと共に、内燃
機関の中負荷以上の所定運転領域にて主噴射前の圧縮行
程中期で予備噴射制御手段により主噴射よりも少量の燃
料を予備噴射するようにしている。
According to a first aspect of the present invention, there is provided a direct injection internal combustion engine having a combustion chamber defined by a piston inserted into a cylinder of the internal combustion engine and a lower surface of a cylinder head. A fuel injection valve for directly injecting fuel is provided, and the main injection control means drives the fuel injection valve to perform main injection in the vicinity of the compression top dead center position of the piston. In the middle stage of the compression stroke before the main injection, the pre-injection control means pre-injects a smaller amount of fuel than the main injection.

【0008】従って、内燃機関の中負荷以上の所定運転
領域では、主噴射前の圧縮行程中期に少量の燃料を予備
噴射し、次いで圧縮上死点近傍にて主噴射を行うことと
なり、シリンダライナなどへの噴射燃料の付着を抑制し
ながらも、燃焼の安定化を図って有害物質の発生を抑制
できる。
Accordingly, in a predetermined operating region of the internal combustion engine at a medium load or higher, a small amount of fuel is pre-injected in the middle stage of the compression stroke before the main injection, and then the main injection is performed near the compression top dead center. It is possible to stabilize the combustion and suppress the generation of harmful substances while suppressing the adhesion of the injected fuel to the fuel cell.

【0009】なお、予備噴射制御手段は、内燃機関の中
負荷以上の所定運転領域で主噴射前の圧縮行程中期に少
量の燃料を予備噴射するものであるが、低負荷運転領域
で圧縮行程後期近傍に予備噴射するパイロット噴射制御
手段を有することが好ましい。また、予備噴射制御手段
がパイロット噴射制御手段を有している場合、内燃機関
の運転状態が低負荷から中負荷以上に移行したとき、次
の噴射パターンで予備噴射の時期を変更することが好ま
しい。1.圧縮行程後期近傍から圧縮行程中期の噴射時
期に直接切り換える予備噴射パターン2.圧縮行程後期
近傍から一旦予備噴射を停止させて主噴射のみとし、そ
の後、圧縮行程中期のみの噴射時期に切り換える予備噴
射パターン3.圧縮行程後期近傍での噴射に加え、その
後、圧縮行程中期の噴射時期を追加する予備噴射パター
The pre-injection control means pre-injects a small amount of fuel in the middle stage of the compression stroke before the main injection in a predetermined operation region where the internal load of the internal combustion engine is equal to or higher than the medium load. It is preferable to have pilot injection control means for performing preliminary injection in the vicinity. Further, when the preliminary injection control means has a pilot injection control means, it is preferable to change the timing of the preliminary injection in the next injection pattern when the operating state of the internal combustion engine shifts from a low load to a medium load or more. . 1. 1. Pre-injection pattern for directly switching from near the end of the compression stroke to injection timing in the middle of the compression stroke 2. A preliminary injection pattern in which the preliminary injection is temporarily stopped in the vicinity of the latter half of the compression stroke to perform only the main injection, and thereafter, the injection timing is switched to the injection timing only in the middle stage of the compression stroke. Pre-injection pattern that adds the injection timing in the middle of the compression stroke in addition to the injection near the latter half of the compression stroke

【0010】[0010]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1に本発明の一実施形態に係る筒内噴射
式内燃機関の概略構成、図2に筒内噴射式内燃機関の各
運転領域に対する燃料噴射パターンを表す概略を示す。
FIG. 1 shows a schematic configuration of a direct injection internal combustion engine according to an embodiment of the present invention, and FIG. 2 schematically shows a fuel injection pattern for each operation region of the direct injection internal combustion engine.

【0012】本実施形態の筒内噴射式内燃機関におい
て、図1に示すように、11は燃料タンクであって、燃
料フィルタ12及び低圧燃料ポンプ13を有している。
この低圧燃料ポンプ13から連結される燃料通路14の
送給路14aには高圧燃料ポンプ15が連結されてお
り、この高圧燃料ポンプ15の下流には蓄圧器としての
コモンレール16が連結され、このコモンレール16に
はエンジン17の4つの燃焼室に燃料を噴射する燃料噴
射手段として4つのインジェクタ18が装着されてい
る。また、各インジェクタ18には燃料通路14の返送
路14bによって燃料タンク11に接続されている。そ
して、燃料通路14の送給路14aにおける高圧燃料ポ
ンプ15の上流側及びコモンレール16の上流側にはそ
れぞれ返送路14c,14dが連結され、各返送路14
c,14dには制御弁19,20が装着されている。
In the cylinder injection type internal combustion engine of this embodiment, as shown in FIG. 1, reference numeral 11 denotes a fuel tank, which has a fuel filter 12 and a low-pressure fuel pump 13.
A high-pressure fuel pump 15 is connected to a supply path 14a of a fuel passage 14 connected to the low-pressure fuel pump 13, and a common rail 16 as an accumulator is connected downstream of the high-pressure fuel pump 15; 16 is provided with four injectors 18 as fuel injection means for injecting fuel into four combustion chambers of an engine 17. Each injector 18 is connected to the fuel tank 11 by a return path 14 b of the fuel path 14. Return paths 14 c and 14 d are connected to the upstream side of the high-pressure fuel pump 15 and the upstream side of the common rail 16 in the supply path 14 a of the fuel passage 14, respectively.
Control valves 19 and 20 are mounted on c and 14d.

【0013】従って、低圧燃料ポンプ13は燃料タンク
11の燃料をある程度加圧して燃料通路14の送給路1
4aに送出し、この低圧燃料は高圧燃料ポンプ15でさ
らに加圧されることで、燃料の圧力を所定圧まで高めら
れる。このとき、低圧燃料ポンプ13からの吐出圧は低
圧制御弁19によって所定範囲に安定化され、更に、高
圧燃料ポンプ15からの吐出圧は高圧制御弁20によっ
て所定範囲に安定化される。そして、コモンレール16
の各インジェクタ18から所定圧力の燃料がエンジン1
7の各燃焼室に所定量噴射される。
Accordingly, the low-pressure fuel pump 13 pressurizes the fuel in the fuel tank 11 to some extent, and
4a, and the low-pressure fuel is further pressurized by the high-pressure fuel pump 15 to increase the fuel pressure to a predetermined pressure. At this time, the discharge pressure from the low-pressure fuel pump 13 is stabilized in a predetermined range by the low-pressure control valve 19, and the discharge pressure from the high-pressure fuel pump 15 is further stabilized in the predetermined range by the high-pressure control valve 20. And the common rail 16
The fuel of a predetermined pressure is supplied from each injector 18 of the engine 1
A predetermined amount is injected into each combustion chamber 7.

【0014】また、燃料噴射制御手段の機能を有する電
子制御ユニット(ECU)21にはアクセル開度APS
とエンジン回転数Neとエンジン水温WTが入力される
ようになっており、このECU21はアクセル開度AP
Sとエンジン回転数Neとに基づいて目標負荷Peを求
め、エンジン回転数Neとこの目標負荷Peに基づいて
空燃比、燃料噴射量等を決定し、所定の噴射時期に燃料
噴射が実行されるようになっている。更に、コモンレー
ル16には圧力センサ22が装着され、検出値がECU
21に入力されるようになっている。
An electronic control unit (ECU) 21 having a function of a fuel injection control means has an accelerator opening APS.
, The engine speed Ne and the engine coolant temperature WT are input.
A target load Pe is determined based on the engine speed Ne and the engine speed Ne, an air-fuel ratio, a fuel injection amount, and the like are determined based on the engine speed Ne and the target load Pe, and fuel injection is performed at a predetermined injection timing. It has become. Further, a pressure sensor 22 is mounted on the common rail 16, and the detected value is determined by the ECU.
21 is input.

【0015】ところで、本実施形態において、このEC
U21は、エンジン回転数Neが所定回転数以上で、負
荷Peが中負荷以上の所定運転領域にあるときには、ク
ランクシャフト回転角が圧縮上死点前100°〜40°
と圧縮上死点近傍にて、インジェクタ18から予備噴射
と主噴射を行う2段噴射を実行するようになっている。
即ち、ECU21はクランクシャフト回転角が圧縮上死
点前100°〜40°で予備噴射を行い、その後、圧縮
上死点近傍にて主噴射を行う。なお、圧縮上死点前に実
行される予備噴射による噴射量は、エンジン回転数Ne
と目標負荷Peに基づき、図示しない予備噴射量マップ
によって決定されるものであるが、予備噴射時の燃料噴
射量は、主噴射時の燃料噴射量よりも少量としている。
By the way, in this embodiment, this EC
U21 indicates that the crankshaft rotation angle is 100 ° to 40 ° before the compression top dead center when the engine speed Ne is equal to or higher than the predetermined engine speed and the load Pe is in a predetermined operation region where the load is medium or higher.
And near the compression top dead center, the injector 18 executes a two-stage injection in which a preliminary injection and a main injection are performed.
That is, the ECU 21 performs the preliminary injection when the crankshaft rotation angle is 100 ° to 40 ° before the compression top dead center, and then performs the main injection near the compression top dead center. The injection amount of the preliminary injection executed before the compression top dead center is determined by the engine speed Ne.
And a target load Pe, which is determined by a preliminary injection amount map (not shown). However, the fuel injection amount during the preliminary injection is set to be smaller than the fuel injection amount during the main injection.

【0016】エンジン17の筒内(燃焼室)温度は吸気
行程から圧縮行程にかけて上昇し、圧縮上死点で最高温
度となり、筒内での自己着火温度は、圧縮行程で筒内圧
が高くなるためにこの圧縮行程にかけて下降する。その
ため、筒内温度がある程度高くて燃料が気化しやすい一
方で、自己着火温度よりも低くて自己着火しにくい時期
に予備噴射を行うことで、噴射燃料が直ぐに気化して筒
内壁への付着を抑制することができると同時に、飛しょ
う燃料であるので空気との混合が促進され、一早く希薄
な混合気を形成でき、過早着火を免れることができる。
特に、中負荷以上の運転領域では、ピストン速度が高速
となり、スキッシュ流が増大するため、予備噴射の燃料
噴霧が筒内壁へ付着させないような流れを生成し、且
つ、この燃料噴霧の流れが対向しているために攪拌が促
進されることとなり、これを活用して素早くリーンな混
合気を生成して過早着火を抑制できる。
The in-cylinder (combustion chamber) temperature of the engine 17 rises from the intake stroke to the compression stroke, reaches the highest temperature at the compression top dead center, and the self-ignition temperature in the cylinder increases because the in-cylinder pressure increases in the compression stroke. During this compression stroke, the pressure drops. Therefore, while the in-cylinder temperature is high to some extent, fuel is likely to evaporate, but by performing pre-injection at a time when the self-ignition temperature is lower and self-ignition is difficult, the injected fuel vaporizes immediately and adheres to the inner wall of the cylinder. At the same time, since it is a flying fuel, mixing with air is promoted, a lean mixture can be formed quickly, and premature ignition can be avoided.
In particular, in the operation region where the load is medium or higher, the piston speed becomes high and the squish flow increases, so that a flow that prevents the fuel spray of the preliminary injection from adhering to the inner wall of the cylinder is generated, and the flow of the fuel spray is opposed. As a result, agitation is promoted, and by utilizing this, a lean air-fuel mixture can be quickly generated to suppress premature ignition.

【0017】また、その後、筒内温度が高くて燃料が気
化しやすいと共に、自己着火しやすい時期に主噴射を行
うことで主噴射燃料が直ぐに気化し、気化した主噴射時
の気化燃料が発火することで予備噴射燃料を燃焼させ、
燃焼の安定化が図れる。特に、中負荷以上の運転領域で
は、主噴射による燃料量が多く、拡散燃焼時間が不足し
て黒煙などがの発生しやすいが、予備噴射により主噴射
の燃料量が減少するため、黒煙の発生や窒素酸化物の生
成を抑制できる。従って、予備噴射燃料の過早着火を防
止できると共に、噴射燃料の筒内壁への付着を抑制し、
且つ、黒煙の発生や窒素酸化物の生成を抑制できる。一
方で、燃焼圧を減少することで、エンジン17の耐圧限
界により制限されていた噴射量を増加させることがで
き、出力アップが図れる。
After that, when the temperature in the cylinder is high and the fuel is easily vaporized, the main injection fuel is vaporized immediately by performing the main injection at a time when self-ignition is likely to occur, and the vaporized fuel at the time of the main injection is ignited. To burn the pre-injected fuel,
Combustion can be stabilized. In particular, in the operation region where the load is medium or higher, the amount of fuel due to the main injection is large, and the diffusion combustion time is insufficient, so that black smoke is likely to be generated. And generation of nitrogen oxides can be suppressed. Therefore, premature ignition of the pre-injected fuel can be prevented, and the adhesion of the injected fuel to the cylinder inner wall can be suppressed.
Moreover, generation of black smoke and generation of nitrogen oxides can be suppressed. On the other hand, by reducing the combustion pressure, the injection amount limited by the pressure resistance limit of the engine 17 can be increased, and the output can be increased.

【0018】ここで、上述した本実施形態の筒内噴射式
内燃機関による予備噴射と主噴射の具体的な噴射時期パ
ターンについて説明する。
Here, the specific injection timing patterns of the preliminary injection and the main injection by the above-described in-cylinder injection type internal combustion engine of the present embodiment will be described.

【0019】図2に示すように、ECU21はエンジン
回転数Neと目標負荷Peとに基づいて現在エンジン1
7の運転状態がどの運転領域、つまり、低回転低負荷で
あるパイロット噴射領域A、中回転中負荷以下である主
噴射領域B、中回転中負荷以上である予備噴射領域C,
Dのいずれにあるかどうかを判定する。そして、運転領
域Aでは、エンジン17の圧縮行程の後期にてパイロッ
ト噴射Pを行い、その後、圧縮上死点近傍にて主噴射M
を行う。従って、主噴射M時の急激な燃焼が抑えられ、
振動や騒音を低減できると共に、NOxやHCなどの有
害物質の生成を抑制できる。
As shown in FIG. 2, the ECU 21 determines the current engine 1 based on the engine speed Ne and the target load Pe.
7, the operation state of each of the pilot injection areas A is a low-rotation low-load low-injection state, the main injection area B is equal to or less than the middle-rotation medium load, the preliminary injection area C is equal to or more than the middle-rotation medium load,
D is determined. In the operating region A, the pilot injection P is performed in the latter half of the compression stroke of the engine 17, and thereafter, the main injection M near the compression top dead center.
I do. Therefore, rapid combustion during the main injection M is suppressed,
Vibration and noise can be reduced, and generation of harmful substances such as NOx and HC can be suppressed.

【0020】一方、運転領域Bでは、エンジン17の圧
縮上死点近傍にて主噴射Mのみを行う。また、運転領域
C及び運転領域Dでは、エンジン17の圧縮行程の中期
にて予備噴射Sを行い、その後、圧縮上死点近傍にて主
噴射Mを行う。従って、運転領域Cでは、予備噴射Sに
より主噴射Mの燃料噴射量が減少するため、黒煙の発生
を抑制でき、運転領域Dでは、燃焼圧を減少することで
エンジン17の出力アップが図れる。
On the other hand, in the operating region B, only the main injection M is performed near the compression top dead center of the engine 17. In the operation region C and the operation region D, the preliminary injection S is performed in the middle stage of the compression stroke of the engine 17, and then the main injection M is performed in the vicinity of the compression top dead center. Accordingly, in the operation region C, the fuel injection amount of the main injection M is reduced by the preliminary injection S, so that the generation of black smoke can be suppressed. In the operation region D, the output of the engine 17 can be increased by reducing the combustion pressure. .

【0021】なお、本実施形態の筒内噴射式内燃機関に
おいて、エンジン17の運転領域に応じた予備噴射と主
噴射の具体的な噴射時期パターンは、上述したものに限
定されるものではない。図3及び図4に本発明の他の実
施形態に係る筒内噴射式内燃機関の各運転領域に対する
燃料噴射パターンを表す概略を示す。
In the direct injection internal combustion engine of the present embodiment, the specific injection timing patterns of the preliminary injection and the main injection according to the operating range of the engine 17 are not limited to those described above. 3 and 4 schematically show a fuel injection pattern for each operating region of a direct injection internal combustion engine according to another embodiment of the present invention.

【0022】図3に示す本実施形態の燃料噴射パターン
において、運転領域Aでは、エンジン17の圧縮行程の
後期にてパイロット噴射Pを行い、その後、圧縮上死点
近傍にて主噴射Mを行うことで、主噴射M時の急激な燃
焼が抑えられ、振動や騒音を低減できると共に、NOx
やHCなどの有害物質の生成を抑制できる。一方、運転
領域Bでは、エンジン17の圧縮行程の後期であって主
噴射Mの直前にて近接パイロット噴射Pを行い、その
後、圧縮上死点近傍にて主噴射Mを行うことで、主噴射
M時の急激な燃焼が抑えられてNOxを低減できるか、
あるいは進角させることで燃費を向上できる。また、運
転領域C及び運転領域Dでは、エンジン17の圧縮行程
の中期にて予備噴射Sを行い、その後、圧縮行程の後期
であって主噴射Mの直前にて近接パイロット噴射Pを行
ってから圧縮上死点近傍にて主噴射Mを行う。従って、
運転領域Cでは、予備噴射S及び近接パイロット噴射P
により主噴射Mの燃料噴射量が減少するため、黒煙の発
生を抑制できると共にNOxの生成を抑制でき、運転領
域Dでは、燃焼圧を減少することでエンジン17の出力
アップが図れると共にNOxの生成を抑制できる。
In the fuel injection pattern of this embodiment shown in FIG. 3, in the operating region A, the pilot injection P is performed in the latter half of the compression stroke of the engine 17, and then the main injection M is performed near the compression top dead center. As a result, rapid combustion during the main injection M can be suppressed, vibration and noise can be reduced, and NOx
And generation of harmful substances such as HC and HC. On the other hand, in the operating region B, the main injection M is performed in the late stage of the compression stroke of the engine 17 immediately before the main injection M, and thereafter, the main injection M is performed near the compression top dead center. Is it possible to reduce NOx by suppressing rapid combustion at M
Alternatively, fuel consumption can be improved by advancing the angle. Further, in the operation region C and the operation region D, the preliminary injection S is performed in the middle stage of the compression stroke of the engine 17, and then, the close pilot injection P is performed in the latter half of the compression stroke and immediately before the main injection M. The main injection M is performed near the compression top dead center. Therefore,
In the operation region C, the preliminary injection S and the close pilot injection P
As a result, the fuel injection amount of the main injection M is reduced, so that the generation of black smoke can be suppressed and the generation of NOx can be suppressed. In the operation region D, the output of the engine 17 can be increased by reducing the combustion pressure and the NOx can be reduced. Generation can be suppressed.

【0023】また、図4に示す本実施形態の燃料噴射パ
ターンにおいて、運転領域Aでは、エンジン17の圧縮
行程の後期にてパイロット噴射Pを行い、その後、圧縮
上死点近傍にて主噴射Mを行うことで、主噴射M時の急
激な燃焼が抑えられ、振動や騒音を低減できると共に、
NOxやHCなどの有害物質の生成を抑制できる。一
方、運転領域Bでは、圧縮上死点近傍のみにて主噴射M
を行う。また、運転領域C及び運転領域Dでは、エンジ
ン17の圧縮行程の中期にて予備噴射Sを行い、その
後、圧縮行程の後期であって主噴射Mの直前にて近接パ
イロット噴射Pを行ってから圧縮上死点近傍にて主噴射
Mを行う。従って、運転領域Cでは、予備噴射S及び近
接パイロット噴射Pにより主噴射Mの燃料噴射量が減少
するため、黒煙の発生を抑制できると共にNOxの生成
を抑制でき、運転領域Dでは、燃焼圧を減少することで
エンジン17の出力アップが図れると共にNOxの生成
を抑制できる。
Further, in the fuel injection pattern of the present embodiment shown in FIG. 4, in the operation region A, the pilot injection P is performed in the latter half of the compression stroke of the engine 17, and thereafter, the main injection M near the compression top dead center. By doing so, rapid combustion during the main injection M is suppressed, and vibration and noise can be reduced.
Generation of harmful substances such as NOx and HC can be suppressed. On the other hand, in the operation region B, the main injection M
I do. Further, in the operation region C and the operation region D, the preliminary injection S is performed in the middle stage of the compression stroke of the engine 17, and then, the close pilot injection P is performed in the latter half of the compression stroke and immediately before the main injection M. The main injection M is performed near the compression top dead center. Accordingly, in the operating region C, the fuel injection amount of the main injection M is reduced by the preliminary injection S and the proximity pilot injection P, so that it is possible to suppress the generation of black smoke and the generation of NOx, and in the operating region D, the combustion pressure is reduced. Is reduced, the output of the engine 17 can be increased, and the generation of NOx can be suppressed.

【0024】このように本実施形態の筒内噴射式内燃機
関にあっては、エンジン17の中負荷以上の所定運転領
域であって、筒内温度が高くて燃料が気化しやすい一方
で自然発火しにくい、圧縮上死点前100°〜40°時
期に予備噴射を行い、その後、筒内温度が高くて燃料が
気化しやすく自己着火しやすい時期に主噴射を行ってい
る。そのため、予備噴射時の噴射燃料は増大したスキッ
シュ流によって筒内壁への付着が抑制されると共に攪拌
が促進され、直ぐに気化し、主噴射噴霧が燃焼するまで
予備噴射噴霧が過早着火するのを防止でき、主噴射時の
噴射燃料は直ぐに気化して副噴射時の気化燃料と混合し
て発火することで、燃焼の安定化が図れ、ノックの発生
を防止できると共に、黒煙の発生や窒素酸化物の生成を
抑制できる。
As described above, in the in-cylinder injection type internal combustion engine of the present embodiment, the engine 17 is in a predetermined operating region where the engine is at a middle load or higher, and the in-cylinder temperature is high and fuel is easily vaporized, while spontaneous ignition occurs. Pre-injection is performed at a timing of 100 ° to 40 ° before compression top dead center, which is difficult to perform, and then main injection is performed at a time when the in-cylinder temperature is high and fuel is easily vaporized and self-ignition is likely. Therefore, the injected fuel during the preliminary injection is prevented from adhering to the inner wall of the cylinder due to the increased squish flow, and the stirring is promoted, and the pre-injection spray is prematurely ignited until the main injection spray burns. The fuel injected at the time of main injection is vaporized immediately and mixed with the fuel vaporized at the time of sub-injection and ignites, stabilizing combustion, preventing the occurrence of knocking, the generation of black smoke and the generation of nitrogen. Generation of oxides can be suppressed.

【0025】なお、本発明の内燃機関は、上述した実施
形態に限定されるものではなく、例えば、図3の燃料噴
射パターンでは、パイロット噴射Pを運転領域C,Dで
予備噴射Sと共に実行しているが、特に、この運転領域
C,Dでパイロット噴射Pを実行しないように設定して
もよい。
The internal combustion engine of the present invention is not limited to the above embodiment. For example, in the fuel injection pattern shown in FIG. 3, the pilot injection P is executed together with the preliminary injection S in the operation regions C and D. However, in particular, it may be set so that the pilot injection P is not executed in the operation regions C and D.

【0026】[0026]

【発明の効果】以上、実施形態において詳細に説明した
ように本発明の筒内噴射式内燃機関によれば、内燃機関
の中負荷以上の所定運転領域では、主噴射前の圧縮行程
中期に少量の燃料を予備噴射し、次いで圧縮上死点近傍
にて主噴射を行うこととなり、シリンダライナなどへの
噴射燃料の付着を抑制しながらも、燃焼の安定化を図っ
て有害物質の発生を抑制できる。
As described in detail in the above embodiment, according to the cylinder injection type internal combustion engine of the present invention, in the predetermined operation region where the internal load of the internal combustion engine is equal to or higher than the medium load, a small amount of the compression stroke in the middle stage of the compression stroke before the main injection is performed. Pre-injection of fuel is performed, and then main injection is performed near the compression top dead center, stabilizing combustion and suppressing the generation of harmful substances while suppressing the adhesion of injected fuel to cylinder liners, etc. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る筒内噴射式内燃機関
の概略構成図である。
FIG. 1 is a schematic configuration diagram of a direct injection internal combustion engine according to an embodiment of the present invention.

【図2】筒内噴射式内燃機関の各運転領域に対する燃料
噴射パターンを表す概略図である。
FIG. 2 is a schematic diagram illustrating a fuel injection pattern for each operating region of the direct injection internal combustion engine.

【図3】本発明の他の実施形態に係る筒内噴射式内燃機
関の各運転領域に対する燃料噴射パターンを表す概略図
である。
FIG. 3 is a schematic diagram illustrating a fuel injection pattern for each operation region of a direct injection internal combustion engine according to another embodiment of the present invention.

【図4】本発明の他の実施形態に係る筒内噴射式内燃機
関の各運転領域に対する燃料噴射パターンを表す概略図
である。
FIG. 4 is a schematic diagram showing a fuel injection pattern for each operation region of a direct injection internal combustion engine according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 燃料タンク 13 低圧燃料ポンプ 14 燃料通路 14a 送給路 14b,14c,14d 返送路 15 高圧燃料ポンプ 16 コモンレール 17 エンジン 18 インジェクタ(燃料噴射弁) 21 電子制御装置、ECU(主噴射制御手段、予備噴
射制御手段)
DESCRIPTION OF SYMBOLS 11 Fuel tank 13 Low-pressure fuel pump 14 Fuel passage 14a Supply path 14b, 14c, 14d Return path 15 High-pressure fuel pump 16 Common rail 17 Engine 18 Injector (fuel injection valve) 21 Electronic control unit, ECU (Main injection control means, preliminary injection) Control means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畠 道博 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 Fターム(参考) 3G023 AA04 AA05 AA18 AB05 AC04 AD08 AD14 3G066 AA07 AB02 AC09 AD12 BA12 BA14 BA16 BA17 BA22 BA24 BA25 BA26 CC01 CD26 DA04 DA09 DB06 DB09 DC04 DC05 DC09 DC14 DC18 3G301 HA02 JA24 JA25 JA26 JA37 KA09 MA01 MA11 MA19 MA23 MA26 NC02 PA17A PA17Z PB08Z PE01Z PE03Z PE08Z PF03Z  ──────────────────────────────────────────────────の Continuing from the front page (72) Michihiro Hatake Inventor F-term in Mitsubishi Motors Corporation, 3-3-8, Shiba 5-chome, Minato-ku, Tokyo 3G023 AA04 AA05 AA18 AB05 AC04 AD08 AD14 3G066 AA07 AB02 AC09 AD12 BA12 BA14 BA16 BA17 BA22 BA24 BA25 BA26 CC01 CD26 DA04 DA09 DB06 DB09 DC04 DC05 DC09 DC14 DC18 3G301 HA02 JA24 JA25 JA26 JA37 KA09 MA01 MA11 MA19 MA23 MA26 NC02 PA17A PA17Z PB08Z PE01Z PE03Z PE08Z PF03Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関のシリンダ内に嵌挿されるピス
トンとシリンダヘッドの下面とで区画される燃焼室内に
燃料を直接噴射する燃料噴射弁と、前記ピストンの圧縮
上死点位置近傍で該燃料噴射弁を駆動して主噴射を行う
主噴射制御手段と、前記内燃機関の中負荷以上の所定運
転領域にて前記主噴射前の圧縮行程中期で該主噴射より
も少量の燃料を予備噴射する予備噴射制御手段とを具え
たことを特徴とする筒内噴射式内燃機関。
1. A fuel injection valve for directly injecting fuel into a combustion chamber defined by a piston inserted into a cylinder of an internal combustion engine and a lower surface of a cylinder head, and a fuel injection valve near a compression top dead center of the piston. Main injection control means for driving an injection valve to perform main injection, and pre-injecting a smaller amount of fuel than the main injection in a middle stage of a compression stroke before the main injection in a predetermined operation region of a medium load or more of the internal combustion engine. An in-cylinder injection type internal combustion engine comprising: a preliminary injection control means.
JP11108833A 1999-04-16 1999-04-16 Internal combustion engine of cylinder injection type Pending JP2000297682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11108833A JP2000297682A (en) 1999-04-16 1999-04-16 Internal combustion engine of cylinder injection type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11108833A JP2000297682A (en) 1999-04-16 1999-04-16 Internal combustion engine of cylinder injection type

Publications (1)

Publication Number Publication Date
JP2000297682A true JP2000297682A (en) 2000-10-24

Family

ID=14494718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11108833A Pending JP2000297682A (en) 1999-04-16 1999-04-16 Internal combustion engine of cylinder injection type

Country Status (1)

Country Link
JP (1) JP2000297682A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066813A1 (en) * 2001-02-20 2002-08-29 Isuzu Motors Limited Fuel injection control method for diesel engine and regenerative control method for exhaust gas after treatment device
JP2008530444A (en) * 2005-02-16 2008-08-07 イエフペ Internal combustion engine fuel injection control method and internal combustion engine using this method
JP2012530867A (en) * 2009-06-26 2012-12-06 エム・テー・ウー・フリードリッヒスハーフェン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of operating an internal combustion engine
WO2020105354A1 (en) * 2018-11-20 2020-05-28 ヤンマー株式会社 Pre-chamber type diesel engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324661A (en) * 1994-05-30 1995-12-12 Mitsubishi Motors Corp Fuel injection method and fuel injection nozzle for direct injection type diesel engine
JPH10141124A (en) * 1996-11-07 1998-05-26 Hino Motors Ltd Diesel engine
JPH10252476A (en) * 1997-03-06 1998-09-22 Yanmar Diesel Engine Co Ltd Combustion method of direct injection type diesel engine
JPH1172038A (en) * 1997-06-18 1999-03-16 Toyota Motor Corp Compressive ignition type internal combustion engine
JPH1172039A (en) * 1997-06-24 1999-03-16 Toyota Motor Corp Compressive ignition type internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324661A (en) * 1994-05-30 1995-12-12 Mitsubishi Motors Corp Fuel injection method and fuel injection nozzle for direct injection type diesel engine
JPH10141124A (en) * 1996-11-07 1998-05-26 Hino Motors Ltd Diesel engine
JPH10252476A (en) * 1997-03-06 1998-09-22 Yanmar Diesel Engine Co Ltd Combustion method of direct injection type diesel engine
JPH1172038A (en) * 1997-06-18 1999-03-16 Toyota Motor Corp Compressive ignition type internal combustion engine
JPH1172039A (en) * 1997-06-24 1999-03-16 Toyota Motor Corp Compressive ignition type internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066813A1 (en) * 2001-02-20 2002-08-29 Isuzu Motors Limited Fuel injection control method for diesel engine and regenerative control method for exhaust gas after treatment device
EP1363009A1 (en) * 2001-02-20 2003-11-19 Isuzu Motors Limited Fuel injection control method for diesel engine and regenerative control method for exhaust gas after treatment device
EP1363009A4 (en) * 2001-02-20 2004-11-24 Isuzu Motors Ltd Fuel injection control method for diesel engine and regenerative control method for exhaust gas after treatment device
US6901747B2 (en) 2001-02-20 2005-06-07 Isuzu Motors Limited Fuel injection control method for diesel engine and regenerative control method for exhaust gas after treatment device
EP1553279A1 (en) * 2001-02-20 2005-07-13 Isuzu Motors Limited Fuel injection control method for diesel engine and regeneration control method of exhaust gas post-treatment apparatus
JP2008530444A (en) * 2005-02-16 2008-08-07 イエフペ Internal combustion engine fuel injection control method and internal combustion engine using this method
KR101233501B1 (en) * 2005-02-16 2013-02-14 아이에프피 에너지스 누벨 Fuel injection control method for an internal-combustion engine and engine using same
JP2012530867A (en) * 2009-06-26 2012-12-06 エム・テー・ウー・フリードリッヒスハーフェン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of operating an internal combustion engine
WO2020105354A1 (en) * 2018-11-20 2020-05-28 ヤンマー株式会社 Pre-chamber type diesel engine

Similar Documents

Publication Publication Date Title
EP2239446B1 (en) Injection strategy for operating a direct-injection controlled auto-ignition in a combustion engine
JP3975702B2 (en) Control device for self-igniting engine
JP3337931B2 (en) In-cylinder injection engine
EP2239447B1 (en) Internal combustion engine, method for auto-ignition operation and computer readable storage device
JP4075588B2 (en) diesel engine
JP3189734B2 (en) Spark ignition direct injection internal combustion engine
US20060037563A1 (en) Internal combustion engine with auto ignition
US20080257304A1 (en) Internal combustion engine and combustion method of the same
US20040154582A1 (en) Combustion control device and method for engine
US20090038583A1 (en) Multi-injection combustion cycle systems for sidi engines
RU2541346C2 (en) Method of ice operation
JP5505368B2 (en) gasoline engine
JP2002004913A (en) Compression self-ignition type internal combustion engine
JP6252647B1 (en) Control device for premixed compression ignition engine
JP6508186B2 (en) Control device for internal combustion engine
JP3975695B2 (en) Self-igniting engine
JP2002227697A (en) Fuel injection device of internal combustion engine
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP3952710B2 (en) Compression self-ignition internal combustion engine
JP3680629B2 (en) Compression ignition internal combustion engine
CN106150709A (en) The idle speed control of dual fuel engine, system and vehicle
JP2008184970A (en) Control device of gasoline engine
JP2001355449A (en) Compressed self-ignition type internal combustion engine
JP2000297682A (en) Internal combustion engine of cylinder injection type
JPH10141124A (en) Diesel engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320