JPS6198970A - Ignition timing control method of internal-combustion engine - Google Patents

Ignition timing control method of internal-combustion engine

Info

Publication number
JPS6198970A
JPS6198970A JP59220240A JP22024084A JPS6198970A JP S6198970 A JPS6198970 A JP S6198970A JP 59220240 A JP59220240 A JP 59220240A JP 22024084 A JP22024084 A JP 22024084A JP S6198970 A JPS6198970 A JP S6198970A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction coefficient
ignition timing
feedback correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220240A
Other languages
Japanese (ja)
Inventor
Toshio Suematsu
末松 敏男
Yuji Takeda
武田 勇二
Katsushi Anzai
安西 克史
Osamu Harada
修 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59220240A priority Critical patent/JPS6198970A/en
Publication of JPS6198970A publication Critical patent/JPS6198970A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1508Digital data processing using one central computing unit with particular means during idling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To enable an accurate idle speed control to be continually performed, by continuously obtained the mean value of an air-fuel ratio feedback correction coefficient determined in accordance with an output from an O2 sensor and controlling the ignition timing in accordance with a deviation of the mean value from the air-fuel ratio feedback correction coefficient. CONSTITUTION:When an internal-combustion engine 14 is in operation, an electronic control circuit 34 first calculates a basic fuel injection quantity tau0 in accordance with an intake air quantity Q and an engine speed N obtained by an air flow meter 2 and a rotary angle sensor 32. Next the circuit 34, when the engine is in idling operation with an idle switch 7 turned on, fetches from a RAM an air-fuel ratio feedback correction coefficient and its mean value after the basic ignition timing at idling time for the engine speed N is referred to a map, calculating a correction angle corresponding to a deviation of the both correction coefficient and the mean value. Subsequently, the circuit 34, adding the correction angle to said basic ignition timing and calculating a required ignition advance angle theta, controls an ignitor 28 in accordance with this ignition advance angle theta.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の点火時期制御方法に係シ、特にアイ
ドル回転数を安定化させるための内燃機関の点火時期制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ignition timing control method for an internal combustion engine, and more particularly to an ignition timing control method for an internal combustion engine for stabilizing the idle speed.

〔従来の技術〕[Conventional technology]

一般の内燃機関では、排ガス空燃比が理論空燃比の混合
気を燃焼させたときの排ガス空燃比よυリッチかリーン
かを検出する。t センサを排気通路に取付け、0.セ
ンサ出力に基づいて空燃比フィードバック補正係数を求
め、機関負荷および機関回転数によって定まる基本燃料
噴射量を空燃比フィードバラ・り補正係数で補正して混
合気の空燃比を理論空燃比近傍に制御することが行なわ
れている。かかる内燃機関においては、近時の低燃費化
の観点から目標アイドル回転数を低く設定する傾向にあ
シ、このため空燃比フィードバック制御のスピードが遅
くなって機関回転数が変動し、機関回転数が目標アイド
ル回転数よυ低下すると運転者に不快感を与える、とい
う問題があった。
In a general internal combustion engine, it is detected whether the exhaust gas air-fuel ratio is υ richer or leaner than the exhaust gas air-fuel ratio when a mixture with the stoichiometric air-fuel ratio is combusted. t Attach the sensor to the exhaust passage and set it to 0. The air-fuel ratio feedback correction coefficient is determined based on the sensor output, and the basic fuel injection amount determined by the engine load and engine speed is corrected using the air-fuel ratio feed variation correction coefficient to control the air-fuel ratio of the mixture to near the stoichiometric air-fuel ratio. things are being done. In such internal combustion engines, there is a recent tendency to set the target idle speed low from the perspective of improving fuel efficiency, and as a result, the speed of air-fuel ratio feedback control becomes slow, causing engine speed fluctuations and increasing engine speed. There was a problem in that if the number of idle revolutions υ fell below the target idle speed, it would cause discomfort to the driver.

このため従来では1機関回転数と目標アイドル回転数と
の偏差に応じて点火時期を遅進角する方法(%開昭58
−176470号公報)や以下で説明する空燃比フィー
ドバック補正係数に基づいて点火時期を制御する方法が
知られている。
For this reason, the conventional method was to retard the ignition timing according to the deviation between the engine speed and the target idle speed (%
176470) and a method of controlling ignition timing based on an air-fuel ratio feedback correction coefficient described below is known.

この空燃比フィードバック補正係数に基づいて点火時期
を制御する方法について説明する。まず、機関回転数が
変動する原因について説明する。0!センサは、排ガス
空燃比が理論空燃比に対応する排ガス空燃比よりリッチ
かり一ンかを検出して第2図(A)に示す空燃比信号を
出力する。空燃比フィードバック補正係数f(A/F)
は、0.センサ出力が空燃比リッチを示すときは減少さ
れ、0゜センサ出力が空燃比リーンを示すときは増加さ
れて、第2図(B)に示すように1.0を中心にして周
期的に変化する。そして、基本燃料噴射量と空燃比フィ
ードバック補正係数f(A/F)とが乗算された値に基
づいて燃料噴射弁の開弁時間が制御されることによυ燃
料噴射量が制御されて空燃比が理論空燃比近傍に制御さ
れる。これによシ、基本燃料噴射量が一定ならば、補正
係数f(A/F)が最大のところで燃料噴射量が最大に
なシ、補正係数f(A/F)が最小のところで燃料噴射
量が最小になって燃料噴射量が変動するため、第2図(
C)の破線で示すようにアイドリング時の機関回転数が
変動することになる。
A method of controlling ignition timing based on this air-fuel ratio feedback correction coefficient will be explained. First, the causes of fluctuations in engine speed will be explained. 0! The sensor detects whether the exhaust gas air-fuel ratio is richer than the exhaust gas air-fuel ratio corresponding to the stoichiometric air-fuel ratio and outputs an air-fuel ratio signal shown in FIG. 2(A). Air-fuel ratio feedback correction coefficient f (A/F)
is 0. When the sensor output indicates a rich air-fuel ratio, it is decreased, and when the 0° sensor output indicates a lean air-fuel ratio, it is increased, and changes periodically around 1.0 as shown in FIG. 2 (B). do. Then, the valve opening time of the fuel injection valve is controlled based on the value obtained by multiplying the basic fuel injection amount and the air-fuel ratio feedback correction coefficient f (A/F), so that the υ fuel injection amount is controlled. The fuel ratio is controlled near the stoichiometric air-fuel ratio. Accordingly, if the basic fuel injection amount is constant, the fuel injection amount will be maximum when the correction coefficient f (A/F) is maximum, and the fuel injection amount will be maximum when the correction coefficient f (A/F) is minimum. becomes the minimum and the fuel injection amount fluctuates, as shown in Figure 2 (
As shown by the broken line in C), the engine speed during idling will fluctuate.

そとで、理論空燃比に対応した空燃比フィードバック補
正係数f(A/F)の値1.0を基準として補正係数f
(A/F)の偏差を求め、偏差が正のときは偏差の大き
さに応じて遅角し偏差が負のときは偏差の大きさに応じ
て進角するように第5図に示す補正角θiacを定め、
この補正角θiscを用いて第2図(D)に示すように
基本点火進角θBigを補正すれば、基本点火進角に対
して進角したときトルクが増加し遅角させたときトルク
が減少するため、第2図(C)に示すようにアイドリン
グ時の機関回転変動を抑制することができる。
Then, the correction coefficient f is calculated based on the value 1.0 of the air-fuel ratio feedback correction coefficient f (A/F) corresponding to the stoichiometric air-fuel ratio.
(A/F) deviation is calculated, and when the deviation is positive, the angle is retarded according to the magnitude of the deviation, and when the deviation is negative, the angle is advanced according to the magnitude of the deviation, as shown in Figure 5. Determine the angle θiac,
If the basic ignition advance angle θBig is corrected using this correction angle θisc as shown in Figure 2 (D), the torque will increase when the basic ignition advance angle is advanced, and the torque will decrease when it is retarded. Therefore, as shown in FIG. 2(C), fluctuations in engine rotation during idling can be suppressed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の空燃比フィードバック補正係数f
(A/F)による点火時期制御方法では、理論空燃比に
対応する値からの偏差に応じて点火時期を補正している
。ところが、燃料噴射系の経時変化によって同一の開弁
時間に対して燃料噴射量が変化すると空燃比フィードバ
ック補正係数f(A/F )  の値が1.0よシずれ
てしまう。例えば、燃料噴射弁の弁体の摩耗等によって
同一の開弁時間に対して燃料噴射量が多くなった場合に
は、開弁時間を短かくして空燃比を理論空燃比に制御す
るために第4図(A)に示すように補正係数f(A/F
 )  が小さくなシ、燃料噴射弁の噴射孔のつ!シ等
によって燃料噴射量が少なくなった場合には、開弁時間
を長くして空燃比を理論空燃比に制御するために第5図
(A)に示すように補正係数f(A/F)が大きくなる
。このように補正係数f(A/F ) +7)値di 
1.0よシずれると、第4図(B)に示すように点火時
期が過進角とガって失火が発生すると共に、第5図(B
)に示すように点火時期が過遅角となって燃費が悪化す
る、という問題があった。
However, the conventional air-fuel ratio feedback correction coefficient f
In the (A/F) ignition timing control method, the ignition timing is corrected according to the deviation from the value corresponding to the stoichiometric air-fuel ratio. However, if the fuel injection amount changes for the same valve opening time due to changes in the fuel injection system over time, the value of the air-fuel ratio feedback correction coefficient f(A/F) will deviate by 1.0. For example, if the fuel injection amount increases for the same valve opening time due to wear of the valve body of the fuel injection valve, the As shown in Figure (A), the correction coefficient f(A/F
) is small, one of the injection holes of the fuel injector! When the fuel injection amount decreases due to reasons such as air leakage, the correction coefficient f (A/F) is set as shown in Fig. 5 (A) in order to increase the valve opening time and control the air-fuel ratio to the stoichiometric air-fuel ratio. becomes larger. In this way, the correction coefficient f(A/F) +7) value di
If it deviates from 1.0, the ignition timing becomes over-advanced and misfire occurs as shown in Figure 4 (B).
), there was a problem in that the ignition timing was too retarded, resulting in poor fuel efficiency.

本発明は上記問題点を解決すべく成されたもので、失火
を発生させることなくまた燃費を悪化させることなくア
イドル回転を安定させることができる内燃機関の点火時
期制御方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ignition timing control method for an internal combustion engine that can stabilize idle rotation without causing misfires or worsening fuel efficiency. shall be.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記目的を達成するために本発明は、排ガス空燃比が理
論空燃比に対応する値よジリッテかり−ンかを検出する
O!七ンサ出力に基づいて空燃比を理論空燃比近傍に制
御するための空燃比フィードバック補正係数を求心1機
関負荷および機関回転数によって定まる基本燃料噴射量
と空燃比フィードバック補正係数とに基づいて空燃比を
理論空燃比近傍に制御する内燃機関のアイドリング時の
点火時期を制御するにあたって、空燃比フィードバック
補正係数の平均値を連続して求め、空燃比フィードバッ
ク補正係数と空燃比フィードバック補正係数の平均値と
の偏差に応じて虫、火時期を遅進角させたことを特徴と
する。
In order to achieve the above object, the present invention provides an O! The air-fuel ratio feedback correction coefficient for controlling the air-fuel ratio near the stoichiometric air-fuel ratio based on the sensor output is calculated based on the air-fuel ratio feedback correction coefficient and the basic fuel injection amount determined by the centripetal engine load and engine speed. In controlling the ignition timing during idling of an internal combustion engine, the average value of the air-fuel ratio feedback correction coefficient is continuously determined, and the average value of the air-fuel ratio feedback correction coefficient and the air-fuel ratio feedback correction coefficient are calculated. It is characterized by retarding the insect and fire timing in accordance with the deviation of the temperature.

〔作 用〕[For production]

本発明によれば、第6図(A)に示すように、空燃比フ
ィードバック補正係数f(A/F)が理論空燃比に対応
する値1.0よシ大きくずれた場合であっても、フィー
ドバック補正係数f(A/F)の平均値G(A/F’)
を連続して求めることによシ、フィードバック補正係数
f(A/F)の中心値近傍の値を求めることができる。
According to the present invention, as shown in FIG. 6(A), even if the air-fuel ratio feedback correction coefficient f(A/F) deviates significantly from the value 1.0 corresponding to the stoichiometric air-fuel ratio, Average value G(A/F') of feedback correction coefficient f(A/F)
By continuously obtaining , it is possible to obtain a value near the center value of the feedback correction coefficient f(A/F).

そして、フィードバック補正係数f (A/F )と平
均値G(A/?)との偏差に応じて点火時期が遅進角さ
れるため、点火時期は第6図(B)  に示すように基
本点火進角θB8mよυ大きくずれることがなく、過進
角および過遅角が生じないようにすることができる。
Then, the ignition timing is retarded according to the deviation between the feedback correction coefficient f (A/F) and the average value G (A/?), so the ignition timing is basically adjusted as shown in Figure 6 (B). The ignition advance angle θB8m does not deviate significantly from υ, and over-advancement and over-retardation can be prevented.

〔発明の効果〕〔Effect of the invention〕

従って、本発明によれば、燃料噴射系の経時変化によっ
て空燃比フィードバック補正係数が大きくずれても、失
火や燃費の悪化を発生させることなくアイドル回転数を
安定させることができる、という効果が得られる。
Therefore, according to the present invention, even if the air-fuel ratio feedback correction coefficient deviates significantly due to changes in the fuel injection system over time, it is possible to stabilize the idle speed without causing a misfire or deterioration of fuel efficiency. It will be done.

〔実施例〕〔Example〕

次に第7図を参照して本発明が適用される点火時期制御
装置を備えた内燃機関(エンジン)の−例を詳細に説明
する。このニンジンはマイクロコンピュータ等の電子制
御回路によって制御されるもので、図に示すようにエア
クリーナ(図示せず)の下流側に吸入空気量センサとし
てのエアフローメータ2を備えている。エアフローメー
タ2は、ダンピングチャンバ内に回動可能に設けられた
メジャリンググレート2Aと、メジャリンググレー)2
Aの開度を検出するポテンショメータ2Bとから構成さ
れている。従って、吸入空気量はポテンショメータ2B
から出力される電圧よシ検出される。
Next, an example of an internal combustion engine equipped with an ignition timing control device to which the present invention is applied will be described in detail with reference to FIG. This carrot is controlled by an electronic control circuit such as a microcomputer, and as shown in the figure, is equipped with an air flow meter 2 as an intake air amount sensor downstream of an air cleaner (not shown). The air flow meter 2 includes a measuring grate 2A rotatably provided in the damping chamber and a measuring grate 2A rotatably provided in the damping chamber.
It is composed of a potentiometer 2B that detects the opening degree of A. Therefore, the amount of intake air is determined by potentiometer 2B.
The voltage output from the sensor is detected.

エアフローメータ2の下流側には、スロットル弁6が配
置され、このスロットル弁6にはスロットル弁6がアイ
ドル位置(全閉)でオンとなりかつスロットル弁がアイ
ドル位置から開かれたときにオフとなるアイドルスイッ
チが取付けられ、スロットル弁6の下流側には、サージ
タンク8が設けられている。このサージタンク8には、
インテークマニホールド10が連結されており、このイ
ンテークマニホールド10内に突出して燃料噴射′弁1
2が配置されている。インテークマニホールド10は、
エンジン本体14の燃焼室14Aに接続され、エンジン
の燃焼室14Aはエキゾーストマニホールド16を介し
て三元触媒を充填した触媒コンバータ(図示せず)に接
続されている。なお、20は点火プラグ、24はエンジ
ン冷却水温を検出する冷却水温センサ、1.は0.セン
サであるO エンジン本体14に取付けられた点火プラグ2゜は、デ
ィストリビュータ26に接続され、ディストリビュータ
26はイグナイタ2日に接続されている。このディスト
リビュータ26には、ディストリビュータハウジングに
固定さ五たピックアップとディストリビュータシャフト
に固定されたシグナルロータとで各々構成された、気筒
判別センサ30およびエンジン回転角センサ32が設け
られている。この気筒判別センサ30は、例えばクラン
ク角720度毎にマイクロコンピュータ等で構成された
電子制御回路54へ気筒判別信号を出力し、エンジン回
転角センサxr2rri、例えばクランク角30度毎に
クランク角基準位置信号を電子制御回路34へ出力する
A throttle valve 6 is arranged downstream of the air flow meter 2, and the throttle valve 6 is turned on when the throttle valve 6 is at the idle position (fully closed) and turned off when the throttle valve 6 is opened from the idle position. An idle switch is attached, and a surge tank 8 is provided downstream of the throttle valve 6. This surge tank 8 has
An intake manifold 10 is connected to the intake manifold 10, and a fuel injection valve 1 protrudes into the intake manifold 10.
2 is placed. The intake manifold 10 is
It is connected to a combustion chamber 14A of the engine body 14, and the combustion chamber 14A of the engine is connected via an exhaust manifold 16 to a catalytic converter (not shown) filled with a three-way catalyst. In addition, 20 is a spark plug, 24 is a cooling water temperature sensor that detects the engine cooling water temperature, 1. is 0. The spark plug 2°, which is a sensor, is attached to the engine body 14, and is connected to a distributor 26, which in turn is connected to an igniter 2. The distributor 26 is provided with a cylinder discrimination sensor 30 and an engine rotation angle sensor 32, each of which includes a pickup fixed to the distributor housing and a signal rotor fixed to the distributor shaft. This cylinder discrimination sensor 30 outputs a cylinder discrimination signal to an electronic control circuit 54 composed of a microcomputer or the like every 720 degrees of the crank angle, and sends a cylinder discrimination signal to the engine rotation angle sensor A signal is output to the electronic control circuit 34.

電子制御回路54は第8図に示すように、ランダムアク
セスメモリ(RAM)56、リードオンリメモリ(RO
M)5B、マイクログロセツシングユニット(MPU)
40、入出力ポート46、入力ポート48、出力ポート
50.52お−よびこれらを接続するバス54を含んで
構成され、、MPU40にはクロック(cLocx)4
2およびタイマ44が接続されている。入出力ポート4
6には、バッファss、ss;マルチプレクサ5日、ア
ナログディジタル変換器(A/D変換器)60を介して
、エアフローメータ2およびエンジン冷却水温センサ2
4が接続されている。入力ポート48には、バッファ6
2およびコンパレータ64を介して01、センサ1が接
続されると共に、波形整形回路66を介して気筒判別セ
ンサ30および回転角センサ52が接続され、更に入力
回路65を介してアイドルスイッチ7が接続されている
。そして、出力ポート50は駆動回路6日を介してイグ
ナイタ2Bに接続され、出力ポート52は駆動回路70
を介して燃料噴射弁12に接続されている。
As shown in FIG. 8, the electronic control circuit 54 includes a random access memory (RAM) 56 and a read only memory (RO).
M) 5B, microgrossing unit (MPU)
40, an input/output port 46, an input port 48, an output port 50, 52, and a bus 54 connecting these.The MPU 40 has a clock (cLocx) 4.
2 and a timer 44 are connected. Input/output port 4
6, buffers ss, ss; multiplexer 5, air flow meter 2 and engine coolant temperature sensor 2
4 is connected. The input port 48 has a buffer 6
01 and sensor 1 are connected through the comparator 64 and the cylinder discrimination sensor 30 and the rotation angle sensor 52 through the waveform shaping circuit 66, and the idle switch 7 is connected through the input circuit 65. ing. The output port 50 is connected to the igniter 2B via the drive circuit 6, and the output port 52 is connected to the drive circuit 70.
It is connected to the fuel injection valve 12 via.

そして、上記のROMには以下で説明する制御プログラ
ム、第9図に示すフィードバック補正係数f(A/F)
と平均値G(A/F)との偏差f(A/y)−G(A/
F’)に応じて定められた補正角θiscのマツプ、第
10図に示すようにエンジン回転数Nに応じて定められ
たアイドリング時の基本点火進角θBs5のマツプ等が
予め記憶されている。
The above ROM contains the control program described below and the feedback correction coefficient f (A/F) shown in FIG.
and the average value G(A/F) f(A/y) - G(A/
A map of the correction angle θisc determined according to the engine rotation speed N, a map of the basic ignition advance angle θBs5 during idling determined according to the engine speed N, etc. are stored in advance, as shown in FIG.

次に、第1図を参照して点火進角θ、基本燃料噴射量τ
。を演算するための本発明の一実施例におけるメインル
ーチンの一部を詳細に説明する。ステップ100におい
て鳳アフロメータ出力をディジタル変換して吸入空気量
QとしてRAMに書込むと共に回転角センサ出力からエ
ンジン回転数Nを演qしてRAMK書込む。ステップ1
02においては、RAMから吸入空気量Qとエンジン回
転数Nとを読出して次の式に従って基本燃料噴射量τリ
 を演算する ただし、には定数である。
Next, referring to Fig. 1, determine the ignition advance angle θ and the basic fuel injection amount τ.
. A part of the main routine in one embodiment of the present invention for calculating . In step 100, the Otori aphrometer output is digitally converted and written as the intake air amount Q in the RAM, and the engine rotational speed N is derived from the rotation angle sensor output and written in the RAMK. Step 1
In 02, the intake air amount Q and the engine speed N are read out from the RAM and the basic fuel injection amount τ is calculated according to the following equation.

次のステップ104では、アイドルスイッチがオンして
いるか否かを判断することによりアイドリング状態か否
かを判断し、アイドリング状態でないときはステップ1
06でエンジン回転数Nとエンレフ1回転当シの吸入空
気fcQ/Nとに基づいて基9本点火進角θBBE2を
演算する。一方、アイドリング状態のときはステップ1
08において。
In the next step 104, it is determined whether the idle switch is on or not, thereby determining whether or not the idle state is in the idling state.
At step 06, the base nine ignition advance angle θBBE2 is calculated based on the engine speed N and the intake air fcQ/N per engine revolution. On the other hand, when idling, step 1
In 08.

wJ10図のマツプから現在のニンジン回転13Nに対
するアイドリング時の基本点火進角θBSEtを演算す
石。次のステップ110では、第11図に示すルーチン
で計算されてRAMに記憶されている空燃比フィードバ
ック補正係数f(A/IF)i、空燃比フィードバック
補正係数の平均値G(A/F)iを取込み、ステップ1
12で第9図のマツプから偏差f(A/’)i−G(A
/F)1に対応する補正角θiscを演算する。そして
、次のステップ114でアイドリング時の基本点火進角
θB8Σ1に補正角θisaを加算して点火進角θを演
算する。
A stone that calculates the basic ignition advance angle θBSEt at idling for the current carrot rotation of 13N from the map shown in wJ10. In the next step 110, the air-fuel ratio feedback correction coefficient f(A/IF)i calculated by the routine shown in FIG. 11 and stored in the RAM, and the average value G(A/F)i of the air-fuel ratio feedback correction coefficient Step 1
12, the deviation f(A/')i-G(A
/F) Calculate the correction angle θisc corresponding to 1. Then, in the next step 114, the correction angle θisa is added to the basic ignition advance angle θB8Σ1 during idling to calculate the ignition advance angle θ.

そして1図示しないルーチンにおいて上記のように演算
された点火進角で点火されるようにイグナイタが禦jl
卸される。
Then, in a routine not shown, the igniter is adjusted so that the ignition is ignited at the ignition advance angle calculated as above.
Wholesale.

第11図は、空燃比フィードバック補正係数f(A/F
)、平均値G(A/F)等を演算する所定時間(例えば
、4m5ec)毎に実行される割込みルーチ゛ンを示す
ものでちる。・ステップ120で空燃比制御のオープン
制御領域か否かを判断し、空燃比フィードバック制御領
域のときはステップ122でO,センサ出力が空燃比リ
ーンを示しているか否かを判断する。0.センサ出力が
空燃比リッチを示しているときは、ステップ126で前
回求めた空燃比フィードバック補正係数t (A/F 
)i−tを所定値(例えば、0.001)小さくして新
たな補正係数f(A/F)1を求め、一方、0.センサ
出力が空燃比リーンを示しているときは、ステップ12
4で前回求めた空燃比フィ−ドバック補正係数f(A/
F)1−五を所定値(例えば、0.001 )大きくし
て新たな補正係数f(A/F)1を求める。
FIG. 11 shows the air-fuel ratio feedback correction coefficient f(A/F
), average value G(A/F), etc. are executed every predetermined time (for example, 4m5ec). - In step 120, it is determined whether or not the air-fuel ratio control is in the open control region, and if it is in the air-fuel ratio feedback control region, it is determined in step 122 whether or not the sensor output indicates a lean air-fuel ratio. 0. When the sensor output indicates that the air-fuel ratio is rich, the air-fuel ratio feedback correction coefficient t (A/F
) it is reduced by a predetermined value (for example, 0.001) to obtain a new correction coefficient f(A/F)1, while 0. If the sensor output indicates a lean air-fuel ratio, step 12
The air-fuel ratio feedback correction coefficient f(A/
F) Increase 1-5 by a predetermined value (for example, 0.001) to obtain a new correction coefficient f(A/F)1.

ステップ128では、前回求めた平均値G(A/IF)
1−1の重みを重くすると共に今回求めた補正係数f(
A/F)1の重みを軽くして1次の式に従って新たな平
均値G(A/F)1を演算する。
In step 128, the previously calculated average value G (A/IF)
In addition to increasing the weight of 1-1, the correction coefficient f(
A new average value G(A/F)1 is calculated according to the linear equation by reducing the weight of A/F)1.

一方、空燃比オープン制御領域のときは、ステップ15
0でステップ128で演算される平均値G(A/F)t
−tをフィードバック補正係数f(A/’)1としてス
テップ152へ進む。ステップ152では、上記のよう
にして演算したフィードバック補正係数f(A/F′)
1と基本燃料噴射量τ。とを乗算して燃料噴射量τを演
算する。
On the other hand, if the air-fuel ratio is in the open control region, step 15
0 and the average value G(A/F)t calculated in step 128
-t is set as the feedback correction coefficient f(A/')1 and the process proceeds to step 152. In step 152, the feedback correction coefficient f(A/F' calculated as described above) is
1 and the basic fuel injection amount τ. The fuel injection amount τ is calculated by multiplying by

そして、図示しないルーチンにおいて、上記のように演
算された燃料噴射量τに対応する量の燃料が噴射される
ように燃料噴射弁の開弁時間が制御される。
Then, in a routine not shown, the opening time of the fuel injection valve is controlled so that an amount of fuel corresponding to the fuel injection amount τ calculated as described above is injected.

次に第12図(A)に示すように、フィード・くツク補
正係数f(A/F)が1.0よシ小さくなっている場合
についての点火時期と回転変動との変化を本実施例と従
来例とを比較して説明する。従来例の点火時期は第12
図(B)の線已に示すように過進角になっておシ、この
ため第12図(C)の線aに示すように、時々発生する
失火によりエンジン回転が大きく低下している。これに
対して本実施例では、第12図(B)の線すに示すよう
に基本点火進角θIMIIc lを中心に変化しており
、このため第12図(C)の線すに示すようにエンジン
回転数は目標回転近傍に制御されている。
Next, as shown in FIG. 12 (A), this example shows the changes in ignition timing and rotational fluctuation when the feed/lock correction coefficient f (A/F) is smaller than 1.0. This will be explained by comparing it with a conventional example. The ignition timing of the conventional example is the 12th
As shown by the line in FIG. 12(B), the engine angle is overadvanced, and as a result, as shown by the line a in FIG. 12(C), the engine rotation is greatly reduced due to occasional misfires. On the other hand, in this embodiment, the basic ignition advance angle changes around the basic ignition advance angle θIMIIcl as shown in the line in FIG. 12(B), and therefore, as shown in the line in FIG. 12(C), The engine speed is controlled close to the target speed.

なお、上記では吸入空気量とエンジン回転数とで基本燃
料噴射量やオフアイドル時の基本点火進角を定めるエン
ジンについて説明したが、本発明はこれに限定されるも
のではなく、吸気管圧力とエンジン回転数とで基本燃料
噴射量やオフアイドル時の基本点火進角を定めるエンジ
ンについても適用することが可能である。
In addition, although the engine which determines the basic fuel injection amount and the basic ignition advance angle at off-idle based on the intake air amount and the engine speed has been described above, the present invention is not limited to this, and the invention is not limited to this. It is also possible to apply this invention to an engine in which the basic fuel injection amount and the basic ignition advance angle during off-idling are determined based on the engine speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の点火進角等を演算するルー
チンを示す流れ図、第2図(A)〜(D)は従来の点火
時期制御方法を説明するための線図、第3図は従来の補
正角を示す線図、第4図(A)、(B)および第5図(
A)、(B)は従来の問題点を説明するための線図、第
6図は本発明の詳細な説明するだめの線図、第7図は本
発明が適用される点火時期制御装置を備えたエンジンの
概略図、第8図は第7図の制御回路の詳細を示すブロッ
ク図、第9図は上記実施例の補正角を示す線図、第10
図は上記実施例のアイドル時の基本点火進角を示す線図
、第11図はフィードバック補正係数等を演算する割込
みルーチンを示す流れ図、第12図(A)〜(C)は上
記実施谷すと従来例との点火時期および回転変動を比較
して示す線図である。 1・・・0.センサ。 7・・・アイドルスイッチ、 12・・・燃料噴射弁、 28・・・イグナイタ。 代理人   鵜  沼  辰  2 第1図 第2図 第3図 第5図 (A)  −−−−−−−−−1,。 (3) 、dp軸へ7NメWQsSE 第7図 第8図 第9図 第10図 第11図 第12図 −−−−−−−−−1,0
FIG. 1 is a flowchart showing a routine for calculating ignition advance angle, etc. according to an embodiment of the present invention, FIGS. 2(A) to (D) are diagrams for explaining a conventional ignition timing control method, and FIG. The figures are diagrams showing conventional correction angles, Fig. 4 (A), (B) and Fig. 5 (
A) and (B) are diagrams for explaining conventional problems, FIG. 6 is a diagram for explaining the present invention in detail, and FIG. 7 is a diagram showing an ignition timing control device to which the present invention is applied. 8 is a block diagram showing details of the control circuit shown in FIG. 7, FIG. 9 is a diagram showing the correction angle of the above embodiment, and FIG.
The figure is a line diagram showing the basic ignition advance angle at idle in the above embodiment, Figure 11 is a flowchart showing an interrupt routine for calculating feedback correction coefficients, etc., and Figures 12 (A) to (C) are diagrams showing the basic ignition advance angle at idle in the above embodiment. FIG. 3 is a diagram showing a comparison of ignition timing and rotational fluctuations between the conventional example and the conventional example. 1...0. sensor. 7...Idle switch, 12...Fuel injection valve, 28...Igniter. Agent Tatsu Unuma 2 Figure 1, Figure 2, Figure 3, Figure 5 (A) --------1. (3) , 7N ME WQsSE to dp axis Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 -------1,0

Claims (1)

【特許請求の範囲】[Claims] (1)排ガス空燃比が理論空燃比に対応する値よりリッ
チかリーンかを検出するO_2センサ出力に基づいて空
燃比を理論空燃比近傍に制御するための空燃比フィード
バック補正係数を求め、機関負荷および機関回転数によ
つて定まる基本燃料噴射量と空燃比フィードバック補正
係数とに基づいて空燃比を理論空燃比近傍に制御する内
燃機関のアイドリング時の点火時期を制御するにあたつ
て、空燃比フィードバック補正係数の平均値を連続して
求め、空燃比フィードバック補正係数と空燃比フィード
バック補正係数の平均値との偏差に応じて点火時期を遅
進角させたことを特徴とする内燃機関の点火時期制御方
法。
(1) Based on the O_2 sensor output that detects whether the exhaust gas air-fuel ratio is richer or leaner than the value corresponding to the stoichiometric air-fuel ratio, determine the air-fuel ratio feedback correction coefficient to control the air-fuel ratio near the stoichiometric air-fuel ratio, and calculate the engine load. In controlling the ignition timing during idling of the internal combustion engine, the air-fuel ratio is controlled to be near the stoichiometric air-fuel ratio based on the basic fuel injection amount and the air-fuel ratio feedback correction coefficient determined by the engine speed and the engine speed. Ignition timing for an internal combustion engine, characterized in that the average value of feedback correction coefficients is continuously determined, and the ignition timing is retarded in accordance with the deviation between the air-fuel ratio feedback correction coefficient and the average value of the air-fuel ratio feedback correction coefficient. Control method.
JP59220240A 1984-10-19 1984-10-19 Ignition timing control method of internal-combustion engine Pending JPS6198970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220240A JPS6198970A (en) 1984-10-19 1984-10-19 Ignition timing control method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220240A JPS6198970A (en) 1984-10-19 1984-10-19 Ignition timing control method of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6198970A true JPS6198970A (en) 1986-05-17

Family

ID=16748084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220240A Pending JPS6198970A (en) 1984-10-19 1984-10-19 Ignition timing control method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6198970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448975A (en) * 1993-09-16 1995-09-12 Nissan Motor Co., Ltd. Ignition timing control system for internal combustion engine
US6325046B1 (en) * 1998-10-21 2001-12-04 Sanshin Kogyo Kabushiki Kaisha Engine control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448975A (en) * 1993-09-16 1995-09-12 Nissan Motor Co., Ltd. Ignition timing control system for internal combustion engine
US6325046B1 (en) * 1998-10-21 2001-12-04 Sanshin Kogyo Kabushiki Kaisha Engine control system

Similar Documents

Publication Publication Date Title
JPS639093B2 (en)
JPH09317522A (en) Engine control method
JPS61185642A (en) Fuel injection timing controller for internal-combustion engine
JPS58176470A (en) Control of revolution number of engine upon idling
JPS6198970A (en) Ignition timing control method of internal-combustion engine
JP3055378B2 (en) Control device for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP2884836B2 (en) Engine ignition timing control device
JPH0415963Y2 (en)
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JPH0523808Y2 (en)
JPS61210251A (en) Idle running time controller for internal-combustion engine
JPS61201842A (en) Control device for rarefied air-fuel ratio during idling of internal-combustion engine
JPS5941013B2 (en) Mixture concentration correction method for internal combustion engines
JPS62139943A (en) Air-fuel ratio control method for internal combustion engine
JPH01310146A (en) Ignition timing controller of internal combustion engine
JPH03121270A (en) Ignition timing control device for engine
JP2803160B2 (en) Output fluctuation detection device for multi-cylinder engine
JPS6062641A (en) Air-fuel ratio control method for internal-combustion engine
JPS63162951A (en) Control method for ignition timing and air-fuel ratio of internal combustion engine
JPS61101639A (en) Air-fuel ratio controlling method for internal combustion engine
JP2004190592A (en) Controller for internal combustion engine
JPH0362895B2 (en)
JPH05280455A (en) Idle revolution speed controller for internal combustion engine