JPH0226049A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0226049A
JPH0226049A JP17597288A JP17597288A JPH0226049A JP H0226049 A JPH0226049 A JP H0226049A JP 17597288 A JP17597288 A JP 17597288A JP 17597288 A JP17597288 A JP 17597288A JP H0226049 A JPH0226049 A JP H0226049A
Authority
JP
Japan
Prior art keywords
conductive layer
semiconductor substrate
diffusion layer
contact
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17597288A
Other languages
Japanese (ja)
Inventor
Shuichi Mayumi
周一 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP17597288A priority Critical patent/JPH0226049A/en
Publication of JPH0226049A publication Critical patent/JPH0226049A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce contact resistance by forming a diffusion layer of the same conductive type as that of a semiconductor diffusion layer on a semiconductor substrate within a groove, embedding a first conductive layer, and then forming a second conductive layer on it. CONSTITUTION:A groove 5 is made through a diffusion layer 2 formed on a semiconductor substrate 1 on the semiconductor substrate 1 by etching the semiconductor substrate 1 within the contact window 5 and a diffusion layer 6 of the same conductive type as that of the diffusion layer 2 is formed on the semiconductor substrate 1 within this groove 5. After that, a first conductive layer 7 is embedded into the groove 5 and a second conductive layer 8 is formed on this first conductive layer 7, thus increasing the contact area of the diffusion layers 2 and 6 and the first conductive layer 7 of the semiconductor substrate 1. It reduces contact resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法、特にその際のコンタ
クト形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming contacts therein.

従来の技術 従来の超LSI装置においては、集積度を増すためにコ
ンタクト窓の大きさが非常に小さくなり、配線・基板間
のコンタクト抵抗が高くなるという問題があった。コン
タクト抵抗が高い場合、半導体装置の特性が劣化したり
、故障に至ることがある。
2. Description of the Related Art In conventional VLSI devices, the size of the contact window has become extremely small in order to increase the degree of integration, resulting in an increase in contact resistance between the wiring and the substrate. If the contact resistance is high, the characteristics of the semiconductor device may deteriorate or it may fail.

一方、コンタクトの微細化が進むと、コンタクト部分で
の配線の段差被覆性が劣化するという問題がある。この
問題を解決するための方法として、コンタクト内にWな
どの導電物を埋め込む方法などが提案されている。
On the other hand, as the contact becomes finer, there is a problem in that the step coverage of the wiring at the contact portion deteriorates. As a method to solve this problem, a method of embedding a conductive material such as W in the contact has been proposed.

初めに、従来技術の一例として、コンタクト窓内に導電
物を埋め込む方法を採用したコンタクト形成方法につい
て、第2図(a)〜(d)を参照して詳細に説明する。
First, as an example of the prior art, a contact forming method employing a method of embedding a conductive material in a contact window will be described in detail with reference to FIGS. 2(a) to 2(d).

第2図は眉間絶縁膜形成工程からAn配線形成工程まで
の断面図であり、簡明化のため、配線−シリコン基板コ
ンタクト部分のみを示す。
FIG. 2 is a cross-sectional view from the glabella insulating film formation step to the An wiring formation step, and for the sake of simplicity, only the wiring-silicon substrate contact portion is shown.

第2図(a)に示すように、まず、p型シリコン基板1
の上に形成されたMO5型トランジスタなどの回路素子
(図示せず)やn型拡散層2を覆うように眉間絶縁膜と
しての酸化ケイ素膜3を形成する1次に、第2図(b)
に示すように、ホトレジスト4をマスクとして、n型拡
散層2の上の酸化ケイ素膜3をエツチングすることによ
り、コンタクト窓5を形成する。この後、第2図(c)
に示すように、ホトレジスト4を除去した後、コンタク
ト窓5内のシリコン基板1のn型拡散層2の上にW膜7
を成長する。このとき、W膜7の表面と酸化ケイ素膜3
の表面の高さがほぼ一致する程度にW膜7の成長を行う
。W膜7の選択成員には、たとえばWF、、H,混合ガ
スを用い、温度は300℃前後で実施される。最後に、
第2図(d)に示すように、Au配、&!8を形成して
完成する。
As shown in FIG. 2(a), first, a p-type silicon substrate 1
In the first step, a silicon oxide film 3 is formed as an insulating film between the eyebrows so as to cover the circuit elements (not shown) such as MO5 type transistors formed thereon and the n-type diffusion layer 2, as shown in FIG. 2(b).
As shown in FIG. 2, a contact window 5 is formed by etching the silicon oxide film 3 on the n-type diffusion layer 2 using the photoresist 4 as a mask. After this, Figure 2(c)
After removing the photoresist 4, a W film 7 is formed on the n-type diffusion layer 2 of the silicon substrate 1 within the contact window 5, as shown in FIG.
grow. At this time, the surface of the W film 7 and the silicon oxide film 3
The W film 7 is grown to such an extent that the heights of the surfaces of the two surfaces are almost the same. For example, WF, H, and a mixed gas are used as the selected members of the W film 7, and the temperature is about 300°C. lastly,
As shown in FIG. 2(d), the Au arrangement, &! Form 8 and complete.

発明が解決しようとする課題 このようにして行われる半導体装置の製造方法において
は、W膜7とn型拡散層2の接触面積が小さく、コンタ
クト抵抗が高くなるという問題がある。たとえば、n型
拡散層2の表面リン濃度がI XIO211am−’、
コンタクト窓5の大きさが1×1μm2の場合、コンタ
クト抵抗は約700となる。
Problems to be Solved by the Invention In the method of manufacturing a semiconductor device carried out in this manner, there is a problem that the contact area between the W film 7 and the n-type diffusion layer 2 is small, resulting in a high contact resistance. For example, the surface phosphorus concentration of the n-type diffusion layer 2 is IXIO211am-',
When the size of the contact window 5 is 1×1 μm 2 , the contact resistance is approximately 700.

そこで、コンタクト抵抗を極力小さくする必要のある回
路においては、コンタクト窓の面積を広げてコンタクト
抵抗の低減が図られるが、この場合、チップサイズが増
大するという欠点がある。
Therefore, in circuits that require contact resistance to be as small as possible, contact resistance is reduced by increasing the area of the contact window, but this has the drawback of increasing chip size.

本発明は上記問題を解決するもので、チップサイズを増
大することなく、電気抵抗の低いコンタクトが得られる
半導体装置の製造方法を提供することを目的とするもの
である。
The present invention solves the above problems, and aims to provide a method for manufacturing a semiconductor device that allows a contact with low electrical resistance to be obtained without increasing the chip size.

課題を解決するための手段 上記問題を解決するために本発明は、コンタクト窓内の
半導体基板をエツチングすることによって半導体基板に
この半導体基板に形成した拡散層を貫通して溝を堀り、
3の溝内部の半導体基板に前記拡散層と同導電型の拡散
層を形成した後、その溝内部に第1の導電層を埋め込み
、この第1の導電層上に第2の導電層を形成するもので
ある。
Means for Solving the Problems In order to solve the above problems, the present invention includes etching the semiconductor substrate within the contact window to form a groove in the semiconductor substrate through a diffusion layer formed in the semiconductor substrate.
After forming a diffusion layer of the same conductivity type as the diffusion layer in the semiconductor substrate inside the groove of No. 3, a first conductive layer is buried inside the groove, and a second conductive layer is formed on the first conductive layer. It is something to do.

作用 上記構成により、半導体基板の拡散層と第1の導電層の
接触面積が増大するため、コンタクト抵抗を低減させる
ことができる。
Effect: With the above configuration, the contact area between the diffusion layer of the semiconductor substrate and the first conductive layer increases, so that contact resistance can be reduced.

実施例 以下本発明の一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例の半導体装置の製造方法の工
程断面図であり、これを用いて説明する。
FIG. 1 is a process sectional view of a method of manufacturing a semiconductor device according to an embodiment of the present invention, and will be explained using this.

なお、簡明化のため配線・基板間のコンタクト部分のみ
を示す。
For simplicity, only the contact portion between the wiring and the board is shown.

第1図(a)に示すように、まず、P型シリコン基板1
の上に形成されたMO8型トランジスタなどの回路素子
(図示せず)やn型拡散層2を覆う”ように層間絶縁膜
としての酸化ケイ素膜3を形成する0次に、第1図(b
)に示すように、ホトレジスト4をエツチングマスクと
して、酸化ケイ素膜3をドライエツチングする。このと
き、たとえば、エツチングガスとしてCHF□/ 02
混合ガスを用いる。引き続き、ホトレジスト4をエツチ
ングマスクとして、シリコン基板1をエツチングするこ
とによって溝であるコンタクト窓5を形成する。シリコ
ン基板1のエツチングガスとしてたとえばS F、/C
CL混合ガスが用いられる。この後、第1図(c)に示
すように、ホトレジスト4を02プラズマによって除去
した後、たとえば、PH310□混合ガス中で熱処理を
ほどこすことによって、コンタクト窓5内のシリコン基
板1にn型拡散層6を形成する0次に、第1図(d)に
示すようにコンタクト窓5内に第1の導電層としてのW
all7を選択成長する。このとき、W膜7の表面と酸
化ケイ素膜3の表面の高さがほぼ一致する程度にW膜7
の成長を行う、W膜7の選択成長には、たとえば、WF
、/H,混合ガスを用いて、温度300℃前後で実施す
る。最後に、第1図(、)に示すように第2の導電層と
してのAu配線8を形成して完成する。
As shown in FIG. 1(a), first, a P-type silicon substrate 1
Next, as shown in FIG.
), the silicon oxide film 3 is dry etched using the photoresist 4 as an etching mask. At this time, for example, CHF□/02 is used as the etching gas.
Uses mixed gas. Subsequently, using the photoresist 4 as an etching mask, the silicon substrate 1 is etched to form a contact window 5, which is a groove. As an etching gas for the silicon substrate 1, for example, SF, /C
A CL mixed gas is used. After that, as shown in FIG. 1(c), after removing the photoresist 4 with 02 plasma, heat treatment is performed in, for example, a PH310□ mixed gas to form an n-type silicon substrate 1 within the contact window 5. Next, as shown in FIG. 1(d), W is formed as a first conductive layer in the contact window 5.
Select and grow all7. At this time, the W film 7 is heated to such an extent that the heights of the surface of the W film 7 and the surface of the silicon oxide film 3 are almost the same.
For selective growth of the W film 7, for example, WF
, /H, mixed gas at a temperature of around 300°C. Finally, as shown in FIG. 1(, ), Au wiring 8 as a second conductive layer is formed to complete the process.

上記構成によると、コンタクト部分におけるW膜7とn
型拡散層2および6の接触面積が従来方法による場合よ
りも明らかに増大するため、コンタクト抵抗は確実に減
少する。たとえば、溝の深さが1μmの場合、接触面積
は従来の1μm2がら5μm2となり、コンタクト抵抗
は従来の約175となる。
According to the above structure, the W film 7 and n
Since the contact area of the type diffusion layers 2 and 6 is clearly increased compared to the conventional method, the contact resistance is definitely reduced. For example, when the depth of the groove is 1 μm, the contact area becomes 5 μm 2 from the conventional 1 μm 2 and the contact resistance becomes about 175 as compared to the conventional one.

なお、第1の導電層としてWallあるいはMo膜が使
用可能であり、第2の導電層としてAfL。
Note that Wall or Mo film can be used as the first conductive layer, and AfL can be used as the second conductive layer.

A2合金もしくはCu、Cu合金などの配線を使用でき
る。
Wiring made of A2 alloy, Cu, Cu alloy, etc. can be used.

発明の効果 以上のように、本発明によれば、チップサイズを増大す
ることなく、コンタクト抵抗の低減が図られる。
Effects of the Invention As described above, according to the present invention, contact resistance can be reduced without increasing chip size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の一実施例の製造工程を
示す断面図、第2図(a)〜(d)は従来の製造工程を
示す断面図である。 1・・・p型シリコン基板、2・・・n型拡散層、3・
・・酸化ケイ素膜、5・・・コンタクト窓(ill) 
、 6・・・n型拡散層、7・・・W膜(第1の導電層
)、8・・・AM配線(第2の導電層)。 代理人   森  本  義  弘
FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing process of an embodiment of the present invention, and FIGS. 2(a) to (d) are cross-sectional views showing the conventional manufacturing process. 1...p-type silicon substrate, 2...n-type diffusion layer, 3...
...Silicon oxide film, 5...Contact window (ill)
, 6...n-type diffusion layer, 7...W film (first conductive layer), 8...AM wiring (second conductive layer). Agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板にこの半導体基板に形成した拡散層を貫
通して溝を掘る工程と、この溝内部の半導体基板に前記
半導体の拡散層と同導電型の拡散層を形成する工程と、
前記溝内のみに第1の導電層を選択的に成長する工程と
、この第1の導電層上に第2の導電層を形成する工程を
備えた半導体装置の製造方法。
1. A step of digging a groove in a semiconductor substrate through a diffusion layer formed on the semiconductor substrate, and a step of forming a diffusion layer of the same conductivity type as the semiconductor diffusion layer in the semiconductor substrate inside the groove,
A method for manufacturing a semiconductor device, comprising the steps of selectively growing a first conductive layer only within the trench, and forming a second conductive layer on the first conductive layer.
JP17597288A 1988-07-14 1988-07-14 Manufacture of semiconductor device Pending JPH0226049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17597288A JPH0226049A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17597288A JPH0226049A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0226049A true JPH0226049A (en) 1990-01-29

Family

ID=16005464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17597288A Pending JPH0226049A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0226049A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115245A (en) * 1983-11-28 1985-06-21 Toshiba Corp Manufacture of semiconductor device
JPS6161441A (en) * 1984-09-03 1986-03-29 Toshiba Corp Manufacture of semiconductor device
JPS61204950A (en) * 1985-03-08 1986-09-11 Toshiba Corp Manufacture of semiconductor device
JPS62299049A (en) * 1986-06-18 1987-12-26 Matsushita Electronics Corp Manufacture semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115245A (en) * 1983-11-28 1985-06-21 Toshiba Corp Manufacture of semiconductor device
JPS6161441A (en) * 1984-09-03 1986-03-29 Toshiba Corp Manufacture of semiconductor device
JPS61204950A (en) * 1985-03-08 1986-09-11 Toshiba Corp Manufacture of semiconductor device
JPS62299049A (en) * 1986-06-18 1987-12-26 Matsushita Electronics Corp Manufacture semiconductor device

Similar Documents

Publication Publication Date Title
US5945712A (en) Semiconductor device having a SOI structure with substrate bias formed through the insulator and in contact with one of the active diffusion layers
JPH0418735A (en) Manufacture of bipolar type semiconductor device
JPH07183302A (en) Formation of metal layer and bonding method therefor
JPS6318673A (en) Manufacture of semiconductor device
US4425379A (en) Polycrystalline silicon Schottky diode array
JPH06342802A (en) High-performance semiconductor device and its manufacture
JPH0145224B2 (en)
JPH0388362A (en) Semiconductor structure for high output integrated circuit
US4720739A (en) Dense, reduced leakage CMOS structure
US4512076A (en) Semiconductor device fabrication process
US3776786A (en) Method of producing high speed transistors and resistors simultaneously
JPH0226049A (en) Manufacture of semiconductor device
US3659156A (en) Semiconductor device
EP0428067A2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH1140573A (en) Manufacture of semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JP2940986B2 (en) Method for manufacturing semiconductor device
JPH0268952A (en) Semiconductor device and manufacture thereof
JPS6120141B2 (en)
JPS63114261A (en) Self-aligning base shunt for transistor
JPH04209526A (en) Manufacture of semiconductor device
JPS6295871A (en) Manufacture of semiconductor device
JPH1154520A (en) Semiconductor device and manufacture thereof
JPS61107738A (en) Manufacture of semiconductor device
JPH02170432A (en) Wiring of integrated circuit and its formation