JPS61201837A - Air-fuel ratio control device for engine - Google Patents

Air-fuel ratio control device for engine

Info

Publication number
JPS61201837A
JPS61201837A JP4298085A JP4298085A JPS61201837A JP S61201837 A JPS61201837 A JP S61201837A JP 4298085 A JP4298085 A JP 4298085A JP 4298085 A JP4298085 A JP 4298085A JP S61201837 A JPS61201837 A JP S61201837A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
output
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4298085A
Other languages
Japanese (ja)
Inventor
Yoshitaka Tanigawa
谷川 義孝
Takeshi Yoshimura
武 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4298085A priority Critical patent/JPS61201837A/en
Publication of JPS61201837A publication Critical patent/JPS61201837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent abnormal increase of the temperature of exhaust gas and to improve acceleration, by controlling an air-fuel ratio so that it is brought to a value closer to the lean side than an air-fuel ratio in a high load range and an output is controlled to the vicinity of a maximum for a specified time during acceleration. CONSTITUTION:By means of signals from an airflow meter 6, a throttle opening sensor 11, and an 0 sensor 9, a control unit 14 outputs a signal to a fuel injection valve 8 and an ignition plug 12 and controls an quantity of fuel injected and an ignition time. When the control unit 14 decides that an engine is during acceleration, a fuel correction value of a maximum output is read, and an air-fuel ratio is controlled so that it is adjusted to a value closer to the lean side than an air-fuel ratio in a high load range and an output is controlled to the vicinity of a maximum output for a specified time in which the temperature of exhaust gas is below an allowable temperature. This preents abnormal increase of an exhaust gas temperature and improves acceleration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高負荷域において空燃比を軽負荷域の空燃比
よりもリッチ側に制御するエンジンの空燃比制御装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine air-fuel ratio control device that controls the air-fuel ratio in a high load range to be richer than the air-fuel ratio in a light load range.

(従来技術) 一般に、エンジンの空燃比制御装置では、第5図に示す
ように、理論空燃比R,より少しリーン側で出力が最大
となることから、軽負荷域と同様、高負荷域でも空燃比
をその付近に制御したいという要求があるが、その付近
に制御していると排気ガス温度が異常に上昇して許容温
度(950°C程度)を越え、信頼性の点から問題を生
ずるので、高負荷域では、排気ガス温度が許容温度以下
となるように一定の空燃比R2よりもリッチ側に制御す
る必要がある。また、現実には、エンジンの制作誤差等
を考慮して上記一定の空燃比R2よりも一定の割合(7
%程度)だけリッチな設定空燃比R3よりリッチ側とな
るように空燃比を制御しているのが現状である。
(Prior art) In general, in an engine air-fuel ratio control device, as shown in Figure 5, the output is maximum at a slightly lean side of the stoichiometric air-fuel ratio R. There is a demand to control the air-fuel ratio to around that range, but if it is controlled around that range, the exhaust gas temperature will rise abnormally and exceed the allowable temperature (approximately 950°C), causing problems in terms of reliability. Therefore, in a high load range, it is necessary to control the air-fuel ratio to be richer than the constant air-fuel ratio R2 so that the exhaust gas temperature is below the allowable temperature. In reality, in consideration of engine manufacturing errors, etc., a certain ratio (7
At present, the air-fuel ratio is controlled so that it is richer than the set air-fuel ratio R3, which is richer by about 10%.

そのため、高負荷域への加速時には本来得られる出力よ
りもかなり小さい出力しか得られず、加速性に劣るとい
う問題がある。
Therefore, when accelerating to a high load range, only a considerably smaller output than originally obtained is obtained, resulting in poor acceleration performance.

ところで、特公昭54−27491号公報に、加速状態
に応じて燃料の増量を加減すると共に。
By the way, Japanese Patent Publication No. 54-27491 discloses that the amount of fuel is increased or decreased depending on the acceleration state.

機関の回転数の上昇に伴って前記の加速時の燃料のiv
量を少くすることにより、加速に必要なだけの燃料を増
量して無駄な燃料の増量を防止し、もって排気ガスの浄
化、燃料の節減を図ることのできる内燃機関用電気式燃
料噴射装置が記載されているが、空燃比については考慮
されておらず、上記問題に対処することはできない。
iv of fuel at the time of acceleration as the engine speed increases
An electric fuel injection device for internal combustion engines that can increase the amount of fuel necessary for acceleration and prevent unnecessary increases in fuel by reducing the amount of fuel, thereby purifying exhaust gas and saving fuel. Although described, the air-fuel ratio is not taken into account and the above problem cannot be addressed.

(発明の目的) 本発明は、排気ガス温度を異常に上昇させることなく、
加速性に優れるエンジンの空燃比制御装置を提供するこ
とを目的とするものである。
(Objective of the Invention) The present invention provides the following advantages:
The object of the present invention is to provide an air-fuel ratio control device for an engine that has excellent acceleration performance.

(発明の構成) 本発明は、高負荷域において、空燃比が軽負荷域の空燃
比よりもリッチ側に制御されるエンジンの空燃比制御装
置に係るものである。
(Structure of the Invention) The present invention relates to an air-fuel ratio control device for an engine that controls the air-fuel ratio in a high load range to be richer than the air-fuel ratio in a light load range.

本発明は、上記目的を達成するために、エンジンの負荷
を検出する負荷検出手段と、該負荷検出手段の出力を受
け、高負荷域への加速を検出する加速検出手段と、該加
速検出手段の出力を受け、上記空燃比を一定時間、高負
荷域の空燃比よりもリーン側でかつ出力最大付近に補正
する空燃比補正手段とを備えていることを特徴とし、排
気ガス温度が許容温度を越えない一定時間だけ、出力最
大となるように空燃比を制御して加速性を得るものであ
る。
In order to achieve the above object, the present invention provides a load detection means for detecting the load of an engine, an acceleration detection means for receiving the output of the load detection means and detecting acceleration to a high load range, and the acceleration detection means. and an air-fuel ratio correction means for correcting the air-fuel ratio to be leaner than the air-fuel ratio in the high load range and near the maximum output for a certain period of time based on the output of the exhaust gas temperature. Acceleration is achieved by controlling the air-fuel ratio to maximize output for a certain period of time not exceeding .

(実施例) 以下、本発明の実施例を図面に沿って説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

全体構成を示す第1図において、lはエンジンで、吸排
気弁2,3にて開閉される吸排気ポートla、lbに吸
気通路4及び排気通路5が接続されている。
In FIG. 1 showing the overall configuration, l is an engine, and an intake passage 4 and an exhaust passage 5 are connected to intake and exhaust ports la and lb which are opened and closed by intake and exhaust valves 2 and 3.

吸気通路4には、上流側から、エアフローメータ6、ス
ロットル弁7及び燃料噴射弁8が順に配設される一方、
排気通路5には、上流側からo2センサ9及び触媒装置
lOが順に配設されている。
In the intake passage 4, an air flow meter 6, a throttle valve 7, and a fuel injection valve 8 are arranged in order from the upstream side.
In the exhaust passage 5, an O2 sensor 9 and a catalyst device IO are arranged in this order from the upstream side.

11はスロットル弁7の開度を検出するスロットル開度
センサ、12は点火プラグ、13はエンジン回転数セン
サである。
11 is a throttle opening sensor that detects the opening of the throttle valve 7, 12 is a spark plug, and 13 is an engine rotation speed sensor.

14はコントロールユニットで、エアフローメータ6、
スロットル開度センサ11及びo2センサ9よりの信号
により、燃料噴射弁8及び点火プラグ12に信号を出力
し、燃料噴射量及び点火時期を制御するものである。
14 is a control unit, air flow meter 6,
Signals from the throttle opening sensor 11 and O2 sensor 9 are used to output signals to the fuel injection valve 8 and spark plug 12 to control the fuel injection amount and ignition timing.

上記コントロールユニット14は、具体的には、第2図
に示すように構成されている。すなわち、エアフローメ
ータ(A、F、M、)6の出力を受け、吸気空気量を演
算する吸入空気量演算回路21と、該回路21の出力を
受け、基本となる燃料の噴射パルスを演算する基本噴射
パルス演算回路22とを備える。また、エアフローメー
タ6及びスロットル開度センサ11の出力を受け、スロ
ットル弁7が全開でかつ加速時であるか否かを検出する
加速検出回路23と、該回路23の出力を受け、排気ガ
ス温度が許容温度を越えない一定時間をカウントするタ
イマー制御回路24と、該回路24の出力を受け、出力
ベストとなる燃料の補正量を演算する出力ベスト燃料補
正演算回路25を備える。さらに、スロットル開度セン
サ11及びエンジン回転数センサ13の出力を受け、フ
ィードバック(F/B)オープン運転領域(第4図参照
)#こあるか否かを検出するオープン運転領域検出回路
26と、該回路26及びタイマー制御回路24の出力を
受け1通常の燃料の補正量を演算する通常燃料補正量演
算回路27を備える一方、上記両センサ11,13の出
力を受け、フィードバック(F/B)運転領域にあるか
否かを検出するF/B運転領域検出回路28と、該回路
28及び02センサ9の出力を受け、フィードバック制
御の補正量を演算するF/B補正量演算回路29を備え
る。しかして、上記基本噴射パルス演算回路22、出力
ベスト燃料補正演算回路251通常燃料補正量演算回路
27及びF/B補正量演算回路29の出力を受け最終燃
料噴射パルスを演算する最終燃料噴射パルス演算回路3
0より、燃料噴射弁8に最終燃料噴射パルスが出力され
るようになっている・ 続いて、コントロールユニット14の処理の流れを、第
3図に沿って説明する。
Specifically, the control unit 14 is configured as shown in FIG. 2. That is, an intake air amount calculation circuit 21 receives the output of the air flow meter (A, F, M,) 6 and calculates the intake air amount, and receives the output of the circuit 21 and calculates the basic fuel injection pulse. A basic injection pulse calculation circuit 22 is provided. Further, an acceleration detection circuit 23 receives the outputs of the air flow meter 6 and the throttle opening sensor 11 and detects whether or not the throttle valve 7 is fully open and is accelerating. The present invention includes a timer control circuit 24 that counts a certain period of time during which the temperature does not exceed the allowable temperature, and an output best fuel correction calculation circuit 25 that receives the output of the circuit 24 and calculates the correction amount of the fuel that provides the best output. Furthermore, an open operation region detection circuit 26 receives the outputs of the throttle opening sensor 11 and the engine rotation speed sensor 13 and detects whether or not there is a feedback (F/B) open operation region (see FIG. 4); A normal fuel correction amount calculation circuit 27 is provided which receives the outputs of the circuit 26 and the timer control circuit 24 and calculates the correction amount of normal fuel. It is equipped with an F/B operating range detection circuit 28 that detects whether or not it is in the operating range, and an F/B correction amount calculation circuit 29 that receives the outputs of the circuit 28 and the 02 sensor 9 and calculates a correction amount for feedback control. . Thus, the final fuel injection pulse is calculated by receiving the outputs of the basic injection pulse calculation circuit 22, the output best fuel correction calculation circuit 251, the normal fuel correction amount calculation circuit 27, and the F/B correction amount calculation circuit 29 to calculate the final fuel injection pulse. circuit 3
0, the final fuel injection pulse is output to the fuel injection valve 8.Next, the flow of processing of the control unit 14 will be explained with reference to FIG.

先ず、スタートすると、ステップS!でエンジン回転数
センサ13よりエンジン回転数を読込み、ステップS2
でスロットル開度センサ11よりスロットル開度を読込
み、ステップS3で上記エンジン回転数及びスロットル
開度に基づいてフィードバック(F/B)運転領域であ
るか否かを判定する(第4図参照)。
First, when you start, step S! The engine speed is read from the engine speed sensor 13 in step S2.
The throttle opening is read from the throttle opening sensor 11, and in step S3, it is determined whether the engine is in the feedback (F/B) operation region based on the engine speed and the throttle opening (see FIG. 4).

YESの場合はF/B運転領域であるので、F/B運転
領域検出回路28によって検出され、ステップS4でo
2センサ9よりo2濃度を読込み、それに応じて、ステ
ップS5でF/B補正量演算回路29にてF/B補正量
を演算し、空燃比を目標空燃比に制御し、ステップ32
Gへ移る。
If YES, it is the F/B operation area, so it is detected by the F/B operation area detection circuit 28, and o is set in step S4.
In step S5, the F/B correction amount calculation circuit 29 calculates the F/B correction amount, and controls the air-fuel ratio to the target air-fuel ratio.
Move to G.

一方、NOの場合はF/Bオープン運転領域であるので
、オープン運転領域検出回路26にて検出される。それ
から、ステップS8でスロットル弁7が全開状態すなわ
ち90%以上の開度状態であるか否かが判定される。Y
ESの場合は、高負荷域であるので、ステップS7でエ
アフローメータ6 (A、F、M、)の出力値V s 
1を読込み、ステップSaでLooms前のエアフロー
メータ6の出力値Vs2を読込み、面出力値Vsl、V
s2の差分Aを演算しくステップS9)、ステップ81
Gで出力値V s 2をVslに更新する。それから、
ステップS11で、予め設定されている加速検出比較レ
ベル値Bを読込み、ステップSt2で上記差分Aが加速
検出比較レベル値Bよりも大きいか否かを判定し、それ
によって加速時であるか否かを判別する。なお、上記ス
ロットル開度及び加速の判定は、加速検出回路23にて
行われる。
On the other hand, if NO, the F/B open operation region is detected, so the open operation region detection circuit 26 detects the F/B open operation region. Then, in step S8, it is determined whether the throttle valve 7 is in a fully open state, that is, an opening state of 90% or more. Y
In the case of ES, since it is a high load area, the output value V s of the air flow meter 6 (A, F, M,) is determined in step S7.
1, and in step Sa, read the output value Vs2 of the air flow meter 6 before Looms, and set the surface output values Vsl, V
Step S9) to calculate the difference A of s2, Step 81
G updates the output value V s 2 to Vsl. after that,
In step S11, a preset acceleration detection comparison level value B is read, and in step St2, it is determined whether the above-mentioned difference A is larger than the acceleration detection comparison level value B, and thereby it is determined whether or not it is during acceleration. Determine. Note that the determination of the throttle opening degree and acceleration is performed by the acceleration detection circuit 23.

ステップS12での判定がYESの場合は、加速時であ
るので、ステップS13で、A>Bと今回初めてなった
のか否かを判別し、YESの場合はカウンタNをリセッ
トしてイニシャル値aとしくステップ514)、ステッ
プS15でカウンタNを読込む一方、NOの場合は、直
ちにステップS15でカウンタNを読込み、それからカ
ウンタNをN−1とする(ステップ5xs)、Lがして
ステップSITでカウンタNが0であるか否かを判定す
る。なお、カウンタNによる計数は、タイマー制御回路
24にて行われる。
If the determination in step S12 is YES, it means that the acceleration is being performed, so in step S13, it is determined whether A>B and this is the first time. If YES, the counter N is reset to the initial value a. Step 514) reads the counter N in step S15, while if NO, immediately reads the counter N in step S15, then sets the counter N to N-1 (step 5xs), and then reads L in step SIT. Determine whether the counter N is 0 or not. Note that the counting by the counter N is performed by the timer control circuit 24.

ステップS17でYESの場合は、加速が終了したので
、ステップSlaで排気ガス温度対策の点から1通常燃
料補正量演算回路27にて演算された燃料の補正値を読
込み、F/B運転領域の目標空燃比よりもリッチ側でか
つ排気ガス温度が許容温度を越えないオープン運転領域
での設定空燃比よりもリッチ側に制御する一方、Noの
場合は加速中であるので、ステップStaで出力ベスト
燃料補正量演算回路25にて演算された出カベス。
If YES in step S17, acceleration has ended, so in step Sla, the fuel correction value calculated by the 1 normal fuel correction amount calculation circuit 27 is read from the point of view of exhaust gas temperature countermeasures, and the fuel correction value calculated in the F/B operation area is read. The air-fuel ratio is controlled to be richer than the set air-fuel ratio in the open operating range where the exhaust gas temperature does not exceed the allowable temperature and the target air-fuel ratio is richer than the target air-fuel ratio, but if the answer is No, the output is set to the best since it is under acceleration. Output calculated by the fuel correction amount calculation circuit 25.

トの燃料の補正値を読込み、排気ガス温度が許容温度を
越えない一定時間だけ、空燃比を上記設定空燃比よりも
リーン側へ制御するようにし、出力最大として加速性が
図られる。
The fuel correction value is read in, and the air-fuel ratio is controlled to be leaner than the set air-fuel ratio for a certain period of time during which the exhaust gas temperature does not exceed the allowable temperature, thereby maximizing the output and achieving acceleration.

その後、ステップ32Gで基本噴射パルス演算回路22
にて基本噴射量に対応する基本噴射パルス幅を演算し、
ステップS21で最終噴射パルス演算回路30にて最終
噴射パルス幅を演算し、ステップS22で燃料噴射弁8
に最終噴射パルスが出力される。
After that, in step 32G, the basic injection pulse calculation circuit 22
Calculate the basic injection pulse width corresponding to the basic injection amount,
In step S21, the final injection pulse calculation circuit 30 calculates the final injection pulse width, and in step S22, the fuel injection valve 8
The final injection pulse is output.

なお、ステップS 6 + 312でNoの場合は。In addition, in the case of No in step S6+312.

それほど出力を要しないので、ステップSlBへ移る。Since not much output is required, the process moves to step SlB.

(発明の効果) 本発明は、上記のように、加速時に一定時間だけ出力が
最大となるように空燃比を制御するようにしたので、排
気ガス温度を異常に上昇させることなく、加速性の向上
を図ることができる。
(Effects of the Invention) As described above, the present invention controls the air-fuel ratio so that the output is maximized for a certain period of time during acceleration, so the acceleration performance can be improved without abnormally increasing the exhaust gas temperature. You can improve your performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるエンジンの空燃比制御
装置の全体構成図、第2図はコントロールユニットの構
成図、第3図はコントロールユニットの処理の流れを示
す流れ図、第4図はF/B運転領域とF/Bオープン運
転領域との説明図、第5図は空燃比と排気ガス温度及び
出力との関係を示す説明図である。 l・・・・・・エンジン、6・・・・・・エアフローメ
ータ、14・・・・・・コントロールユニット、23・
・・・・・加速検出回路、25・・・・・・出力ベスト
燃料補正演算回路。
Fig. 1 is an overall configuration diagram of an engine air-fuel ratio control device that is an embodiment of the present invention, Fig. 2 is a configuration diagram of a control unit, Fig. 3 is a flowchart showing the flow of processing of the control unit, and Fig. 4 is an explanatory diagram of the F/B operating region and the F/B open operating region, and FIG. 5 is an explanatory diagram showing the relationship between the air-fuel ratio, exhaust gas temperature, and output. l... Engine, 6... Air flow meter, 14... Control unit, 23...
... Acceleration detection circuit, 25 ... Output best fuel correction calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)高負荷域において空燃比が軽負荷域の空燃比より
もリツチ側に制御されるエンジンにおいて、エンジンの
負荷を検出する負荷検出手段と、該負荷検出手段の出力
を受け高負荷域への加速を検出する加速検出手段と、該
加速検出手段の出力を受け空燃比を一定時間高負荷域の
空燃比よりもリーン側でかつ出力最大付近に補正する空
燃比補正手段とを備えていることを特徴とするエンジン
の空燃比制御装置。
(1) In an engine in which the air-fuel ratio is controlled to be richer than the air-fuel ratio in the light load range in a high load range, there is a load detection means for detecting the engine load, and a load detection means for detecting the load in the high load range. and an air-fuel ratio correcting means that receives the output of the acceleration detecting means and corrects the air-fuel ratio to be leaner than the air-fuel ratio in the high load range for a certain period of time and near the maximum output. An engine air-fuel ratio control device characterized by:
JP4298085A 1985-03-04 1985-03-04 Air-fuel ratio control device for engine Pending JPS61201837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4298085A JPS61201837A (en) 1985-03-04 1985-03-04 Air-fuel ratio control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4298085A JPS61201837A (en) 1985-03-04 1985-03-04 Air-fuel ratio control device for engine

Publications (1)

Publication Number Publication Date
JPS61201837A true JPS61201837A (en) 1986-09-06

Family

ID=12651180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4298085A Pending JPS61201837A (en) 1985-03-04 1985-03-04 Air-fuel ratio control device for engine

Country Status (1)

Country Link
JP (1) JPS61201837A (en)

Similar Documents

Publication Publication Date Title
JP3542404B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08144746A (en) Air-fuel ratio control device for internal combustion engine
JPS6011216B2 (en) Air fuel ratio control device
JP3331789B2 (en) Ignition timing control device for internal combustion engine
US5127225A (en) Air-fuel ratio feedback control system having a single air-fuel ratio sensor downstream of a three-way catalyst converter
JPS62203946A (en) Air-fuel ratio controlling method for internal combustion engine
KR19980013972A (en) Method and apparatus for torque shock control during air-fuel ratio transition of lean-burn engine
JP3959781B2 (en) Misfire detection device and control device for direct injection spark ignition engine
JPS61201837A (en) Air-fuel ratio control device for engine
JPH09112310A (en) Air-fuel ratio controller for internal combustion engine
JP3808151B2 (en) Lean air-fuel ratio correction method
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JPH0586934A (en) Transient fuel quantity corrector for engine
JP3538862B2 (en) Engine ignition timing control device
JP3324557B2 (en) Combustion control device for internal combustion engine
JPH0330601Y2 (en)
JPH0658080B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6155334A (en) Air-fuel ratio controller for internal-combustion engine
JP3691078B2 (en) Air-fuel ratio switching control device for internal combustion engine
JPH06137193A (en) Air-fuel ratio control device for internal combustion engine
JPS6198970A (en) Ignition timing control method of internal-combustion engine
JPS62182456A (en) Air-fuel ratio control of internal combustion engine
JPS63162951A (en) Control method for ignition timing and air-fuel ratio of internal combustion engine
JPH041182B2 (en)
JPS6220646A (en) Air-fuel ratio controller for engine