JPH10252476A - Combustion method of direct injection type diesel engine - Google Patents

Combustion method of direct injection type diesel engine

Info

Publication number
JPH10252476A
JPH10252476A JP9052000A JP5200097A JPH10252476A JP H10252476 A JPH10252476 A JP H10252476A JP 9052000 A JP9052000 A JP 9052000A JP 5200097 A JP5200097 A JP 5200097A JP H10252476 A JPH10252476 A JP H10252476A
Authority
JP
Japan
Prior art keywords
injection
combustion
pilot
nozzle
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9052000A
Other languages
Japanese (ja)
Other versions
JP3804879B2 (en
Inventor
Akihiro Nishimura
章広 西村
Osamu Yamada
修 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP05200097A priority Critical patent/JP3804879B2/en
Publication of JPH10252476A publication Critical patent/JPH10252476A/en
Application granted granted Critical
Publication of JP3804879B2 publication Critical patent/JP3804879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0675Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space being substantially spherical, hemispherical, ellipsoid or parabolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0663Details related to the fuel injector or the fuel spray having multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/0693Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets the combustion space consisting of step-wise widened multiple zones of different depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To shorten a delay in the ignition of main injection and reduce noise and NOx by jetting part of fuel of a total injection amount primarily at the middle time of a compression process, evaporating and diffusing it to prepare lean and uniform pre-air fuel mixture, igniting it in the vicinity of a compression top dead center by itself, and jetting it in the vicinity of a top dead center mainly. SOLUTION: High pressure fuel is supplied to an injection nozzle for main injection 1 from a fuel pump for main injection 11 and to an injection nozzle for pilot 2 from a fuel pump for pilot injection 12, respectively, and a small amount of fuel is jetted 5 from the injection nozzle for pilot 2 toward a specific pre-air fuel mixture formation region 4 in a combustion chamber 3 at the middle time of a compression process. Here, lean and uniform pre-air fuel mixture 6 is generated by evaporating fuel. A temperature of this air fuel mixture 6 is increased up to a high temperature by the compression, and the air fuel mixture 6 is ignited in the vicinity of a top dead center by itself to form a pilot flame 7. Main injection 8 is done by the injection nozzle for main injection 1 in the vicinity of self-ignition timing to perform the diffusion combustion without delay of the ignition by the pilot flame 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】騒音軽減の面から副室式燃焼
機構を採用しているディーゼル機関を、高効率な直噴式
ディーゼル機関とする為の燃焼方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion method for converting a diesel engine employing a sub-chamber combustion mechanism into a highly efficient direct injection diesel engine in terms of noise reduction.

【0002】[0002]

【従来の技術】従来から、圧縮行程中期に総噴射量の一
部の燃料を一次噴射する技術であるパイロット噴射に関
する技術は公知とされているのである。例えば、特開平
5−141243号公報に記載の技術の如くである。し
かし、従来のパイロット噴射の場合には、主噴射の前1
0〜30°程度の位置でパイロット噴射を行なうのであ
る。この場合、パイロット噴射と主噴射の方向が一致し
ているため、パイロット着火の燃焼領域が酸欠となり、
さらに、その部分に主噴射が行われるため、すすが発生
するという不具合があったのである。さらに、パイロッ
ト噴射は、当量比での着火が起こるため、大量のNOx
が発生するという不具合があったのである。また、通常
の圧縮予混合自着火燃焼方式、即ち、圧縮行程中期に全
燃料を噴射し、完全に蒸発混合させて自着火させる方法
も公知とされているのである。しかし、この場合にも、
全体に希薄化しなければ、NOxが多くなるので、多く
の燃料を噴くことができないため、出力が低いという不
具合があったのである。また、完全な予混合気を生成す
るため、未燃HCが多くなるという不具合もあったので
ある。また、主噴射に先立って噴射を行うものには、フ
ューミゲーション(予混合吸気をパイロット着火する技
術)やVIGOM法(吸気行程噴射でパイロット着火す
る古い技術)があるが、いずれもすす性能や未燃HCが
悪化することから、実機には採用されていなかったので
ある。
2. Description of the Related Art Conventionally, a technique relating to pilot injection, which is a technique for performing a primary injection of a part of fuel of a total injection amount in a middle stage of a compression stroke, has been known. For example, the technique is described in Japanese Patent Application Laid-Open No. 5-141243. However, in the case of the conventional pilot injection, 1
The pilot injection is performed at a position of about 0 to 30 °. In this case, since the directions of the pilot injection and the main injection match, the combustion area of the pilot ignition becomes oxygen deficient,
Furthermore, since the main injection is performed in that portion, there is a problem that soot is generated. In addition, since pilot injection causes ignition at an equivalence ratio, a large amount of NOx
There was a problem that occurs. It is also known to use a normal compression premixed self-ignition combustion system, that is, a method of injecting all the fuel in the middle stage of the compression stroke, completely evaporating and mixing, and self-ignition. But also in this case,
Unless the fuel is totally diluted, NOx increases, so that a large amount of fuel cannot be injected, resulting in a problem that the output is low. In addition, there is a problem that unburned HC increases because a complete premixed gas is generated. In addition, there are fumigation (technique for pilot ignition of premixed intake air) and VIGOM method (old technology for pilot ignition of intake stroke injection) for injection prior to main injection. Since the unburned HC deteriorated, it was not used in the actual machine.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の従来
技術の不具合を解消せんとするものである。本発明によ
り、パイロット噴射を希薄予混合気とすることによっ
て、パイロット燃焼内に酸素を残し、通常パイロット噴
射の欠点である酸欠によるすすの悪化を解消するもので
ある。また、通常のパイロット噴射では、パイロット噴
射自体の着火でNOxが発生するが、予混合パイロット
を用いれば、パイロット噴射の希薄燃焼により、NOx
発生が抑制できるのである。また、全量予混合自着火さ
せるのに比べ、主噴射は従来のディーゼル燃焼と同じ燃
焼形態となるので、高出力・低THCが実現できるので
ある。主たる目的は、すす性能やNOxを悪化させるこ
となく、パイロット着火によって、主噴射の着火遅れを
短縮し、低騒音・低NOxを実現することである。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned disadvantages of the prior art. According to the present invention, by making the pilot injection a lean premixture, oxygen is left in the pilot combustion and the deterioration of soot due to lack of oxygen, which is a drawback of the pilot injection, is usually solved. Further, in normal pilot injection, NOx is generated by the ignition of the pilot injection itself. However, when a premixed pilot is used, NOx is generated due to lean combustion of the pilot injection.
The occurrence can be suppressed. Further, as compared with the case where the full-quantity premixed self-ignition is performed, the main injection has the same combustion form as the conventional diesel combustion, so that high output and low THC can be realized. The main object is to reduce the ignition delay of main injection and achieve low noise and low NOx by pilot ignition without deteriorating soot performance or NOx.

【0004】[0004]

【課題を解決するための手段】本発明の解決しようとす
る課題は以上の如くであり、次に該課題を解決する手段
を説明する。請求項1においては、圧縮行程中期に総噴
射量の一部の燃料を、一次噴射(以下パイロット噴射)
し、かつ燃焼室内の限定された領域内で蒸発拡散させ、
該限定された領域内で希薄な均一予混合気を生成し、圧
縮上死点付近で自己着火させ、さらに上死点付近で主噴
射を行うものである。
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described. In the first aspect, in the middle stage of the compression stroke, a part of the fuel of the total injection amount is primary injected (hereinafter, pilot injection).
And evaporate and diffuse in a limited area within the combustion chamber,
A lean homogeneous premixture is generated in the limited region, self-ignition is performed near the compression top dead center, and main injection is performed near the top dead center.

【0005】請求項2においては、請求項1記載の直噴
式ディーゼル機関の燃焼方法において、単噴口もしくは
多噴口のホールノズルを複数個有し、一方をパイロット
・一方を主噴射用とし、パイロット噴射は、燃焼室内に
設けられた特定領域に噴射し、主噴射は、パイロット燃
焼領域以外の近接した燃焼室内領域に噴射するものであ
る。
According to a second aspect of the present invention, there is provided the direct injection type diesel engine combustion method according to the first aspect, wherein a plurality of single or multiple injection hole nozzles are provided, one of which is a pilot and one is for main injection, and pilot injection is performed. Is injected into a specific area provided in the combustion chamber, and the main injection is injected into an adjacent combustion chamber area other than the pilot combustion area.

【0006】請求項3においては、請求項2記載の直噴
式ディーゼル機関の燃焼方法において、燃焼室中央に円
柱状突起を有し、その外周に環状溝をもち、この領域を
パイロット燃焼領域とする燃焼室形状と、主噴射を突起
先端の平面部に衝突させ、拡散させるものである。
According to a third aspect of the present invention, in the combustion method for a direct injection type diesel engine according to the second aspect, a cylindrical projection is provided at the center of the combustion chamber, and an annular groove is provided on an outer periphery thereof, and this area is defined as a pilot combustion area. The shape of the combustion chamber and the main injection are caused to collide with the flat portion at the tip of the projection and diffuse.

【0007】請求項4においては、請求項1記載の直噴
式ディーゼル機関の燃焼方法において、単噴口もしくは
多噴口のホールノズルを1個有し、パイロット噴射時に
は、パイロット燃焼領域に直接噴射が行われ、主噴射時
期にはピストンの燃焼室側壁の一部に衝突し、パイロッ
ト燃焼領域に隣接する領域に噴霧を拡散させるものであ
る。
According to a fourth aspect of the present invention, there is provided the direct injection type diesel engine combustion method according to the first aspect, wherein a single injection hole nozzle or a multi injection hole nozzle is provided, and at the time of pilot injection, direct injection is performed into the pilot combustion region. At the time of the main injection, it collides with a part of the side wall of the combustion chamber of the piston to diffuse the spray into an area adjacent to the pilot combustion area.

【0008】請求項5においては、請求項4記載の直噴
式ディーゼル機関の燃焼方法において、燃焼室中央に円
柱状突起を有し、円柱状突起の直上に噴射ノズルを有
し、円柱状突起の外周に環状溝をもち、パイロット噴射
時には、噴射ノズルと円柱状突起間の距離を、噴射され
た燃料が霧化する距離よりも大きくして、噴霧を環状溝
領域に拡散させるとともに、圧縮上死点付近での噴射ノ
ズルと円柱状突起間の距離を、噴射された燃料が霧化す
る距離よりも小さくして、主噴射を分裂しない液柱状態
で突起先端の平面部に衝突させ、環状溝に近接した燃焼
室内に拡散させるものである。
According to a fifth aspect of the present invention, in the combustion method for a direct-injection diesel engine according to the fourth aspect, a cylindrical projection is provided at the center of the combustion chamber, and an injection nozzle is provided immediately above the cylindrical projection. It has an annular groove on the outer circumference, and at the time of pilot injection, the distance between the injection nozzle and the columnar projection is made larger than the distance that the injected fuel is atomized to diffuse the spray into the annular groove area, The distance between the injection nozzle and the columnar projection near the point is made smaller than the distance at which the injected fuel is atomized, so that the main injection collides with the flat part of the projection tip in a liquid column state that does not split, and the annular groove Is diffused into the combustion chamber close to.

【0009】請求項6においては、請求項5記載の直噴
式ディーゼル機関の燃焼方法において、多噴口ノズルを
用いる湯合に、円柱状突起の先端部を部分的に円錐形状
としたものである。
According to a sixth aspect of the present invention, in the combustion method of the direct injection type diesel engine according to the fifth aspect, the tip of the cylindrical projection is partially conical in the case of using a multi-injection nozzle.

【0010】請求項7においては、請求項5記載の直噴
式ディーゼル機関の燃焼方法において、多噴口ノズルを
用いる場合に、円柱状突起の先端部の中央付近を平坦に
し、外周付近を円弧状のくぼみ形状とするものである。
According to a seventh aspect of the present invention, in the combustion method for a direct injection type diesel engine according to the fifth aspect, when a multi-injection nozzle is used, the vicinity of the center of the tip of the columnar projection is flattened, and the vicinity of the outer periphery is arcuate. It has a concave shape.

【0011】請求項8においては、請求項3記載の直噴
式ディーゼル機関の燃焼方法において、1本のホールノ
ズルともう1本のスロットルノズルを有し、スロットル
ノズルをパイロット、他方のホースノズルを主噴射用と
するものである。
According to an eighth aspect of the present invention, there is provided the direct injection type diesel engine combustion method according to the third aspect, further comprising one hole nozzle and another throttle nozzle, wherein the throttle nozzle is a pilot and the other hose nozzle is mainly used. It is for injection.

【0012】請求項9においては、請求項1記載の直噴
式ディーゼル機関の燃焼方法において、パイロット燃焼
領域を断熱性の高い材料で囲むものである。
According to a ninth aspect, in the combustion method for a direct injection diesel engine according to the first aspect, the pilot combustion region is surrounded by a material having high heat insulation.

【0013】請求項10においては、請求項2記載の直
噴式ディーゼル機関の燃焼方法において、1本のホール
ノズルともう1本のスロットルノズルを有し、ホールノ
ズルをパイロット、他方のスロットノズルを主噴射用と
したものである。
According to a tenth aspect of the present invention, there is provided the direct injection diesel engine combustion method according to the second aspect, further comprising one hole nozzle and another throttle nozzle, wherein the hole nozzle is a pilot and the other slot nozzle is mainly used. This is for injection.

【0014】[0014]

【発明の実施の形態】次に本発明の実施の形態を説明す
る。図1はディーゼル機関におけるパイロット噴射の効
果を筒内圧力の変化に対して図示した図面、図2はディ
ーゼル機関におけるパイロット噴射の課題を示す図面、
図3は請求項1の本発明のパイロット噴射の構造を示す
図面、図4も請求項1の本発明のパイロット噴射の作動
概念図、図5は請求項2の本発明のパイロット噴射の作
動概念を示す図面、図6は請求項3の本発明の作動概念
図、図7は請求項4の本発明の作動概念図、図8は請求
項5の発明の噴霧の発達過程を示す図面、図9も請求項
5の本発明の作動概念図、図10は請求項6の本発明の
作動概念図、図11は請求項7の本発明の作動概念図、
図12は請求項8の本発明の作動概念図、図13は請求
項9の本発明の構造図、図14は請求項10の本発明の
圧縮比と筒内温度の変化を示す図面、図15は請求項9
の本発明の圧縮比とシリンダ内容積分布を示す図面、図
16は請求項10の本発明の構造及び作動概念図であ
る。
Next, an embodiment of the present invention will be described. FIG. 1 is a diagram illustrating the effect of pilot injection in a diesel engine with respect to changes in in-cylinder pressure, FIG. 2 is a diagram illustrating the problem of pilot injection in a diesel engine,
FIG. 3 is a view showing the structure of the pilot injection according to the first embodiment of the present invention, FIG. 4 is a conceptual diagram of the operation of the pilot injection according to the first embodiment of the present invention, and FIG. FIG. 6 is a conceptual diagram of the operation of the present invention according to claim 3, FIG. 7 is a conceptual diagram of the operation of the present invention according to claim 4, and FIG. 9 is a conceptual diagram of the operation of the present invention of claim 5, FIG. 10 is a conceptual diagram of the operation of the present invention of claim 6, FIG. 11 is a conceptual diagram of the operation of the present invention of claim 7,
FIG. 12 is a conceptual view of the operation of the present invention according to claim 8, FIG. 13 is a structural view of the present invention according to claim 9, and FIG. 14 is a drawing showing the change of the compression ratio and the in-cylinder temperature of the present invention according to claim 10. 15 is claim 9
FIG. 16 is a diagram showing a compression ratio and a volume distribution in a cylinder according to the present invention. FIG.

【0015】図1は、請求項1の本発明のディーゼル機
関における筒内圧力を示したものである。ディーゼルエ
ンジンの燃焼騒音は、筒内圧力の上昇率と強い関係があ
り、上昇率が高くなるほど騒音が大きくなる。通常の主
噴射のみのディーゼル燃焼の場合は、図1中Aで示す如
くであり、噴射された燃料は、一定の着火遅れの後に着
火するが、この期間の間に燃焼しやすい濃度の予混合気
を大量に生成し、一気に燃焼する(予混合燃焼)。この
ため、筒内圧力上昇率が高くなる。図中Bの如く、パイ
ロット噴射を行う場合には、少量の燃料が先に蒸発し着
火するため、主噴射は着火遅れが小さくなる。そのため
に急激な予混合燃焼の割合が小さくなり、筒内圧力上昇
率が小さくなる。
FIG. 1 shows the in-cylinder pressure of the diesel engine according to the first aspect of the present invention. The combustion noise of a diesel engine has a strong relationship with the rate of increase of the in-cylinder pressure, and the higher the rate of rise, the greater the noise. In the case of normal main injection only diesel combustion, as shown by A in FIG. 1, the injected fuel ignites after a certain ignition delay, but during this period, the premixed fuel having a concentration that facilitates combustion is used. A large amount of air is generated and burns at once (premixed combustion). Therefore, the in-cylinder pressure rise rate increases. As shown in B in the figure, when performing the pilot injection, a small amount of fuel evaporates first and ignites, so that the ignition delay of the main injection becomes small. Therefore, the ratio of rapid premix combustion becomes small, and the in-cylinder pressure rise rate becomes small.

【0016】従来のパイロット噴射は、圧縮トップ付近
でパイロット・主噴射の両方が行われるものである。故
に、従来のパイロット噴射式ディーゼル機関は、図2に
示すように、圧縮上死点付近でパイロット噴射が着火し
た後に、主噴射が来るため、主噴射の酸欠が起こり一般
的にすすの悪化が生じるのである。また、パイロット噴
射の火炎自体は高温火炎となるため、NOxが生成され
るのである。本発明は、図3に示す如く構成したもので
ある。主噴射用噴射ノズル1用には主噴射用燃料ポンプ
11から、パイロット用噴射ノズル2にはパイロット用
噴射用燃料ポンプ12から高圧燃料が供給される。図4
に示すように、圧縮行程中期にパイロット用噴射ノズル
2より少量の噴射であるパイロット噴射5として噴霧さ
れ、燃焼室3内の特定の予混合気形成領域4に向けて噴
射され、そこで蒸発しながら、均一な予混合気6を生成
する。この際、予混合気6の濃度は、十分にNOxが低
くなる程度の希薄な混合気とする。この混合気は、圧縮
され高温となり、上死点付近で自着火しパイロット火炎
7となる(図4)。
In the conventional pilot injection, both pilot and main injection are performed near the compression top. Therefore, in the conventional pilot injection type diesel engine, as shown in FIG. 2, since the main injection comes after the pilot injection ignites near the compression top dead center, oxygen depletion of the main injection occurs and soot generally deteriorates. Will occur. Further, since the flame of the pilot injection itself becomes a high-temperature flame, NOx is generated. The present invention is configured as shown in FIG. High-pressure fuel is supplied from the main injection fuel pump 11 to the main injection nozzle 1 and from a pilot injection fuel pump 12 to the pilot injection nozzle 2. FIG.
As shown in the figure, in the middle stage of the compression stroke, the fuel is sprayed as pilot injection 5 which is a small amount of injection from the pilot injection nozzle 2 and is injected toward a specific premixed gas forming region 4 in the combustion chamber 3 where it evaporates. , A uniform premixed gas 6 is generated. At this time, the concentration of the premixed gas 6 is a lean mixture such that NOx is sufficiently reduced. This air-fuel mixture is compressed to a high temperature, self-ignites near top dead center, and becomes a pilot flame 7 (FIG. 4).

【0017】希薄予混合気の自着火であるため、この火
炎はほとんどNOxやすすを発生しない。さらにこの自
着火タイミング付近で、主噴射用噴射ノズル1より主噴
射8を行い、予混合気6が自着火したパイロット火炎7
によって、着火遅れの少ない拡散燃焼を行わせることが
出来るのである。本発明でのパイロット火炎7は、希薄
であるために残存酸素があり、従来のパイロット燃焼の
ようなすすの悪化がなく、低騒音と低スモークを両立さ
せることが可能である。従来は、すすの悪化をなるべく
起こさないように、着火遅れを無くす方法が、発明され
て無かったのである。本発明は、直噴ディーゼル機関の
燃焼方式を根底から変えることが出来る。
Because of the self-ignition of the lean premixed gas, this flame hardly generates NOx or soot. Further, near this self-ignition timing, the main injection 8 is performed from the main injection injection nozzle 1, and the pilot flame 7 in which the premixed gas 6 self-ignites.
Thus, diffusion combustion with a small ignition delay can be performed. Since the pilot flame 7 in the present invention is lean, there is residual oxygen, so that there is no deterioration in soot unlike the conventional pilot combustion, and it is possible to achieve both low noise and low smoke. Heretofore, no method has been invented to eliminate the ignition delay so as to minimize soot deterioration. The present invention can fundamentally change the combustion system of a direct injection diesel engine.

【0018】図5において、請求項2の発明を説明す
る。請求項2の発明は、単噴口もしくは多噴口のホール
ノズルを複数個有し、一方をパイロット用噴射ノズル2
とし、他方を主噴射用噴射ノズル1とし、パイロット噴
射は、燃焼室3内に設けられた予混合気形成領域4に噴
射し、主噴射は、パイロット燃焼領域以外の近接した燃
焼室3内の領域に噴射するように構成したものである。
図5に示すように、2つの噴射ノズルの内、一方をパイ
ロット噴射用ノズル1とし、他方を主噴射用ノズル2と
する。パイロット噴射は、燃焼室内の限定された領域に
噴射され、請求項1と同様に蒸発混合し、自着火してパ
イロット火炎7となり、ノズルより主噴射が行われる。
この主噴射用噴射ノズル1による主噴射は、領域以外の
燃焼室3内の領域の近接する領域に噴射される。したが
って、パイロット火炎7に直接に主噴射8が送り込まれ
ることが無く、主噴射の酸欠によるすすの悪化が少なく
なるである。
Referring to FIG. 5, the second aspect of the present invention will be described. The invention according to claim 2 has a plurality of single or multiple injection hole nozzles, one of which is a pilot injection nozzle 2.
The other is a main injection injection nozzle 1, pilot injection is performed into a premixed gas forming region 4 provided in the combustion chamber 3, and main injection is performed in the adjacent combustion chamber 3 other than the pilot combustion region. It is configured to inject into the area.
As shown in FIG. 5, one of the two injection nozzles is a pilot injection nozzle 1 and the other is a main injection nozzle 2. The pilot injection is injected into a limited area in the combustion chamber, evaporates and mixes as in claim 1, self-ignites to become a pilot flame 7, and the main injection is performed from a nozzle.
The main injection by the main injection injection nozzle 1 is injected into a region near the region inside the combustion chamber 3 other than the region. Accordingly, the main injection 8 is not sent directly to the pilot flame 7, and soot deterioration due to lack of oxygen in the main injection is reduced.

【0019】次に請求項3の発明を図6に基づいて説明
する。請求項3の発明においては、燃焼室3の中央に円
柱状突起Aを有し、その外周に環状溝14を構成し、こ
の環状溝14の領域を、パイロット用噴射ノズル2から
のパイロット噴射5による、パイロット燃焼領域とする
燃焼室形状とし、主噴射を円柱状突起Aの突起先端の平
面部に衝突させ、拡散させるように構成したものであ
る。これにより、円柱状突起Aへの衝突拡散を用いて主
噴射8を広く拡散させ、壁面付着量も減少させて、すす
・青白煙の両方の低減を図ることが出来たものである。
Next, a third aspect of the present invention will be described with reference to FIG. According to the third aspect of the present invention, the combustion chamber 3 has a columnar projection A in the center thereof, and an annular groove 14 is formed on the outer periphery thereof. , The main injection is made to collide with the flat portion of the tip of the columnar projection A and diffuse. As a result, the main injection 8 is diffused widely by using the collision diffusion to the columnar projection A, the amount of wall adhesion is reduced, and both soot and blue and white smoke can be reduced.

【0020】図6に示すように、主噴射用噴射ノズル1
とパイロット用噴射ノズル2の2つの噴射ノズルの内、
一方をパイロット用噴射ノズル2とし、他方をパイロッ
ト用噴射ノズル2とする。燃焼室3の中央付近には、円
柱状突起Aを設け、この円柱状突起Aの外周部に環状溝
14を設ける。または、この環状溝14の上方に噴射さ
れるパイロット噴射5は、環状溝14に噴射され、請求
項1と同様に蒸発混合された予混合気6となり、次に自
着火したパイロット火炎7となり、主噴射用噴射ノズル
1より主噴射8が行われる。この主噴射8は、円柱状突
起Aと環状溝14の上方から噴射され、円柱状突起Aの
平坦な頂部に衝突し拡散する。この拡散によって、主噴
射8の拡散が促進され、すす性能が向上するとともに、
パイロット火炎7の領域に接する領域に、主噴射8を配
置することができるのである。
As shown in FIG. 6, the main injection nozzle 1
Of the two injection nozzles of the pilot injection nozzle 2 and
One is a pilot injection nozzle 2 and the other is a pilot injection nozzle 2. A cylindrical projection A is provided near the center of the combustion chamber 3, and an annular groove 14 is provided on the outer periphery of the cylindrical projection A. Alternatively, the pilot injection 5 injected above the annular groove 14 is injected into the annular groove 14, becomes a premixed gas 6 that is vaporized and mixed in the same manner as in claim 1, and then becomes a pilot flame 7 that has self-ignited, The main injection 8 is performed from the main injection nozzle 1. The main jet 8 is jetted from above the columnar projection A and the annular groove 14 and collides with the flat top of the columnar projection A and diffuses. By this diffusion, the diffusion of the main injection 8 is promoted, soot performance is improved,
The main injection 8 can be arranged in an area in contact with the area of the pilot flame 7.

【0021】次に図7に基づいて、請求項4の発明を説
明する。請求項4の発明は、単噴口もしくは多噴口のホ
ールノズル9を1個有し、パイロット噴射時には、パイ
ロット燃焼領域に直接噴射が行われ、主噴射時期にはピ
ストンの燃焼室側壁の一部に衝突し、パイロット燃焼領
域に隣接する領域に噴霧を拡散させるものである。図7
に示すように、シリンダ内に単噴口もしくは多噴口のホ
ールノズル9を持つ。燃焼室3の中央付近には、月形の
くぼみである予混合気形成領域4を設ける。パイロット
噴射時には、ピストンが遠くにあり、この時に予混合気
形成領域4に向けてパイロット噴射5を行う。蒸発混合
により予混合気6が構成されて、自着火しパイロット火
炎7となった後に、主噴射8が行われる。この主噴射8
の時期には、ピストンがホールノズル9に接近している
ため、噴霧は、円形くぼみにより構成された予混合気形
成領域4以外の壁面に衝突し、これを覆う様に拡散させ
る。これによって、単噴口もしくは多噴口のホールノズ
ル9の1弁で2回の噴射を行わせ、自動的にパイロット
火炎7の領域に接する領域に主噴射を配置することがで
き、請求項2の発明と同様の効果を得ることができる。
その他の項目については、請求項1の発明と同じであ
る。
Next, a fourth aspect of the present invention will be described with reference to FIG. The invention of claim 4 has one single nozzle or a multi-hole hole nozzle 9, during pilot injection, direct injection is performed in the pilot combustion area, and at the main injection timing, a part of the combustion chamber side wall of the piston is provided. It impinges and spreads the spray in an area adjacent to the pilot combustion area. FIG.
As shown in the figure, a single nozzle or a multi-hole hole nozzle 9 is provided in the cylinder. In the vicinity of the center of the combustion chamber 3, there is provided a premixed gas forming region 4 which is a moon-shaped depression. At the time of the pilot injection, the piston is far away, and at this time, the pilot injection 5 is performed toward the premixed gas formation region 4. After the premixed gas 6 is formed by the evaporative mixing and self-ignites to become the pilot flame 7, the main injection 8 is performed. This main injection 8
Since the piston is approaching the hole nozzle 9 at the time, the spray collides with the wall surface other than the premixed gas formation region 4 constituted by the circular dent, and is diffused so as to cover the same. This makes it possible to perform two injections with one valve of the single nozzle or the multiple nozzles of the hole nozzle 9 and to automatically arrange the main injection in a region in contact with the region of the pilot flame 7. The same effect as described above can be obtained.
Other items are the same as those of the first aspect.

【0022】次に請求項5の発明を、図8・図9に基づ
いて説明する。請求項5の発明は、燃焼室3中央に円柱
状突起Aを有し、円柱状突起Aの直上に単噴口もしくは
多噴口のホールノズル9を有し、円柱外周に環状溝14
をもち、パイロット噴射5の時には、単噴口もしくは多
噴口のホールノズル9と円柱状突起Aの間の距離を、噴
射された燃料が霧化する距離よりも大きくして、噴霧を
環状溝14の領域に拡散させるとともに、圧縮上死点付
近での噴射ノズル9と円柱状突起Aの距離を噴射された
燃料が霧化する距離よりも小さくして、主噴射8を分裂
しない液柱状態で円柱状突起Aの先端の平面部に衝突さ
せ、環状溝14に近接した燃焼室3内に拡散させるもの
である。
Next, a fifth aspect of the present invention will be described with reference to FIGS. The invention according to claim 5 has a cylindrical projection A at the center of the combustion chamber 3, a single nozzle or a multi-hole hole nozzle 9 immediately above the cylindrical projection A, and an annular groove 14 on the outer circumference of the cylinder.
In the case of the pilot injection 5, the distance between the single nozzle or multi-hole hole nozzle 9 and the cylindrical projection A is made larger than the distance that the injected fuel is atomized, and the spray is formed in the annular groove 14. At the same time, the distance between the injection nozzle 9 and the cylindrical projection A near the compression top dead center is made smaller than the distance that the injected fuel is atomized. The collision is made to collide with the flat portion at the tip of the columnar projection A and diffuse into the combustion chamber 3 close to the annular groove 14.

【0023】図8においては、噴射された燃料が分裂す
る過程を示したもので、一定の距離(噴霧分裂長さ)ま
では、液柱状態である。本発明は、この現象を用いるも
のである。図9に示すように、燃焼室3の中央付近に円
柱状突起Aを設け、この円柱状突起Aの外周部に環状溝
14を設ける。また円柱状突起Aの上方に、単噴口もし
くは多噴口のホールノズル9を配置する。パイロット噴
射5の時期には、ピストンとノズルに距離があるため、
噴射されたパイロット噴射5は、十分に霧化する。よっ
て、突起の外周に沿って別れ、14に導かれる。請求項
1と同様に蒸発混合された予混合気6となり、次に自著
火してパイロット火炎7となり、噴射ノズル9より主噴
射8が行われる。この主噴射時期には、円柱状突起Aの
上面が噴射ノズル9に近づくために、主噴射8は霧化す
る前に円柱状突起Aに衝突する。よって、円柱状突起A
の平坦な頂部で衝突拡散する。この拡散によって、主噴
射8の微粒化と拡散が促進され、すす性能が向上すると
ともに、自動的にパイロット火炎7の領域に接する領域
に、主噴射8を配置することができる。また、噴霧の壁
面付着が少なく、青白煙を低減できるのである。
FIG. 8 shows a process in which the injected fuel splits, and is in a liquid column state up to a certain distance (spray split length). The present invention uses this phenomenon. As shown in FIG. 9, a cylindrical projection A is provided near the center of the combustion chamber 3, and an annular groove 14 is provided on an outer peripheral portion of the cylindrical projection A. A single nozzle or a multi-hole hole nozzle 9 is arranged above the columnar projection A. At the time of pilot injection 5, since there is a distance between the piston and the nozzle,
The injected pilot injection 5 is sufficiently atomized. Therefore, the protrusions are separated along the outer periphery and guided to 14. In the same manner as in the first aspect, the premixed gas 6 is evaporated and mixed, and then self-ignited to become a pilot flame 7, and the main injection 8 is performed from the injection nozzle 9. At this main injection timing, since the upper surface of the cylindrical projection A approaches the injection nozzle 9, the main injection 8 collides with the cylindrical projection A before atomization. Therefore, the columnar projection A
Collide and diffuse at the flat top of By this diffusion, atomization and diffusion of the main injection 8 are promoted, soot performance is improved, and the main injection 8 can be automatically arranged in a region in contact with the region of the pilot flame 7. In addition, the adhesion of the spray to the wall is small, and blue smoke can be reduced.

【0024】次に図9と図10により、請求項6の発明
を説明する。請求項6の発明は、多噴口ノズルを用いる
場合に、円柱状突起Aの先端部を部分的に円錐形状とし
たものである。主たる構造は、図9と同様である。図1
0に示すように、燃焼室中央付近に設けた円柱状の円柱
状突起Aの先端部を、円錐形状にし、主噴射8をこの円
錐面に衝突させる。平坦な面に衝突させると、図10−
(a)の図面に示す様に拡散した噴霧間に隙間が生じ
て、空気の利用率が低下する。一方本発明のように円錐
面に衝突させると、曲面形状であるために、噴霧が広い
角度で拡散し、図10−(b)の図面に示すように、噴
霧間の隙間が減少する。これによって、主噴射8の空気
の利用率が向上し、すす性能が向上する。
Next, the sixth aspect of the present invention will be described with reference to FIGS. According to the invention of claim 6, when the multi-hole nozzle is used, the distal end of the columnar projection A is partially conical. The main structure is the same as in FIG. FIG.
As shown at 0, the tip of a cylindrical projection A provided near the center of the combustion chamber is formed into a conical shape, and the main injection 8 is caused to collide with the conical surface. When it collides with a flat surface,
As shown in the drawing of (a), a gap is formed between the diffused sprays, and the air utilization rate decreases. On the other hand, when colliding with the conical surface as in the present invention, the spray is diffused at a wide angle due to the curved surface shape, and the gap between the sprays is reduced as shown in the drawing of FIG. As a result, the air utilization rate of the main injection 8 is improved, and soot performance is improved.

【0025】次に、図9と図11により、請求項7の発
明を説明する。請求項7の発明は、多噴口ノズルを用い
る場合に、円柱状突起の先端部の中央付近を平坦にし、
外周付近を円弧状のくぼみ形状としたものである。主た
る構造は、図9と同様である。図11に示すように、燃
焼室中央付近に設けた円柱状突起Aの先端部を、中央付
近を平面形状13にし、外周部を円弧状のくぼみ形状1
5とする。主噴射8は圧縮上死点付近に開始され、当初
中央付近の平面形状13に衝突する。噴射の後期になる
と、ピストンが下降し、噴射弁と突起との距離が大きく
なり、突起の外周に近いところに、衝突点が移動する。
よって、平面形状13から円弧状のくぼみ形状15に衝
突点が移り、円弧に沿って上方に噴霧が拡散する。初期
の拡散噴霧は、パイロット火炎7に近く、着火遅れが短
くなり、燃焼を開始する。その後の噴霧は、上方の未使
用の空気に向けて拡散されるため、シリンダ軸方向の空
気利用率が高くなり、すす性能が向上する。また、パイ
ロット着火の効果を有効に活用できる。
Next, the seventh aspect of the present invention will be described with reference to FIGS. The invention according to claim 7 is characterized in that, when a multi-hole nozzle is used, the vicinity of the center of the tip of the cylindrical projection is flattened,
The vicinity of the outer periphery is formed in an arc-shaped hollow shape. The main structure is the same as in FIG. As shown in FIG. 11, the tip of the columnar projection A provided near the center of the combustion chamber has a planar shape 13 near the center, and the outer peripheral portion has an arc-shaped concave shape 1.
5 is assumed. The main injection 8 is started near the compression top dead center, and initially collides with the plane shape 13 near the center. In the late stage of the injection, the piston descends, the distance between the injection valve and the projection increases, and the collision point moves closer to the outer periphery of the projection.
Therefore, the collision point shifts from the planar shape 13 to the arc-shaped hollow shape 15, and the spray is diffused upward along the arc. The initial diffusion spray is close to the pilot flame 7, the ignition delay is shortened, and combustion starts. Subsequent spray is diffused toward unused air above, so that the air utilization rate in the cylinder axial direction is increased, and soot performance is improved. In addition, the effect of pilot ignition can be used effectively.

【0026】次に、図6と図12により、請求項8の発
明を説明する。請求項8の発明は、1本のホールノズル
ともう1本のスロットルノズルを有し、スロットルノズ
ルをパイロット、他方のホースノズルを主噴射用とする
ものである。図12に請求項8の発明の構造を示す。主
たる構造は図6と同様で、パイロット用噴射ノズル2を
図中に示すようなスロットル弁とする。スロットル弁の
噴霧は、図に示すように、ノズルを出た時点から霧化
し、中空のコーン状(メガホン状)の形状をしている。
そのため、燃焼室中央の突起に触れることなく、パイロ
ット燃焼用の予混合気形成領域の全体に均等に燃料噴霧
を配置することができる。これによって、パイロット燃
焼用予混合気の均一化を促進し、自着火時期の安定化向
上およびパイロット火炎の低NOx化・すす低減を可能
となる。それ以外の作動原理は、請求項3の発明と同様
である。
Next, an eighth aspect of the present invention will be described with reference to FIGS. The invention of claim 8 has one hole nozzle and another throttle nozzle, wherein the throttle nozzle is used as a pilot and the other hose nozzle is used for main injection. FIG. 12 shows a structure according to the eighth aspect of the present invention. The main structure is the same as in FIG. 6, and the pilot injection nozzle 2 is a throttle valve as shown in the figure. As shown in the figure, the spray from the throttle valve is atomized from the point when it comes out of the nozzle and has a hollow cone shape (megaphone shape).
Therefore, the fuel spray can be evenly arranged over the entire premixed gas formation region for pilot combustion without touching the protrusion at the center of the combustion chamber. As a result, it is possible to promote uniformization of the pilot combustion premixed gas, to improve the stability of the self-ignition timing, and to reduce the NOx and soot reduction of the pilot flame. The other operation principle is the same as that of the third aspect.

【0027】次に、図4と図13により請求項9の発明
を説明する。請求項9の発明は、パイロット燃焼領域を
断熱性の高い材料Cで囲んだものである。図13に構造
を示す。主たる構造は図4と同様である。パイロット噴
射を蒸発拡散させて、均一希薄予混合気を作る領域であ
る環状溝14を取り囲む燃焼室3壁面を、セラミクス等
の断熱性の高い材料Cとする。図14に圧縮比と筒内温
度の時間変化を示す。通常の金属材料の場合(A)、圧
縮中に高温の圧縮空気から熱が逃げる(熱損失)ため
に、圧縮上死点付近では、断熱時(B)に比べて温度が
低くなり、燃料の自着火温度以下になると着火しなくな
る。一方、圧縮比を高くして、着火温度にまで温度を上
げる場合には、図15に示すように、トップクリアラン
ス等の無駄容積は一定であるために、燃焼室容積を小さ
くする必要が有り、燃焼室の空気が少なくなる。一般的
に燃焼室内の空気量は、すす性能と深い関係があるの
で、高圧縮比とすると、すす性能上不利となる。そこ
で、本発明では、予混合パイロット領域を、断熱性の高
い材料Cで断熱し、その部分の熱損失を小さくし、図1
3に示すように、燃焼室内に局部的な高温領域を形成
し、圧縮比を上げることなく、安定したパイロット自着
火を行なわせる。又、主噴射が衝突する際に、壁面温度
が高いと、その点で沸騰現象(膜沸騰・遷移沸騰)が起
こり、微粒化が促進される。
Next, the ninth aspect of the present invention will be described with reference to FIGS. According to a ninth aspect of the present invention, the pilot combustion region is surrounded by a material C having a high heat insulating property. FIG. 13 shows the structure. The main structure is the same as in FIG. The wall of the combustion chamber 3 surrounding the annular groove 14, which is a region in which the pilot injection is diffused by evaporation to form a uniform lean premixed gas, is made of a material C having a high heat insulating property such as ceramics. FIG. 14 shows the change over time of the compression ratio and the in-cylinder temperature. In the case of a normal metal material (A), heat escapes from the high-temperature compressed air during compression (heat loss). When the temperature falls below the self-ignition temperature, ignition stops. On the other hand, when the compression ratio is increased to increase the temperature to the ignition temperature, as shown in FIG. 15, since the dead volume such as the top clearance is constant, it is necessary to reduce the combustion chamber volume. There is less air in the combustion chamber. In general, the amount of air in the combustion chamber has a deep relationship with soot performance. Therefore, a high compression ratio is disadvantageous in soot performance. Therefore, in the present invention, the premixed pilot region is insulated with the material C having a high heat insulating property, and the heat loss in that portion is reduced.
As shown in FIG. 3, a local high-temperature region is formed in the combustion chamber, and stable pilot auto-ignition is performed without increasing the compression ratio. If the wall temperature is high when the main injection collides, a boiling phenomenon (film boiling / transition boiling) occurs at that point, and atomization is promoted.

【0028】次に図16により、請求項10の発明を説
明する。請求項10の発明は、1本のホールノズルとも
う1本のスロットルノズルを有し、ホールノズルをパイ
ロット、他方のスロットノズルを主噴射用としたもので
ある。図16に請求項10の発明の構造を示す。燃焼の
概念は、請求項2の発明と共通であるが、主噴射を行う
主噴射用噴射ノズル1に、拡散性の高いスロットルノズ
ルを用いるとともに、燃焼室形状を主噴射の噴霧形状に
近い形状とするとともに、燃焼室中央付近に、パイロッ
ト燃焼領域である予混合気形成領域4を設ける。圧縮中
期にパイロット用噴射ノズル2より噴かれた燃料は、燃
焼室中央部で蒸発混合し、上死点近くで自着火してパイ
ロット火炎7となる。これに接するように、主噴射用噴
射ノズル1より主噴封が噴かれる。この噴霧は、図のよ
うにコーン形状となるため、空気を有効に利用するため
に、燃焼室も噴霧形状に近い形とする。主噴射は噴射直
後に、16の位置でパイロット火炎に接触し、短い着火
遅れで燃焼を開始する。
Next, the tenth aspect of the present invention will be described with reference to FIG. The invention of claim 10 has one hole nozzle and another throttle nozzle, wherein the hole nozzle is used as a pilot and the other slot nozzle is used for main injection. FIG. 16 shows a structure according to the tenth aspect of the present invention. The concept of combustion is the same as that of the second aspect of the invention, but a throttle nozzle having high diffusivity is used for the main injection nozzle 1 for performing main injection, and the shape of the combustion chamber is close to the spray shape of main injection. At the same time, a premixed gas formation region 4, which is a pilot combustion region, is provided near the center of the combustion chamber. The fuel injected from the pilot injection nozzle 2 in the middle stage of compression evaporates and mixes in the center of the combustion chamber, and self-ignites near the top dead center to become the pilot flame 7. The main injection seal is jetted from the main injection injection nozzle 1 so as to be in contact therewith. Since the spray has a cone shape as shown in the figure, the combustion chamber also has a shape close to the spray shape in order to effectively use air. Immediately after the injection, the main injection comes in contact with the pilot flame at the position 16 and starts combustion with a short ignition delay.

【0029】[0029]

【発明の効果】本発明は以上の如く構成したので、次の
ような効果を奏するものである。請求項1の発明におい
ては、圧縮行程中期に総噴射量の一部の燃料を、一次噴
射(以下パイロット噴射)し、かつ燃焼室内の限定され
た領域内で蒸発拡散させ、希薄な均一予混合気を生成
し、圧縮上死点付近で自己着火させ、さらに上死点付近
で主噴射を行うので、パイロット噴射を予混合化するこ
とによって、パイロット燃焼内に酸素を残し、通常パイ
ロット噴射の欠点である酸欠によるすすの悪化を解消す
ることが出来たのである。また、通常のパイロット噴射
では、パイロット噴射自体の着火でNOxが発生する
が、予混合パイロットを用いれば、パイロット噴射の希
薄燃焼により、NOx発生が抑制できるのである。ま
た、全量予混合自着火させるのに比べ、主噴射は従来の
ディーゼル燃焼と同じ燃焼形態となるので、高出力・低
THCが実現できるのである。主たる目的は、すす性能
やNOxを悪化させることなく、パイロット着火によっ
て、主噴射の着火遅れを短縮し、低騒音・低NOxを実
現することができるのである。
As described above, the present invention has the following advantages. In the first aspect of the present invention, in the middle stage of the compression stroke, a part of the fuel in the total injection amount is subjected to primary injection (hereinafter, pilot injection), and is vaporized and diffused in a limited region in the combustion chamber, thereby producing a lean uniform premix. Gas is generated, self-ignition near compression top dead center, and main injection is performed near top dead center.By premixing pilot injection, oxygen is left in pilot combustion, which is a drawback of normal pilot injection. It was possible to eliminate the deterioration of soot due to the lack of oxygen. In normal pilot injection, NOx is generated by the ignition of the pilot injection itself. However, if a premixed pilot is used, NOx generation can be suppressed by lean combustion of the pilot injection. Further, as compared with the case where the full-quantity premixed self-ignition is performed, the main injection has the same combustion form as the conventional diesel combustion, so that high output and low THC can be realized. The main object is to reduce the ignition delay of main injection and achieve low noise and low NOx by pilot ignition without deteriorating soot performance or NOx.

【0030】請求項2の発明においては、請求項1記載
の直噴式ディーゼル機関の燃焼方法において、単噴口も
しくは多噴口のホールノズルを複数個有し、一方をパイ
ロット・一方を主噴射用とし、パイロット噴射は、燃焼
室内に設けられた特定領域に噴射し、主噴射は、パイロ
ット燃焼領域以外の近接した燃焼室内領域に噴射するこ
とにより、主噴射をパイロット火炎に近接した領域に配
置し、両者の衝突を回避して、着火おくれ短縮効果をそ
のままに、すす性能の悪化を抑制することが可能となっ
たのである。
According to a second aspect of the present invention, there is provided the direct injection diesel engine combustion method according to the first aspect, wherein a plurality of single or multiple injection hole nozzles are provided, one of which is used as a pilot and one is used for main injection. The pilot injection is performed in a specific region provided in the combustion chamber, and the main injection is performed in a region close to the pilot flame by injecting the fuel into an adjacent combustion chamber region other than the pilot combustion region. Thus, it is possible to prevent the soot performance from deteriorating while keeping the effect of reducing the ignition delay.

【0031】請求項3の発明の如く構成することによ
り、突起への衝突拡散を用いて主噴射を広く拡散させ、
壁面付着量も減少させて、すす・青白煙の両方の低減を
図ることが出来たのである。
According to the third aspect of the present invention, the main injection is diffused widely by using the collision diffusion to the projection,
By reducing the amount of adhesion to the wall, both soot and blue-white smoke could be reduced.

【0032】請求項4の如く構成したので、1本のノズ
ルで請求項2の発明と同様の効果が得られるように構成
できたものである。
With the configuration as described in claim 4, the same effect as that of the invention in claim 2 can be obtained with one nozzle.

【0033】請求項5の如く構成したので、噴射ノズル
とピストンの位置関係が、時間によって変化することを
用いて、1本のノズルで発明3と同様にすす・青白煙の
低減という効果が得られるように構成することが出来た
ものである。
According to the fifth aspect, the positional relationship between the injection nozzle and the piston changes with time, so that the effect of reducing soot and blue and white smoke can be obtained with a single nozzle in the same manner as in the third aspect. It was able to be constituted so that it could be done.

【0034】請求項6の発明においては、主噴射の水平
方向の拡散を強化することによって、すす性能を向上さ
せることが出来たのである。
According to the sixth aspect of the present invention, the soot performance can be improved by enhancing the horizontal diffusion of the main injection.

【0035】請求項7の発明においては、主噴射の噴射
期間中に、ピストンが下がるにつれて、衝突噴霧を上方
に拡散させることが可能となり、これにより、酸素を有
効に利用でき、すすを低減させることか出来たのであ
る。
According to the seventh aspect of the invention, during the injection period of the main injection, as the piston moves down, the impinging spray can be diffused upward, whereby oxygen can be used effectively and soot is reduced. I was able to do it.

【0036】請求項8の発明では、噴霧拡散性の高いス
ロットル弁をパイロット噴射に用いて、パイロット領域
に均等に燃料を配置し、パイロット燃焼用予混合気の均
一化を促進し、自着火時期の安定化向上およびパイロッ
ト火炎の低NOx化・すす低減を可能としたものであ
る。
According to the eighth aspect of the present invention, the throttle valve having high spray diffusibility is used for pilot injection, fuel is uniformly distributed in the pilot region, uniformization of the premixed air for pilot combustion is promoted, and self ignition timing This has made it possible to improve the stabilization of the fuel cell and to reduce the NOx and soot reduction of the pilot flame.

【0037】請求項1のパイロット噴射は、希薄な均一
混合気とすることで、低NOx・低すす濃度としている
が、希薄であるがゆえに、自着火させるためにかなりの
高温にする必要がある。高温場を作るには、圧縮比を高
くすることが一般的であるが、圧縮比を高くすればする
ほど、主燃焼のNOxが高くなるとともに燃焼室内の空
気量(容積比)が少なくなる(トップクリアランスの容
積は一定であるため)。これは、すす性能の悪化を招
く。よって、予混合圧縮自着火させる領域のみを高温に
するのが理想的であり、請求項9の発明においては、こ
れによりすす性能の悪化を解消することが出来たのであ
る。
In the first aspect of the present invention, the pilot injection has a low NOx and low soot concentration by forming a lean homogeneous mixture. However, because of the leanness, it is necessary to set a considerably high temperature for self-ignition. . In order to create a high-temperature field, it is general to increase the compression ratio. However, the higher the compression ratio, the higher the NOx of the main combustion and the smaller the amount of air (volume ratio) in the combustion chamber ( Top clearance volume is constant). This causes deterioration of soot performance. Therefore, it is ideal to raise the temperature only in the region where the premixed compression ignition is performed. In the ninth aspect of the present invention, the deterioration of soot performance can be prevented.

【0038】請求項10の発明は、請求項2の発明に加
えて、主噴射の燃焼室内拡散を高め、主燃焼で発生する
すすやNOxを低減するとともに、主噴射が燃焼室壁面
に付着しにくくすることで、青白煙を低減することが出
来たのである。
According to a tenth aspect of the present invention, in addition to the second aspect, the diffusion of the main injection in the combustion chamber is increased, soot and NOx generated in the main combustion are reduced, and the main injection adheres to the wall of the combustion chamber. By making it harder, blue and white smoke could be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ディーゼル機関におけるパイロット噴射の効果
を筒内圧力の変化に対し図示した図面。
FIG. 1 is a diagram illustrating the effect of pilot injection in a diesel engine with respect to a change in in-cylinder pressure.

【図2】ディーゼル機関におけるパイロット噴射の課題
を示す図面。
FIG. 2 is a view showing a problem of pilot injection in a diesel engine.

【図3】請求項1の本発明のパイロット噴射の構造を示
す図面。
FIG. 3 is a drawing showing a structure of a pilot injection according to the present invention of claim 1;

【図4】請求項1の本発明のパイロット噴射の作動概念
図。
FIG. 4 is an operation conceptual diagram of the pilot injection according to the first embodiment of the present invention.

【図5】同じく請求項2の本発明のパイロット噴射の作
動概念を示す図面。
FIG. 5 is a drawing showing the concept of the operation of the pilot injection according to the present invention of claim 2;

【図6】同じく請求項3の本発明の作動概念図。FIG. 6 is an operation conceptual diagram of the present invention of claim 3;

【図7】同じく請求項4の本発明の作動概念図。FIG. 7 is an operation conceptual diagram of the present invention according to claim 4;

【図8】請求項5の発明の噴霧の発達過程を示す図面。FIG. 8 is a drawing showing the development process of the spray according to the invention of claim 5;

【図9】請求項5の本発明の作動概念図。FIG. 9 is an operation conceptual diagram of the present invention according to claim 5;

【図10】請求項6の本発明の作動概念図。FIG. 10 is an operation conceptual diagram of the present invention according to claim 6;

【図11】請求項7の本発明の作動概念図。FIG. 11 is an operation conceptual diagram of the present invention according to claim 7;

【図12】請求項8の本発明の作動概念図。FIG. 12 is an operation conceptual diagram of the present invention according to claim 8;

【図13】請求項9の本発明の構造図。FIG. 13 is a structural view of the present invention according to claim 9;

【図14】請求項10の本発明の圧縮比と筒内温度の変
化を示す図面。
FIG. 14 is a drawing showing changes in the compression ratio and the in-cylinder temperature of the present invention according to claim 10;

【図15】請求項9の本発明の圧縮比とシリンダ内容積
分布を示す図面。
FIG. 15 is a view showing a compression ratio and a volume distribution in a cylinder according to the ninth aspect of the present invention.

【図16】請求項10の本発明の構造及び作動概念図。FIG. 16 is a conceptual diagram showing the structure and operation of the present invention according to claim 10;

【符号の説明】 A 円柱状突起 C 断熱性の高い材料 1 主噴射用噴射ノズル 2 パイロット用噴射ノズル 3 燃焼室 4 予混合気形成領域 5 パイロット噴射 6 予混合気 7 パイロット火炎 8 主噴射 9 単噴口もしくは多噴口のホールノズル 13 平面形状 15 円弧状のくぼみ形状[Description of Signs] A Columnar projection C Material with high heat insulation property 1 Main injection nozzle 2 Pilot injection nozzle 3 Combustion chamber 4 Premixed gas formation region 5 Pilot injection 6 Premixed gas 7 Pilot flame 8 Main injection 9 Single Hole nozzle with orifices or multiple orifices 13 Planar shape 15 Arc-shaped hollow shape

フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/38 F02D 41/38 B 41/40 41/40 D F02F 3/26 F02F 3/26 A F02M 61/08 F02M 61/08 H 61/14 310 61/14 310D 310U 61/18 320 61/18 320Z 360 360J 63/00 63/00 M Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/38 F02D 41/38 B 41/40 41/40 D F02F 3/26 F02F 3/26 A F02M 61/08 F02M 61/08 H 61 / 14 310 61/14 310D 310U 61/18 320 61/18 320Z 360 360J 63/00 63/00 M

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧縮行程中期に総噴射量の一部の燃料
を、パイロット噴射し、かつ燃焼室内の限定された領域
内で蒸発拡散させ、該限定された領域内で希薄な均一予
混合気を生成し、圧縮上死点付近で自己着火させ、さら
に上死点付近で主噴射を行うことを特徴とする直噴式デ
ィーゼル機関の燃焼方法。
In the middle stage of a compression stroke, a part of fuel of a total injection amount is pilot-injected and vaporized and diffused in a limited region in a combustion chamber, and a lean homogeneous premixed gas in the limited region. A self-ignition near compression top dead center, and a main injection near top dead center.
【請求項2】 請求項1記載の直噴式ディーゼル機関の
燃焼方法において、単噴口もしくは多噴口のホールノズ
ルを複数個有し、一方をパイロット・一方を主噴射用と
し、パイロット噴射は、燃焼室内に設けられた特定領域
に噴射し、主噴射は、パイロット燃焼領域以外の近接し
た燃焼室内領域に噴射することを特徴とする直噴式ディ
ーゼル機関の燃焼方法。
2. The method for combustion of a direct injection diesel engine according to claim 1, comprising a plurality of single or multiple injection hole nozzles, one of which is used for pilot and one for main injection. A direct injection diesel engine combustion method characterized by injecting into a specific region provided in the combustion chamber, and injecting the main injection into an adjacent combustion chamber region other than the pilot combustion region.
【請求項3】 請求項2記載の直噴式ディーゼル機関の
燃焼方法において、燃焼室中央に円柱状突起を有し、そ
の外周に環状溝をもち、この領域をパイロット燃焼領域
とする燃焼室形状と、主噴射を突起先端の平面部に衝突
させ、拡散させることを特徴とする直噴式ディーゼル機
関の燃焼方法。
3. A combustion method for a direct-injection diesel engine according to claim 2, wherein the combustion chamber has a cylindrical projection in the center of the combustion chamber, an annular groove on the outer periphery thereof, and this area is used as a pilot combustion area. A direct injection diesel engine, wherein the main injection collides with a flat portion at the tip of the projection and diffuses the main injection.
【請求項4】 請求項1記載の直噴式ディーゼル機関の
燃焼方法において、単噴口もしくは多噴口のホールノズ
ルを1個有し、パイロット噴射時には、パイロット燃焼
領域に直接噴射が行われ、主噴射時期にはピストンの燃
焼室側壁の一部に衝突し、パイロット燃焼領域に隣接す
る領域に噴霧を拡散させることを特徴とする直噴式ディ
ーゼル機関の燃焼方法。
4. The direct injection diesel engine combustion method according to claim 1, further comprising a single injection hole nozzle or a multi-injection hole nozzle. The present invention relates to a direct injection type diesel engine combustion method, comprising colliding with a part of a side wall of a combustion chamber of a piston and diffusing spray into an area adjacent to a pilot combustion area.
【請求項5】 請求項4記載の直噴式ディーゼル機関の
燃焼方法において、燃焼室中央に円柱状突起を有し、円
柱状突起の直上に噴射ノズルを有し、円柱状突起の外周
に環状溝をもち、パイロット噴射時には、噴射ノズルと
円柱状突起間の距離を、噴射された燃料が霧化する距離
よりも大きくして、噴霧を環状溝領域に拡散させるとと
もに、圧縮上死点付近での噴射ノズルと円柱状突起間の
距離を、噴射された燃料が霧化する距離よりも小さくし
て、主噴射を分裂しない液柱状態で突起先端の平面部に
衝突させ、環状溝に近接した燃焼室内に拡散させること
を特徴とする直噴式ディーゼル機関の燃焼方法。
5. The method for combustion of a direct injection diesel engine according to claim 4, further comprising a cylindrical projection at the center of the combustion chamber, an injection nozzle immediately above the cylindrical projection, and an annular groove on the outer periphery of the cylindrical projection. At the time of pilot injection, the distance between the injection nozzle and the columnar protrusion is made larger than the distance at which the injected fuel is atomized, and the spray is diffused into the annular groove region. The distance between the injection nozzle and the columnar projection is made smaller than the distance at which the injected fuel is atomized, and the main injection collides with the flat part at the tip of the projection in a liquid column state that does not split, causing combustion near the annular groove. A combustion method for a direct-injection diesel engine, characterized by being diffused indoors.
【請求項6】 請求項5記載の直噴式ディーゼル機関の
燃焼方法において、多噴口ノズルを用いる湯合に、円柱
状突起の先端部を部分的に円錐形状としたことを特徴と
する直噴式ディーゼル機関の燃焼方法。
6. The direct injection diesel engine according to claim 5, wherein the tip of the cylindrical projection has a partially conical shape in the case of using a multi-injection nozzle. Engine combustion method.
【請求項7】 請求項5記載の直噴式ディーゼル機関の
燃焼方法において、多噴口ノズルを用いる場合に、円柱
状突起の先端部の中央付近を平坦にし、外周付近を円弧
状のくぼみ形状とすることを特徴とする直噴式ディーゼ
ル機関の燃焼方法。
7. The method for combustion of a direct injection diesel engine according to claim 5, wherein when using a multi-injection nozzle, the center of the tip of the cylindrical projection is flattened, and the outer circumference is formed in an arcuate concave shape. A combustion method for a direct injection diesel engine, characterized in that:
【請求項8】 請求項3記載の直噴式ディーゼル機関の
燃焼方法において、1本のホールノズルともう1本のス
ロットルノズルを有し、スロットルノズルをパイロッ
ト、他方のホースノズルを主噴射用とすることを特徴と
する直噴式ディーゼル機関の燃焼方法。
8. A combustion method for a direct-injection diesel engine according to claim 3, comprising one hole nozzle and another throttle nozzle, wherein the throttle nozzle is used as a pilot and the other hose nozzle is used for main injection. A combustion method for a direct injection diesel engine, characterized in that:
【請求項9】 請求項1記載の直噴式ディーゼル機関の
燃焼方法において、パイロット燃焼領域を断熱性の高い
材料で囲むことを特徴とする直噴式ディーゼル機関の燃
焼方法。
9. The combustion method for a direct-injection diesel engine according to claim 1, wherein the pilot combustion region is surrounded by a material having high heat insulation.
【請求項10】 請求項2記載の直噴式ディーゼル機関
の燃焼方法において、1本のホールノズルともう1本の
スロットルノズルを有し、ホールノズルをパイロット、
他方のスロットルノズルを主噴射用としたことを特徴と
する直噴式ディーゼル機関の燃焼方法。
10. The method for combustion of a direct injection diesel engine according to claim 2, further comprising one hole nozzle and another throttle nozzle, wherein the hole nozzle is a pilot,
A direct injection diesel engine combustion method, wherein the other throttle nozzle is used for main injection.
JP05200097A 1997-03-06 1997-03-06 Combustion method of direct injection diesel engine Expired - Fee Related JP3804879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05200097A JP3804879B2 (en) 1997-03-06 1997-03-06 Combustion method of direct injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05200097A JP3804879B2 (en) 1997-03-06 1997-03-06 Combustion method of direct injection diesel engine

Publications (2)

Publication Number Publication Date
JPH10252476A true JPH10252476A (en) 1998-09-22
JP3804879B2 JP3804879B2 (en) 2006-08-02

Family

ID=12902579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05200097A Expired - Fee Related JP3804879B2 (en) 1997-03-06 1997-03-06 Combustion method of direct injection diesel engine

Country Status (1)

Country Link
JP (1) JP3804879B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297682A (en) * 1999-04-16 2000-10-24 Mitsubishi Motors Corp Internal combustion engine of cylinder injection type
JP2001073860A (en) * 1999-08-31 2001-03-21 Toyota Motor Corp Compression ignition type internal combustion engine
JP2002502931A (en) * 1998-02-07 2002-01-29 ダイムラークライスラー アーゲー Method for operating a four-stroke internal combustion engine
JP2002030937A (en) * 2000-04-28 2002-01-31 Gureitochiren:Kk Engine and system
US6425367B1 (en) * 1999-09-17 2002-07-30 Nissan Motor Co., Ltd. Compression self-ignition gasoline internal combustion engine
JP2002327633A (en) * 2001-02-23 2002-11-15 Clean Air Partners Inc Gas-fueled compression ignition engine with maximized pilot ignition intensity and pilot fuel injection method
WO2002097255A1 (en) * 2001-05-22 2002-12-05 Hitachi, Ltd. Compression ignition internal combustion engine
JP2003049650A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Compressed self-ignition internal combustion engine
JP2006118427A (en) * 2004-10-21 2006-05-11 Toyota Motor Corp Compression ignition internal combustion engine
WO2007080746A1 (en) * 2006-01-13 2007-07-19 Kabushiki Kaisha Toyota Jidoshokki Premixing compression self-ignition combustion engine
JP2010190110A (en) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd Premixed compression self-ignition type internal combustion engine
JP2010236477A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Control method for direct-injection engine and direct-injection engine
FR2946393A1 (en) * 2009-06-03 2010-12-10 Inst Francais Du Petrole FUEL INJECTION METHOD IN DIRECT INJECTION AUTO-INFLAMMATION INTERNAL COMBUSTION ENGINE
US9303610B2 (en) 2010-12-02 2016-04-05 Wärtsilä Finland Oy Fuel injection unit, a method of operating such and an internal combustion engine
JP2016180360A (en) * 2015-03-24 2016-10-13 株式会社豊田中央研究所 diesel engine
US11773802B2 (en) * 2021-10-14 2023-10-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502931A (en) * 1998-02-07 2002-01-29 ダイムラークライスラー アーゲー Method for operating a four-stroke internal combustion engine
JP2000297682A (en) * 1999-04-16 2000-10-24 Mitsubishi Motors Corp Internal combustion engine of cylinder injection type
JP2001073860A (en) * 1999-08-31 2001-03-21 Toyota Motor Corp Compression ignition type internal combustion engine
US6425367B1 (en) * 1999-09-17 2002-07-30 Nissan Motor Co., Ltd. Compression self-ignition gasoline internal combustion engine
JP2002030937A (en) * 2000-04-28 2002-01-31 Gureitochiren:Kk Engine and system
JP2002327633A (en) * 2001-02-23 2002-11-15 Clean Air Partners Inc Gas-fueled compression ignition engine with maximized pilot ignition intensity and pilot fuel injection method
US7055495B2 (en) 2001-05-22 2006-06-06 Hitachi, Ltd. Compression ignition internal combustion engine
US6966295B2 (en) 2001-05-22 2005-11-22 Hitachi, Ltd. Compression ignition internal combustion engine
WO2002097255A1 (en) * 2001-05-22 2002-12-05 Hitachi, Ltd. Compression ignition internal combustion engine
JP2003049650A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Compressed self-ignition internal combustion engine
JP2006118427A (en) * 2004-10-21 2006-05-11 Toyota Motor Corp Compression ignition internal combustion engine
WO2007080746A1 (en) * 2006-01-13 2007-07-19 Kabushiki Kaisha Toyota Jidoshokki Premixing compression self-ignition combustion engine
JP2010190110A (en) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd Premixed compression self-ignition type internal combustion engine
JP2010236477A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Control method for direct-injection engine and direct-injection engine
US8544444B2 (en) 2009-03-31 2013-10-01 Mazda Motor Corporation Control of direct fuel injection engine
FR2946393A1 (en) * 2009-06-03 2010-12-10 Inst Francais Du Petrole FUEL INJECTION METHOD IN DIRECT INJECTION AUTO-INFLAMMATION INTERNAL COMBUSTION ENGINE
EP2261491A1 (en) * 2009-06-03 2010-12-15 IFP Energies nouvelles Fuel injection method for a self-ignition internal combustion engine with direct injection
US9303610B2 (en) 2010-12-02 2016-04-05 Wärtsilä Finland Oy Fuel injection unit, a method of operating such and an internal combustion engine
JP2016180360A (en) * 2015-03-24 2016-10-13 株式会社豊田中央研究所 diesel engine
US11773802B2 (en) * 2021-10-14 2023-10-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JP3804879B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US6705274B2 (en) In-cylinder direct injection spark-ignition internal combustion engine
JP3804879B2 (en) Combustion method of direct injection diesel engine
CN103161563B (en) The dual-fuel combustion system and its method of the IGNITION CONTROL based on diesel compression ignition triggering
JP2007231908A (en) Fuel injection device for internal combustion engine
JPH06336932A (en) Direct-injection type diesel engine
JPH09228838A (en) Direct injection type diesel engine
JP2003328759A (en) Direct injection, spark ignition type internal-combustion engine
JP2007231913A (en) Fuel injection device for internal combustion engine
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
JPH1150848A (en) Cylinder injection spark ignition type internal combustion engine
JP2005351200A (en) Direct-injection spark-ignition internal combustion engine
JP2002285844A (en) Compression self-ignition type internal combustion engine
JPH04228821A (en) Combustion chamber of direct injection diesel engine
JP5136255B2 (en) Spark ignition direct injection engine
JP3039155B2 (en) Fuel combustion promotion method for diesel engine
JPH11210472A (en) Structure of combustion chamber in cylinder injection type spark ignition engine
JP2569919B2 (en) In-cylinder direct injection spark ignition engine
JPH0110412Y2 (en)
JPS62139921A (en) Fuel collision, reflection, and diffusion type combustion method and internal combustion engine therefor
JP2587370Y2 (en) In-cylinder direct injection spark ignition engine
JPH08177500A (en) Direct injection and spark-ignition type engine
JP2008088920A (en) Cylinder injection type spark ignition internal combustion engine
JPS60128927A (en) Direct-injection diesel engine
JPH04187815A (en) Cylinder direct injection type spark ignition engine
JPH10141062A (en) Diesel engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees