JPS61204950A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61204950A
JPS61204950A JP4454785A JP4454785A JPS61204950A JP S61204950 A JPS61204950 A JP S61204950A JP 4454785 A JP4454785 A JP 4454785A JP 4454785 A JP4454785 A JP 4454785A JP S61204950 A JPS61204950 A JP S61204950A
Authority
JP
Japan
Prior art keywords
substrate
wiring
film
silicon
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4454785A
Other languages
Japanese (ja)
Inventor
Shigeya Mori
森 重哉
Hitoshi Ito
仁 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4454785A priority Critical patent/JPS61204950A/en
Publication of JPS61204950A publication Critical patent/JPS61204950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make it possible to form a wiring thickly with good selectivity, by growing a wiring material in a region, where the wiring is to be formed, on the surface of a semiconductor substrate covered by an insulating film in a vapor phase, applying an RF bias to the substrate, sputtering the surface of the substrate by inactive gas ions, and forming the wiring. CONSTITUTION:On a silicon substrate 1, a one-conducting type impurity diffused layer 12 is formed. An SiO2 film 11 is formed on the surface of the substrate by thermal oxidation or a CVD (chemical vapor deposition) method. A contact hole 13 is provided in said SiO2 film so as to face the impurity diffused layer. Then, RF bias is applied to the substrate 1. SiF4 and W on the surface of the substrate 1 undergo sputter etching by argon ions. Oxidizing reducing reaction of tungsten hexafluoride, the substrate silicon and hydrogen is performed by a low-pressure chemical vapor deposition method (LPCVD), and a tungsten film 14 is selectively embedded in the contact hole without depositing it on SiO2.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は、半導体装置の製造方法に係り、特に電極配線
の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming electrode wiring.

(発明の技術的背景とその問題点〕 LSIにおいて高集積化にともない、チップが複雑化し
、単位面積あたりの必要配線数が多くなり、多層配線技
術がますます重要なものとなってきた。
(Technical background of the invention and its problems) As LSIs become more highly integrated, chips become more complex and the number of wires required per unit area increases, making multilayer wiring technology increasingly important.

従来は、2層目の配線幅を1層目の配線幅より幅広くと
ってやったり、テーパーをつけることにより、凹凸部を
緩和し、断線などに対処してきたが、コンタクトホール
のアスペクト比が1以上であったり、3層目、4層目が
必要になってくると、これだけでは対処しきれなくなっ
てきた。
Conventionally, the wiring width of the second layer was made wider than the wiring width of the first layer, or the wiring width of the first layer was made tapered to alleviate irregularities and deal with disconnections. If this is the case, or if a third or fourth layer becomes necessary, it becomes impossible to cope with this alone.

また、高集積化が進み、パターンが微細になるにともな
い、不純物の拡散層は非常に浅く、トランジスタなどで
は0.2−以下に形成されるようになってきた。
Further, as the degree of integration increases and patterns become finer, the impurity diffusion layer has become extremely shallow, and in transistors and the like, it has come to be formed with a depth of 0.2- or less.

このような浅い拡散層を用いた場合に、通常のアルミニ
ウムを用いて電極を形成覆ると、製造工程中の熱処理に
よりアルミニウムと基板シリコンとが相互に拡散し、不
純物拡散層にアルミニウムのスパイクが入り、ベース、
エミッタ接合の短絡や拡散接合破壊の原因となる。一方
、接合破壊防止対策の一方法であるシリコン過剰含有ア
ルミニウムを用いての電極形成においては、拡散層とア
ルミニウムのコ・ンタク1へ部にシリコンが析出()て
]ンタク]−抵抗が増大するなどの問題がある。
If such a shallow diffusion layer is used and the electrode is formed and covered with ordinary aluminum, the heat treatment during the manufacturing process will cause the aluminum and the silicon substrate to diffuse into each other, causing aluminum spikes to enter the impurity diffusion layer. ,base,
This can cause emitter junction short circuits and diffusion junction breakdown. On the other hand, when forming electrodes using aluminum containing excessive silicon, which is one method of preventing junction breakdown, silicon precipitates in the contact area between the diffusion layer and the aluminum, resulting in an increase in resistance. There are other problems.

そこで上記のような問題を解決する手段として、アルミ
ニウム配線と基板シリコンとの間、又は下層配線と上層
配線とのスルホール部分に気相成長法で選択的にタング
ステンなどの高融点金属を埋込むことが行なわれている
Therefore, as a means to solve the above-mentioned problems, a high melting point metal such as tungsten is selectively buried in the through-hole portion between the aluminum wiring and the substrate silicon, or between the lower layer wiring and the upper layer wiring using a vapor phase growth method. is being carried out.

タングステンを例にとって選択性気相成長法を説明する
。反応は、次のように進む酸化還元反応である。
The selective vapor phase growth method will be explained using tungsten as an example. The reaction is an oxidation-reduction reaction that proceeds as follows.

韓Fe (ゾ)七H2(9)・+Si(S(基板))→
W (S)+SF4  (9> + 2tlF (S?
 )まず、基板シリコンと−F6が反応し、基板表面に
Wができ、さらにそれが核となり、水素で還元されたW
がそこに成長していくという方法である。従ってシリコ
ンの露出している部分か金属表面にしかWは成長1Lず
、5i02J:には成長しないため、選択性気相成長法
といわれている。
Han Fe (zo)7H2(9)・+Si(S(substrate))→
W (S) + SF4 (9> + 2tlF (S?
) First, substrate silicon and -F6 react, W is formed on the substrate surface, which becomes a nucleus, and W reduced with hydrogen.
This is the way to grow. Therefore, W grows only on the exposed portions of silicon or on the metal surface, and does not grow on 5i02J:, so it is called a selective vapor phase growth method.

しかし、上記の方法も選択性が良いのは、せいぜい膜厚
2000八までで、それ以上埋込もうとすると、5in
z上にもWが成長してしまい、選択性が悪くなる。これ
は、5i02 J−に吸るしていた反応生成廃棄物でめ
るSiF4などが核となり、5i02上にもWが成長し
てしまうためである。 2000Å以上から選択性が悪
くなる原因は、反応初期にはSiF4は吸@量も微量で
不安定だったものが、堆積時間の経過とともにSiF4
の吸@吊も増加し、安定になるためと考えられる。
However, the above method has good selectivity only up to a film thickness of 2,000 mm at most, and if you try to embed more than 5 inches,
W also grows on z, resulting in poor selectivity. This is because SiF4, which is a reaction product waste absorbed on 5i02 J-, becomes a nucleus, and W grows on 5i02 as well. The reason why the selectivity deteriorates from 2000 Å or more is that at the beginning of the reaction, SiF4 adsorbed a very small amount and was unstable, but as the deposition time progressed, SiF4
This is thought to be due to the fact that the suction @hang also increases and becomes stable.

その時間が、堆積量で約2000人と考えられる。It is estimated that approximately 2,000 people were deposited during that time.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来の問題点を改良したもので、選
択性良く、しかも厚く配線を形成することを可能とした
半導体装置の製造方法を掟供することを目的とする。
The present invention is an improvement over the above-mentioned conventional problems, and aims to provide a method for manufacturing a semiconductor device that enables thick wiring to be formed with good selectivity.

(発明の概要) 本発明は、絶縁膜でおおわれた半導体基板表面の配線を
形成すべき領域に選択的に配線物質を気相成長させると
同時に、基板にRFバイアスをかcノで、基板表面を不
活性ガスイオンでスパッタ1ノながら配線を形成するこ
とを特徴とする。
(Summary of the Invention) The present invention selectively grows a wiring material in a vapor phase in a region on the surface of a semiconductor substrate covered with an insulating film where wiring is to be formed, and at the same time applies an RF bias to the substrate. The method is characterized in that wiring is formed by sputtering with inert gas ions.

〔発明の効果〕〔Effect of the invention〕

本発明によって1−以上の深さのコンタクトホール及び
スルーボールに選択性よく配線物質を埋込むことができ
、膜の純度が良くなり、さらに低抵抗のコンタクト抵抗
が得られ、アルミニウムと基板シリコンとの反応も防ぐ
ことかできた。
According to the present invention, it is possible to embed wiring material with high selectivity into contact holes and through balls with a depth of 1- or more, improving the purity of the film and obtaining low contact resistance. This reaction could also be prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は、本発明の実施例で使用1“る装置の概要であ
る。シリコン基板1は、電源5により導体20を介して
R[バイアスがかけられる石英カソード電極2の上にの
っている。それにチャンバー6に固定された陽極3が平
行に対向している。7は弗素系樹脂絶縁物、9はシール
ド、10は導体20を流れる冷却水、8,18はマグネ
ッ1〜である。雰囲気4は、アルゴン、六フッ化タング
ステン及び水素ガスからなる渥合気体である。
FIG. 2 is a schematic diagram of an apparatus used in an embodiment of the present invention. A silicon substrate 1 is placed on a quartz cathode electrode 2 which is biased by a power supply 5 through a conductor 20. An anode 3 fixed to a chamber 6 is opposed to it in parallel. 7 is a fluorine-based resin insulator, 9 is a shield, 10 is cooling water flowing through a conductor 20, and 8 and 18 are magnets 1 to 1. Atmosphere 4 is a mixture of argon, tungsten hexafluoride, and hydrogen gas.

第1図は、本発明の実施例の製造工程を示ずちのである
。先ず、公知の方法によりシリコン基板1上に一導電型
の不純物拡散層12を設け、基板表面に熱酸化またはC
VD (気相化学反応)法による5iOzl!311を
形成し、不純物拡散層に対し、上記5iOz膜にコンタ
クトホール13をあける(第1図に))・。前記第2図
の装置で基板1にR[バイアスをかけ、基板1表面のS
iF、1及びWをアルゴンイオンでスパッタエッチしな
がら、減圧気相成長法(LPCVD法)で六フッ化タン
グステンと基板シリコン及び水素とを酸化還元反応させ
て、タングステン膜14を5i02上に堆積させること
なく、選択的にコンタクトホールに埋込んだ(第1図υ
)。実験条件は、六フッ什タングステン、水素ガス8i
量がそれぞれ1〜2;caf/l1lin、 10〜1
000i/minで、基板温度は200〜700℃の範
囲で行なった。次に、上記タングツテン14を堆積後ア
ルミニウム配線15を形成した(第1図(C))。
FIG. 1 shows the manufacturing process of an embodiment of the present invention. First, an impurity diffusion layer 12 of one conductivity type is provided on a silicon substrate 1 by a known method, and the substrate surface is subjected to thermal oxidation or C.
5iOzl by VD (vapor phase chemical reaction) method! A contact hole 13 is formed in the 5iOz film for the impurity diffusion layer (see FIG. 1). Using the apparatus shown in FIG. 2, R bias is applied to the substrate 1, and S
While iF, 1, and W are sputter-etched with argon ions, tungsten hexafluoride is subjected to an oxidation-reduction reaction with the substrate silicon and hydrogen using a low-pressure chemical vapor deposition method (LPCVD method) to deposit a tungsten film 14 on 5i02. The contact hole was selectively filled without any damage (Fig. 1 υ
). Experimental conditions were 6F tungsten, hydrogen gas 8I
The amount is 1-2 respectively;caf/l1lin, 10-1
000 i/min, and the substrate temperature was in the range of 200 to 700°C. Next, after depositing the tungsten 14, an aluminum wiring 15 was formed (FIG. 1(C)).

以上、本発明により以下のような効果を得ることができ
た。
As described above, the following effects could be obtained by the present invention.

■タングステンの選択成長において、反応生成廃棄物で
あるSiF4などが核となり選択成長を妨げていたもの
が、タングステンの気相成長と同時に基板表面をスパッ
タエッチしてやることにより、反応生成廃棄物が取り除
かれ、タングステン堆積の選択性が増した。
■In the selective growth of tungsten, reaction product waste such as SiF4 becomes a nucleus and hinders selective growth. By sputter etching the substrate surface at the same time as the vapor phase growth of tungsten, the reaction product waste can be removed. , the selectivity of tungsten deposition was increased.

■気相成長と同時にスパッタエッチを行なうためスパッ
タクリーニングの効果が現われ、湿式などの前処理を必
要としない。また、膜中に取り込まれる未反応物質や反
応生成廃棄物をたえ[ずスパッタにより、取り除いてい
るため膜の純度も増した。
■Since sputter etching is performed simultaneously with vapor phase growth, the effect of sputter cleaning appears, and wet pretreatment is not required. In addition, the purity of the film was also increased because unreacted substances and reaction product wastes that were incorporated into the film were constantly removed by sputtering.

■コンタクト部分に完全に埋込むことができた)   
ため、平坦化が実現でき2層目、3層目の配線の断線が
なくなった。ざらに、コンタクト抵抗も低下し、アルミ
ニウムとシリコンの反応もなくなった。
■It was possible to completely embed it in the contact part)
As a result, flattening was achieved and there were no disconnections in the second and third layer wiring. In general, the contact resistance has decreased, and the reaction between aluminum and silicon has disappeared.

なお、上記実施例中に挙げた条件は、−員体例で、必ら
ずしも同様な条件で行う必要はなく、これ以上でもこれ
以下でも、その時の状態にあわせて替えても画商に差し
支えない。
Note that the conditions listed in the above examples are examples, and do not necessarily have to be carried out under the same conditions, and art dealers may change them to suit the conditions at the time, whether they are higher or lower than these. do not have.

上記実施例では、拡散層に対するコンタクト孔の埋込み
平坦化工程について説明したが、多層配線構造における
スルーホール部の埋込み平坦化に対しても同様の効果を
有する。
In the above embodiment, the process of burying and planarizing contact holes in the diffusion layer has been described, but the same effect can be obtained for burying and planarizing through-hole portions in a multilayer wiring structure.

また、実施例として配線材料がタングステンの場合を例
に挙げたが、モリブデン、チタン、タンタル等の高融点
金属を用いてもよい。
Moreover, although the case where the wiring material is tungsten has been given as an example, high melting point metals such as molybdenum, titanium, tantalum, etc. may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す工程断面図、第2図は
本発明の実施例で使用する装置の概略構成図である。 1・・・Si基板、2・・・石英電極(陰極)、3・・
・陽極、4・・・雰囲気ガス(Ar &WFa&Hz 
)、5・・・旺電源、6・・・チャンバー、7・・・テ
フロン、8・・・マグネット、9・・・シールド、10
・・・冷却水、11・・・5iO211!i!、12・
・・不純物拡散層、13・・・コンタクトホール、14
・・・タングステン膜、15・・・アルミ配線。 (7317)  代理人 弁理士 則 近 憲 佑(ば
か1名) 第1図
FIG. 1 is a process sectional view showing an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an apparatus used in the embodiment of the present invention. 1...Si substrate, 2...quartz electrode (cathode), 3...
・Anode, 4... Atmosphere gas (Ar & WFa & Hz
), 5... Power supply, 6... Chamber, 7... Teflon, 8... Magnet, 9... Shield, 10
...Cooling water, 11...5iO211! i! , 12・
...Impurity diffusion layer, 13...Contact hole, 14
...Tungsten film, 15...Aluminum wiring. (7317) Agent Patent Attorney Noriyuki Chika (1 idiot) Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)第1の導電層の作り込まれた基板の表面に形成さ
れた絶縁膜に対し、窓を形成する穿孔工程と、不活性ガ
スイオンで前記基板表面をスパッタしつつ前記窓内に第
2の導電層を構成する導電性物質を選択的に気相成長法
により形成する工程と、次いで第3の導電層を形成して
電極配戦を構成せしめる工程とを備えた半導体装置の製
造方法。
(1) A punching step of forming a window in an insulating film formed on the surface of the substrate on which the first conductive layer is formed, and a step of forming holes in the window while sputtering the surface of the substrate with inert gas ions. A method for manufacturing a semiconductor device comprising the steps of selectively forming a conductive material constituting a second conductive layer by vapor phase growth, and then forming a third conductive layer to configure an electrode arrangement. .
(2)第1の導電層は、半導体基板内に形成される一導
電型の不純物を含む半導体層であることを特徴とする特
許請求の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the first conductive layer is a semiconductor layer containing impurities of one conductivity type formed in a semiconductor substrate.
(3)第1の導電層は、基板上に絶縁層を介して形成さ
れる配線層であることを特徴とする特許請求の範囲第1
項に記載した半導体装置の製造方法。
(3) The first conductive layer is a wiring layer formed on the substrate via an insulating layer.
A method for manufacturing a semiconductor device described in Section 1.
JP4454785A 1985-03-08 1985-03-08 Manufacture of semiconductor device Pending JPS61204950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4454785A JPS61204950A (en) 1985-03-08 1985-03-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4454785A JPS61204950A (en) 1985-03-08 1985-03-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61204950A true JPS61204950A (en) 1986-09-11

Family

ID=12694522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4454785A Pending JPS61204950A (en) 1985-03-08 1985-03-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61204950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226049A (en) * 1988-07-14 1990-01-29 Matsushita Electron Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226049A (en) * 1988-07-14 1990-01-29 Matsushita Electron Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US5356835A (en) Method for forming low resistance and low defect density tungsten contacts to silicon semiconductor wafer
US7186638B2 (en) Passivation processes for use with metallization techniques
JP2000306997A (en) Semiconductor device having barrier metal layer and fabrication thereof
KR20010048302A (en) Contact forming method for semiconductor device
JPS61204950A (en) Manufacture of semiconductor device
JP2582596B2 (en) Method for manufacturing semiconductor device
JP3072544B2 (en) Semiconductor device wiring method
JPH0817845A (en) Semiconductor device and manufacture thereof
JPS6235539A (en) Manufacture of semiconductor device
JPH06120355A (en) Manufacture of semiconductor device
JPS61139026A (en) Production of semiconductor device
JPH0126172B2 (en)
JPH02139932A (en) Manufacture of semiconductor device
JP2660072B2 (en) Contact formation method
JP2694950B2 (en) Method of forming high melting point metal film
KR950006345B1 (en) Aluminium metal wiring method using wn film as a barrier layer
JPH01253241A (en) Manufacture of semiconductor device
JPH01309356A (en) Wiring structure of semiconductor device and its formation
JPH02185023A (en) Selective vapor growth method
JPS628542A (en) Manufacture of semiconductor device
JPS61203652A (en) Manufacture of semiconductor device
KR20000007410A (en) Metal wiring method of semiconductor device
JPH03248464A (en) Contact-buried metal structure and manufacture thereof
JPH06244187A (en) Manufacture of semiconductor device
JPS6120154B2 (en)