JPS6120377A - Superconductive circuit - Google Patents

Superconductive circuit

Info

Publication number
JPS6120377A
JPS6120377A JP59140512A JP14051284A JPS6120377A JP S6120377 A JPS6120377 A JP S6120377A JP 59140512 A JP59140512 A JP 59140512A JP 14051284 A JP14051284 A JP 14051284A JP S6120377 A JPS6120377 A JP S6120377A
Authority
JP
Japan
Prior art keywords
thin film
plane
superconducting
crystal
nbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59140512A
Other languages
Japanese (ja)
Inventor
Juichi Nishino
西野 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59140512A priority Critical patent/JPS6120377A/en
Publication of JPS6120377A publication Critical patent/JPS6120377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the titled device which has a high integration degree and stable action and can be manufactured with high yield, by a method wherein a thin film of crystal with a (1,0,0) plane or polycrystal oriented mainly to a (1,0,0) plane is selectively formed and used for a superconductive electrode, in the crystal of a superconductor having a crystal structure of NaCl structure. CONSTITUTION:An NbN thin film is formed on an MgO single crystal substrate 1 of (1,0,0) plane by reactive sputtering. The NbN thin film is made of polycrystal of (1,0,0) plane strongly oriented to the (1,0,0) plane or to this direction by following the crystallinity of the MgO substrate. This NbN thin film is processed into the superconductive electrode 2 by Ar ion etching with a mask of a photo resist pattern. Next, an interlayer insulation film 3 made of an SiO2 thin film and having an aperture is formed. The surface of the superconductive electrode 2 exposed in this aperture is oxidized with Ar plasma into a tunnel barrier layer 4; successively, a superconductive electrode 5 made of Pb-5wt% In alloy is formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超電導状態の得られる極低温で動作する超電
導回路に係り、高集積度でかつ動作が安定な超電導回路
を高い製造歩留りで作製することができる構造の超電導
回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a superconducting circuit that operates at extremely low temperatures where a superconducting state can be obtained, and involves producing a highly integrated superconducting circuit with stable operation at a high manufacturing yield. The present invention relates to a superconducting circuit with a structure that can be used.

〔発明の背景〕[Background of the invention]

極低温で動作する超電導回路、特にジョセフソン接合を
用いた回路において、その超電導電極あるいは配線の材
料に結晶構造がNaCΩ構造の超電導薄膜を用いること
は1例えばIEEE Trans。
In superconducting circuits that operate at extremely low temperatures, especially circuits using Josephson junctions, it is recommended, for example, to use a superconducting thin film with an NaCΩ crystal structure as the material for superconducting electrodes or wiring, as described in IEEE Trans.

Magnetics Wag −15、314(198
1年)におけるにosaka等による”Fabrica
tion of N b N / P bいる通り公知
の技術である0例えばNbNは超電導転移温度が14〜
15にと他の超電導体に比べて高いため温度ゆらぎに対
して回路動作が安定であるという利点がある。NbN薄
膜はJournal ofApplied Physi
@s 54.6509 (1983年)におけるBac
on等の”Proparties of NbN th
in fi1msスパッタリング法によって作製される
ことが知られている。しかし従来は結晶性の良い薄膜が
得られなかったため、NaCμ構造の超電導薄膜の結晶
性、配向性と、薄膜の表面状態との関係、特に表面自然
酸化膜厚との関係については全く知見が得られていなか
った。
Magnetics Wag-15, 314 (198
“Fabrica” by Osaka et al.
For example, NbN has a superconducting transition temperature of 14~
15, which is higher than other superconductors, has the advantage that circuit operation is stable against temperature fluctuations. NbN thin film is published in Journal of Applied Physi
Bac in @s 54.6509 (1983)
"Properties of NbN th"
It is known that it can be manufactured by an in fi 1 ms sputtering method. However, since it has not been possible to obtain thin films with good crystallinity, there is no knowledge of the relationship between the crystallinity and orientation of superconducting thin films with the NaCμ structure and the surface condition of the thin film, especially the relationship with the surface natural oxide film thickness. It wasn't.

一方、NbN等を用いた超電導回路は上記特長があるも
のの、特性のバラツキが多く、再現性に問題があり、製
造歩留りも高くなかった。
On the other hand, although superconducting circuits using NbN or the like have the above-mentioned features, there are many variations in characteristics, problems with reproducibility, and manufacturing yields are not high.

〔発明の目的〕[Purpose of the invention]

本発明は、高集積度で動作が安定であり且つ高い歩留り
で製造することができる超電導回路を提供することにあ
る。
An object of the present invention is to provide a superconducting circuit that has a high degree of integration, stable operation, and can be manufactured at a high yield.

〔発明の概要〕 本発明では、結晶構造がNaCQ構造の超電導体の結晶
において薄膜として得易い表面が(1゜0.0)面と(
1,1,1)面と平行な薄膜のうち、特に酸化速度の遅
い(1,0,0)面の結晶あるいは主として(1、0、
0)面に配向した多結晶薄膜を選択的に形成し超電導電
極に用いることによって、超電導相互の接続を容易に形
成でき5またジョセフソン接合のトンネル障壁層を制御
性良く形成できるように構成したものである。
[Summary of the Invention] In the present invention, the surface of a superconductor crystal having an NaCQ crystal structure, which is easily obtained as a thin film, is a (1°0.0) plane and a (1°0.0) plane.
Among the thin films parallel to the 1,1,1) plane, crystals with the (1,0,0) plane, which has a particularly slow oxidation rate, or mainly the (1,0,
0) By selectively forming a plane-oriented polycrystalline thin film and using it as a superconducting electrode, it is possible to easily form interconnections between superconductors and to form a Josephson junction tunnel barrier layer with good controllability. It is something.

本発明者らはNbN等を用いた超電導回路のバラツキに
ついて検討した結果、超電導薄膜の表面自然酸化膜は、
超電導体相互の超電導接続やジョセフソン接合のトンネ
ル障壁層を形成する際にその製造の制御性に大きく影響
するため、その性質を良く制御する必要があることが新
たに分ったのである。本発明はこの発見に基づいて、さ
らに研究を進めた結果得られたものである。
The present inventors investigated the variations in superconducting circuits using NbN, etc., and found that the natural oxide film on the surface of superconducting thin films is
It has been newly discovered that it is necessary to control the properties well because it greatly affects the controllability of manufacturing when forming superconducting connections between superconductors and tunnel barrier layers for Josephson junctions. The present invention was obtained as a result of further research based on this discovery.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を参照して本発明の詳細な説明する。(1
、0、0)面のMgO単結晶基板1上に反応性スパッタ
リング法により厚さ約200nmのNbN薄膜を形成し
た。このときの基板温度は400℃とし、スパッタリン
グには圧力2PaのA r +30%N2ガスを使用し
た。このNbN薄膜はMgO基板の結晶性を引き継いで
(1,0゜0)面あるいはこの方向に強く配向した多結
晶より成る。このNbN薄膜をホトレジストのパターン
をマスクとしてArイオンエツチング法により加工し、
超電導電II2とした0次いで厚さ300nmのSiO
薄膜より成り、開口部を有する層間絶縁膜3を形成した
。この開口部内に露出した超電導電極2の表面を圧力1
paのAr+5%02ガスを用いたプラズマによって酸
化し厚さ3〜4nI11のトンネル障壁層4を形成し、
引き続いて厚さ約50nmのPb−5wt%In合金よ
り成る超電ヨセフソン接合は、下側の超電導電極1の結
晶方位がそろっているためにトンネル障壁層4であるN
b酸化物膜が均一であり、しかも(1、0、0)面のN
bN結晶は酸化速度が遅くトンネル障壁層4を形成する
前にプロセスの途中で生じる自然酸化物は高々lnmで
あって均一であるために、製作の制御性を高くすること
ができた。
Hereinafter, the present invention will be described in detail with reference to Examples. (1
, 0, 0) plane, an NbN thin film with a thickness of about 200 nm was formed on an MgO single crystal substrate 1 with a reactive sputtering method. The substrate temperature at this time was 400° C., and Ar + 30% N2 gas at a pressure of 2 Pa was used for sputtering. This NbN thin film inherits the crystallinity of the MgO substrate and is made of a (1,0°0) plane or a polycrystal strongly oriented in this direction. This NbN thin film was processed by Ar ion etching using the photoresist pattern as a mask.
300 nm thick SiO as superconducting II2
An interlayer insulating film 3 made of a thin film and having an opening was formed. The surface of the superconducting electrode 2 exposed in this opening is pressed 1
A tunnel barrier layer 4 having a thickness of 3 to 4 nI11 is formed by oxidation by plasma using Ar+5%02 gas of pa.
Subsequently, a superelectric Josephson junction made of a Pb-5wt%In alloy with a thickness of about 50 nm is formed by the N tunnel barrier layer 4 because the crystal orientation of the lower superconducting electrode 1 is aligned.
b The oxide film is uniform, and the N on the (1,0,0) plane
Since the bN crystal has a slow oxidation rate and the natural oxide formed during the process before forming the tunnel barrier layer 4 is uniform and has a thickness of at most 1 nm, it was possible to improve the controllability of the manufacturing process.

第2図に、本発明の第2の実施例を示す。第1の実施例
と同様の基板1上に超電導電極2を形成する。次いで超
電導電極2の表面をArイオンを用いて約10nmエツ
チングした後に、NbNより成る超電導電極へを形成し
た。このようにして2つの超電導電極の接続を形成した
ところ、超電導電極2は主に(1、0、0)面のNbN
結晶より成るために、接続を形成する前に生じる自然酸
化物膜が高々lnmと薄く、従ってArイオンによる表
面清浄化処理を極めて再現性良く行うことができた。ま
たその結果として、超電導接続を流れる超電導臨界電流
の再現性を高めることができた。
FIG. 2 shows a second embodiment of the invention. A superconducting electrode 2 is formed on a substrate 1 similar to the first example. Next, the surface of the superconducting electrode 2 was etched by about 10 nm using Ar ions, and then a superconducting electrode made of NbN was formed. When the connection between the two superconducting electrodes was formed in this way, the superconducting electrode 2 mainly consisted of NbN in the (1, 0, 0) plane.
Since it is made of crystal, the natural oxide film formed before forming the connection is as thin as 1 nm at most, and therefore the surface cleaning treatment using Ar ions can be performed with extremely good reproducibility. As a result, we were able to improve the reproducibility of the superconducting critical current flowing through the superconducting connection.

これらの実施例では基板に(1、0、0)面のMgO結
晶を用いたが、(1,0,0)面のSi。
In these examples, an MgO crystal with a (1,0,0) plane was used as the substrate, but Si with a (1,0,0) plane was used.

N a CQを用いても同様の結果を得ることができた
Similar results could be obtained using N a CQ.

また、上記実施例では、超電導体としてNbNを用いた
がM o Nを用いても同様の結果が得られた。
Furthermore, although NbN was used as the superconductor in the above example, similar results were obtained using MoN.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、極低温で動作する
超電導回路において、これを構成する超電導電極の表面
に製造途中で生じる自然酸化膜厚を高々1.0nmにお
さえることができ、しかもその厚さは結晶面がそろって
いるために均一であるので、該表面の清浄化処理を従来
の半分程度にすることができ、しかもその再現性を高く
することができるほかに、ジョセフソン接合のトンネル
障壁層を形成する場合には、超電導電極表面の結晶方位
がそろっているために、酸化物トンネル障壁層の均一性
が良くなり、従ってジョセフソン接合の特性の均一性と
再現性を向上させることができた。
As described above, according to the present invention, in a superconducting circuit that operates at extremely low temperatures, it is possible to suppress the natural oxide film thickness that occurs on the surface of the superconducting electrode constituting the circuit during manufacturing to 1.0 nm at most. Since the thickness is uniform because the crystal planes are aligned, the cleaning process for the surface can be reduced to about half of the conventional cleaning process, and the reproducibility can be increased. When forming a tunnel barrier layer, the uniform crystal orientation of the superconducting electrode surface improves the uniformity of the oxide tunnel barrier layer, thus improving the uniformity and reproducibility of the Josephson junction characteristics. I was able to do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における超電導回路の一部を
示す断面図、第2図は本発明の他の実施例における超電
導回路の一部を示す断面図である。
FIG. 1 is a sectional view showing a part of a superconducting circuit in one embodiment of the present invention, and FIG. 2 is a sectional view showing a part of a superconducting circuit in another embodiment of the invention.

Claims (1)

【特許請求の範囲】 1、極低温において動作し、配線又は電極の一部又は全
部の材料は結晶構造がNaCl(岩塩)構造の超電導薄
膜を用いて成り、かつ該超電導薄膜は(1、0、0)面
の結晶あるいは主として(1、0、0)面に配向した多
結晶体を用いて成ることを特徴とする超電導回路。 2、特許請求の範囲第1項記載の超電導回路において、
前記NaCl(岩塩)構造の超電導薄膜はNbN、Mo
Nより選ばれた少なくとも1材料であることを特徴とす
る超電導回路。 3、特許請求の範囲第1項もしくは第2項記載の超電導
回路において、前記超電導薄膜を形成する下地材料はM
gO、NaCl、Siより選ばれた1材料から成り且つ
前記超電導薄膜の形成面が(1、0、0)面の単結晶あ
るいは(1、0、0)面に配向した多結晶体を用いて成
ることを特徴とする超電導回路。
[Claims] 1. A superconducting thin film that operates at extremely low temperatures and has a crystal structure of NaCl (rock salt) as part or all of the wiring or electrode, and the superconducting thin film has a crystal structure of (1,0 , 0)-plane crystal or a polycrystal mainly oriented in the (1, 0, 0) plane. 2. In the superconducting circuit according to claim 1,
The superconducting thin film with the NaCl (rock salt) structure is made of NbN, Mo
A superconducting circuit characterized in that it is made of at least one material selected from N. 3. In the superconducting circuit according to claim 1 or 2, the base material forming the superconducting thin film is M
The superconducting thin film is made of one material selected from gO, NaCl, and Si, and the superconducting thin film is formed using a single crystal whose plane is the (1, 0, 0) plane or a polycrystalline body oriented in the (1, 0, 0) plane. A superconducting circuit characterized by:
JP59140512A 1984-07-09 1984-07-09 Superconductive circuit Pending JPS6120377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140512A JPS6120377A (en) 1984-07-09 1984-07-09 Superconductive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140512A JPS6120377A (en) 1984-07-09 1984-07-09 Superconductive circuit

Publications (1)

Publication Number Publication Date
JPS6120377A true JPS6120377A (en) 1986-01-29

Family

ID=15270368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140512A Pending JPS6120377A (en) 1984-07-09 1984-07-09 Superconductive circuit

Country Status (1)

Country Link
JP (1) JPS6120377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486574A (en) * 1987-02-27 1989-03-31 Hitachi Ltd Superconducting device
JPH04317456A (en) * 1991-04-15 1992-11-09 Yoshibumi Sakai Production of ordinary temperature superconductive material and molded body thereof
US6882293B2 (en) 2002-08-21 2005-04-19 National Institute Of Advanced Industrial Science And Technology Method for forming Josephson junction, Josephson junction and apparatus using Josephson junction
CN111969100A (en) * 2020-08-26 2020-11-20 中国科学院上海微系统与信息技术研究所 Josephson junction based on TaN and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486574A (en) * 1987-02-27 1989-03-31 Hitachi Ltd Superconducting device
US5126315A (en) * 1987-02-27 1992-06-30 Hitachi, Ltd. High tc superconducting device with weak link between two superconducting electrodes
US5552375A (en) * 1987-02-27 1996-09-03 Hitachi, Ltd. Method for forming high Tc superconducting devices
US5729046A (en) * 1987-02-27 1998-03-17 Hitachi, Ltd. Superconducting device having pinning regions
US6069369A (en) * 1987-02-27 2000-05-30 Hitachi, Ltd. Superconducting device
JPH04317456A (en) * 1991-04-15 1992-11-09 Yoshibumi Sakai Production of ordinary temperature superconductive material and molded body thereof
US6882293B2 (en) 2002-08-21 2005-04-19 National Institute Of Advanced Industrial Science And Technology Method for forming Josephson junction, Josephson junction and apparatus using Josephson junction
CN111969100A (en) * 2020-08-26 2020-11-20 中国科学院上海微系统与信息技术研究所 Josephson junction based on TaN and preparation method thereof
CN111969100B (en) * 2020-08-26 2022-05-17 中国科学院上海微系统与信息技术研究所 Josephson junction based on TaN and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2798361B2 (en) Superconducting field effect device having grain boundary channel and method of manufacturing the same
JPS6120377A (en) Superconductive circuit
US5840204A (en) Method for patterning a layer on oxide superconductor thin film and superconducting device manufactured thereby
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JPH0282585A (en) Superconducting wiring
JPS61110480A (en) Superconductive device
JPH02186682A (en) Josephson junction device
JP2899287B2 (en) Josephson element
JP2738144B2 (en) Superconducting element and fabrication method
JP2641966B2 (en) Superconducting element and fabrication method
JP2976427B2 (en) Method of manufacturing Josephson device
JP2647251B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JPH0828538B2 (en) Method for forming superconducting thin film pattern
JP2641975B2 (en) Superconducting element and fabrication method
JPS61135156A (en) Semiconductor device and manufacture thereof
JP2656853B2 (en) Superconducting element and fabrication method
JPS59194482A (en) Tunnel junction type josephson element
JPS61110479A (en) Structure of superconductive transistor
JPS61110481A (en) Superconductive transistor
JPH04171872A (en) Josephson device and manufacture thereof
JPH0548159A (en) Oxide superconductor device and manufacture thereof
JPS63318176A (en) Manufacture of oxide superconductive junction
JPS62183576A (en) Manufacture of josephson element