JPS61199455A - Stepping motor - Google Patents

Stepping motor

Info

Publication number
JPS61199455A
JPS61199455A JP3919885A JP3919885A JPS61199455A JP S61199455 A JPS61199455 A JP S61199455A JP 3919885 A JP3919885 A JP 3919885A JP 3919885 A JP3919885 A JP 3919885A JP S61199455 A JPS61199455 A JP S61199455A
Authority
JP
Japan
Prior art keywords
rotor
yokes
spacer
magnetic flux
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3919885A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kondo
康宏 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3919885A priority Critical patent/JPS61199455A/en
Publication of JPS61199455A publication Critical patent/JPS61199455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K37/18Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures of homopolar type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/2713Inner rotors the magnetisation axis of the magnets being axial, e.g. claw-pole type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To increase the torque of a motor by engaging a spacer made of a nonmagnetic material with a rotor shaft, and integrally mounting a permanent magnet and a rotor yoke for holding the magnet on the outer periphery, thereby increasing the effective magnetic flux. CONSTITUTION:A ring-shaped spacer 12 made of a nonmagnetic material is engaged with the periphery of a rotor shaft 11. Yokes 13a, 13b and a permanent magnet 15 disposed between the yokes are mounted on the outer periphery of the spacer 12. Sub salient poles 14a, 14b are formed at the ends of the yokes 13a, 13b, and opposed to the poles of a stator, not shown. Thus, the effective magnetic flux between the yokes 13a and 13b is increased to increase the torque of a motor, and the assembling steps are decreased to reduce the cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明C:フロソピーディスクドライブ装置や、・・−
ドディスクドライブ装置等の情報端末装置のアクチュエ
ータに使用することができる薄形ステッピングモータに
関するものであるO 従来の技術 近年コンピュータの急速な普及に伴って、これに用いら
肛る情報端末も大量に普及するようになっている。この
ため、より一般に使用しやすいことを目的としてデザイ
ン上の工夫として機器の薄形化が進んでいる。これに伴
ないこれ等の機器に使用されるアクチュエータも薄形化
が要求さね、でいる。従って情報端末に多く使用されて
いる、ステッピングモータも例外ではなく、第2図に示
すようなタイプの薄形のものが使用さt、ている。以下
従来の構成について第2図を例にとって説明する0 第2図は従来の薄形ステッピングモータの構造を示すも
のである。第2図において、1は固定子ヨーク、2は固
定子ヨーク1に施された励磁巻線、3はフレーム、4は
回転子軸、5a、5bid回転子ヨーク、6は永久磁石
、7は回転子軸4を固定子ヨーク1に対しフレーム3を
介j〜で回転自在に支える軸受である。
[Detailed Description of the Invention] Industrial Application Field Invention C: Frothopy disk drive device,...-
This invention relates to a thin stepping motor that can be used as an actuator in information terminal devices such as disk drive devices.Conventional TechnologyIn recent years, with the rapid spread of computers, a large number of information terminals have also been used. It is becoming popular. For this reason, devices are being made thinner as a design measure to make them easier to use for the general public. Accordingly, the actuators used in these devices are also required to be thinner. Therefore, stepping motors, which are often used in information terminals, are no exception, and thin ones of the type shown in FIG. 2 are used. The conventional structure will be explained below using FIG. 2 as an example. FIG. 2 shows the structure of a conventional thin stepping motor. In Figure 2, 1 is a stator yoke, 2 is an excitation winding applied to the stator yoke 1, 3 is a frame, 4 is a rotor shaft, 5a is a 5-bid rotor yoke, 6 is a permanent magnet, and 7 is a rotating This is a bearing that rotatably supports the child shaft 4 with respect to the stator yoke 1 via the frame 3.

上記構成において、固定子ヨーク1’には、突極12L
+  1 b+  I C!  1 (1を一組とした
第1の励磁巻線が施され(以下第1相という)、これに
対し逆の極性となる如く同一の突極に施された励磁巻線
(以下第3相という)と、突極18 T  1 f 、
141hi−組として施された励磁巻線(以下第2相と
いう)と、これに対し逆の画性となる如くが0された励
磁巻線(以下第4相という)とが施されている。捷た回
転子を構成する永久磁石6は軸方向に2極に着磁されて
いる。
In the above configuration, the stator yoke 1' has salient poles 12L.
+ 1 b+ IC! 1 (hereinafter referred to as the first phase) is applied to the first excitation winding (hereinafter referred to as the first phase), and the excitation winding (hereinafter referred to as the third phase) is applied to the same salient pole so as to have the opposite polarity. ), and the salient pole 18 T 1 f ,
An excitation winding (hereinafter referred to as the second phase) provided as a 141hi set and an excitation winding (hereinafter referred to as the fourth phase) in which the excitation winding is set to 0 (hereinafter referred to as the fourth phase) with an opposite pattern are provided. The permanent magnet 6 constituting the twisted rotor is magnetized into two poles in the axial direction.

ここで、第1相に通電すると、突極1fL、10はN極
になるとすれば、突極IJ1dはS極となる如く巻線さ
れ、第3相に通電すると突極1 a。
Here, when the first phase is energized, the salient poles 1fL and 10 become N poles, and the salient pole IJ1d is wound so as to become the S pole, and when the third phase is energized, the salient poles 1a and 1a are wound.

1CはS極、突極1b、1dはN極となる。捷た第2相
に通電すると突極1el、1gはN極になるとすれば、
突極1f、1hはS極となる如く巻線され、第4相に通
電すると突極161 1 glsl:S極、突極1f、
1hはN極となる。捷た回転子は、永久磁石6が前述の
如く軸方向2極着磁されているため、回転子ヨーク5a
がN極であるとすわ、ば、回転子ヨーク5bけS極であ
る○ 壕り固定子突極1a〜1h及び回転子ヨークにげそれぞ
れ側突極8,9が設けられており、回転子側突極8け回
転子ヨーク5aに設けられたものと、5bに設けられた
ものが各々同一の磁極となっている。丑た回転子ヨーク
6aの側突極8aと回転子ヨーク6bの側突極8bとは
〃ピッチずれている。以下の説明のために、ここで回転
子ヨーク52LをS極、回転子ヨーク6bをN極とする
1C is an S pole, and salient poles 1b and 1d are N poles. Assuming that when electricity is applied to the twisted second phase, salient poles 1el and 1g become N poles,
Salient poles 1f and 1h are wound so that they become S poles, and when the fourth phase is energized, salient poles 161 1 glsl: S poles, salient poles 1f,
1h becomes the north pole. Since the permanent magnet 6 of the shunted rotor is magnetized with two poles in the axial direction as described above, the rotor yoke 5a
If is the N pole, then the rotor yoke 5b is the S pole.○ The recessed stator salient poles 1a to 1h and the rotor yoke are provided with side salient poles 8 and 9, respectively. The eight side salient poles provided on the rotor yoke 5a and those provided on the rotor yoke 5b are the same magnetic poles. The side salient poles 8a of the rotor yoke 6a and the side salient poles 8b of the rotor yoke 6b are shifted in pitch. For the following explanation, the rotor yoke 52L is assumed to be an S pole, and the rotor yoke 6b is assumed to be an N pole.

以上のように構成されたステッピングモータについて、
以下その動作について説明する。今、第1相に通電する
と、突極1a、10はN極、1 b。
Regarding the stepping motor configured as above,
The operation will be explained below. Now, when the first phase is energized, salient poles 1a and 10 become N poles and 1b.

1dはS極となるので、突極1乙、1cには回転子ヨー
ク5aの側突極8aが、突極1b、1aには回転子ヨー
ク5bの側突極8bが対向して安定状態になる。このと
き突極1e+  1fr  1g+ 1bの側突極と回
転子側突極とは%側突極ピッチのずれが生じる如く設定
されている。従って、前記の第1相が励磁された状態か
ら第2相が励磁された状態に切換ると、この%突極ピッ
チのすわ、の分だけ回転子が回転して次の安定状態に入
る。このようにして第3相、第4相と励磁し、再び第1
相の励磁へとくり返すことによって、第2図に示した構
造のステッピングモータば%側突極ピッチを単位ステッ
プとする回転をする○ ここで、第3図に従来の回転子構造を示す。第3図にお
いて、4け回転子軸、5a、5bは回転子ヨーク、6−
1.6−2は永久磁石、sa、sbは回転子ヨーク6a
、5bにそれぞれ設けた側突極である。さて、前述した
如く、回転子の永久磁湘に1゛輔方向に二極着磁されて
おり、回転子ヨーク5a、5bi磁路として側突極sa
、sbを磁化するのであるが、このとき側突極8a、8
bから固定子1に流れる磁束がトルク発生に寄与する、
いわゆる有効磁束になる。この磁束量は永久磁石6−1
.6−2から発生j〜たものであることは前述の通りで
ある。
Since 1d becomes the S pole, the side salient pole 8a of the rotor yoke 5a opposes the salient poles 1B and 1c, and the side salient pole 8b of the rotor yoke 5b opposes the salient poles 1b and 1a, resulting in a stable state. Become. At this time, the side salient poles of the salient poles 1e+ 1fr 1g+ 1b and the rotor side salient poles are set so that a deviation in % side salient pole pitch occurs. Therefore, when the state is switched from the state in which the first phase is excited to the state in which the second phase is excited, the rotor rotates by the distance of this % salient pole pitch and enters the next stable state. In this way, the third and fourth phases are excited, and the first phase is excited again.
By repeating the phase excitation, the stepping motor having the structure shown in FIG. 2 rotates with the salient pole pitch as a unit step. Here, FIG. 3 shows a conventional rotor structure. In Fig. 3, a 4-piece rotor shaft, 5a and 5b are rotor yokes, and 6-
1.6-2 is a permanent magnet, sa and sb are rotor yoke 6a
, 5b, respectively. Now, as mentioned above, the permanent magnetic field of the rotor is polarized with two poles in the direction of 1.
, sb, but at this time the side salient poles 8a, 8
The magnetic flux flowing from b to stator 1 contributes to torque generation.
This becomes what is called effective magnetic flux. This amount of magnetic flux is the permanent magnet 6-1
.. As mentioned above, this was generated from 6-2.

発明が解決しようとする問題点 しかしながら上記のような構成では、第3図(a)に示
す永久磁石6−1から発生する磁束は、回転子ヨークの
側突極8a、8bに至る捷でに回転子ヨーク5a、51
)の対向面9を介して流れる、いわゆる漏れ磁束と々す
、トルクの低下につながる。
Problems to be Solved by the Invention However, in the above configuration, the magnetic flux generated from the permanent magnet 6-1 shown in FIG. Rotor yoke 5a, 51
) flows through the opposing surface 9 of the magnetic flux, so-called leakage flux, which leads to a decrease in torque.

ここで、同図(b)に示す永久磁石6=2の構成をとっ
た場合も、回転子ヨーク6a+  6bの対向面10を
介して漏れ磁束が流れる。ステッピングモータが薄形に
な肛ばなるほど、この対向面9もしくは10の距離は小
さくなり、従ってこの部分の磁気抵抗は低くなって有効
磁束に比して漏れ磁束の割合が大きくなり、モータのト
ルク発生に増々不利になってくるという問題点を有して
いた。
Here, even in the case where the permanent magnets 6=2 shown in FIG. 6(b) are configured, leakage magnetic flux flows through the opposing surfaces 10 of the rotor yokes 6a+6b. As the stepping motor becomes thinner, the distance between the opposing surfaces 9 or 10 becomes smaller, and therefore the magnetic resistance of this part becomes lower, and the ratio of leakage magnetic flux to the effective magnetic flux becomes larger, which increases the motor torque. This has the problem of becoming increasingly disadvantageous in terms of generation.

本発明は上記問題点に鑑み、回転子磁石から発生]〜た
磁束のうち漏れ磁束を減少させ、永久磁石の体積を大き
くすることなく十分カ有効磁束を側突極と固定子との間
に発生せしめ、トルク特性の良好なステッピングモータ
を提供するものである。
In view of the above-mentioned problems, the present invention reduces the leakage magnetic flux among the magnetic flux generated from the rotor magnet, and distributes sufficient effective magnetic flux between the side salient poles and the stator without increasing the volume of the permanent magnet. The present invention provides a stepping motor with good torque characteristics.

問題点を解決するための手段 上記問題点を解決するため本発明のステッピングモータ
における回転子は、回転子軸とこの回転軸に固定された
非磁性体よりなるスペーサと、このスペーサに固定され
た回転子ヨークと、この回転子ヨークの間に位置せしめ
た永久磁石という構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the rotor in the stepping motor of the present invention includes a rotor shaft, a spacer made of a non-magnetic material fixed to the rotating shaft, and a spacer fixed to the spacer. It includes a rotor yoke and a permanent magnet positioned between the rotor yoke.

作用 不発明は上記の構成によって、永久磁石から出f(磁束
はスペーサが非磁性である為に、このスペーサの部分は
漏れ磁束の通路とならず、回転子ヨーク間での漏れ磁束
が従来例に比(−で減少し有効磁束を十分に大きくする
ことができることになる。
The above-mentioned configuration allows the magnetic flux to be emitted from the permanent magnets.Since the spacer is non-magnetic, this spacer part does not become a path for the leakage flux, and the leakage flux between the rotor yokes is different from that in the conventional case. It decreases as the ratio (-) and the effective magnetic flux can be made sufficiently large.

実施例 以下本発明の一実施例の回転子について図面を参照l〜
ながら詣、明する。
Example: Refer to the drawings for a rotor according to an example of the present invention.
Pilgrimage and enlightenment.

第1図は本発明の実施例におけるステッピングモータの
回転子を示すものである。第1図において、11け回転
子軸、12は回転子軸11に固定さカーる非磁性体より
なるリング状のスペーサ、13a、13bげスペーサ1
2に固定される一組の回転子ヨークで、外周部には側突
極14a、14bがそれぞれ設けられている。14けス
ペーサ12の径方向外側に位置l〜で設けた永久磁石で
、−組の朗1転子ヨーク13a、13t)VrCて挾持
固定している。なお、固定子の構造は従来例と同一であ
る。
FIG. 1 shows a rotor of a stepping motor in an embodiment of the present invention. In FIG. 1, there are 11 rotor shafts, 12 is a ring-shaped spacer made of a non-magnetic material fixed to the rotor shaft 11, and 13a, 13b are spacers 1.
A pair of rotor yokes is fixed to the rotor yoke 2, and side salient poles 14a and 14b are provided on the outer peripheral portion, respectively. Permanent magnets are provided at positions l~ on the radially outer side of the 14 spacers 12, and the trochanter yokes 13a, 13t) of the negative set are clamped and fixed at VrC. Note that the structure of the stator is the same as the conventional example.

以上(7)ように構成されたステッピングモータの回転
子について、以下第1図1ヲ用いてその作用を説明する
。捷ず、永久磁石15より発生した磁束は、回転子ヨー
ク13a、13bを通って側突極14?L、14bに至
り第2図に示したと同様の固定子に入り有効磁束となる
。このとき回転子ヨーク13a、13bの対向面は第1
図のCに示す部分のみであり、この部分に流れる磁束の
みが漏れ磁束となる。従来、大量の漏れ磁束が流れてい
た部分は非磁性体のスペーサ12が設置されているため
に、この部分を通る漏れ磁束はほとんどない。
The operation of the stepping motor rotor constructed as described above in (7) will be explained below with reference to FIG. 1. The magnetic flux generated by the permanent magnet 15 passes through the rotor yokes 13a and 13b and passes through the side salient poles 14? L, 14b and enters the stator similar to that shown in FIG. 2, becoming an effective magnetic flux. At this time, the opposing surfaces of the rotor yokes 13a and 13b are the first
This is only the portion shown in C in the figure, and only the magnetic flux flowing in this portion becomes leakage magnetic flux. Since the spacer 12 made of non-magnetic material is installed in a portion where a large amount of leakage magnetic flux has conventionally flowed, there is almost no leakage magnetic flux passing through this portion.

以J−のように本実施例によれば回転子軸11に固定さ
ハたスペーサ12を設けることにより、回転子ヨーク1
3a、13b間の漏れ磁束を減少させることができ、側
突極14a、14bから固定子に至る有効磁束を十分に
とることができる。
As shown in J- below, according to this embodiment, by providing the spacer 12 fixed to the rotor shaft 11, the rotor yoke 1
The leakage magnetic flux between the side salient poles 14a and 13b can be reduced, and a sufficient amount of effective magnetic flux can be obtained from the side salient poles 14a and 14b to the stator.

なおスペーサ12け回転子軸11、永久磁石16、回転
子ヨーク13a、13bと一体に樹脂等で成形すること
もできる。
Note that the spacer 12 can also be molded integrally with the rotor shaft 11, the permanent magnet 16, and the rotor yokes 13a and 13b using resin or the like.

発明の効果 以上の」:うに本発明は、回転子軸に固定された非磁性
体のスペーサを設けること(Cより、永久磁石の面積全
従来と変ることなく回転子から発生する有効磁束を増加
せしめ、モータのトルク特性全改善することができる。
``Better than the effect of the invention'': The present invention provides a non-magnetic spacer fixed to the rotor shaft (from C, the effective magnetic flux generated from the rotor is increased without changing the area of the permanent magnet) As a result, the torque characteristics of the motor can be completely improved.

捷たこの非磁性部分は樹脂成形等によって容易に作成可
能であり、回転子ヨークおよび永久磁石の固定手段とし
ても利用可能であり、糾立二[ニ数の低減によるコスト
低減も併せて可能とすることができる。
This non-magnetic part can be easily created by resin molding, etc., and can also be used as a fixing means for the rotor yoke and permanent magnets. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図θ本発明の実施例におけるステッピングモータの
回転子の断面図、第2図(2L)l (b)は従来のス
テッピングモータの構造を示す縦断面図および横断面図
、第3図(a)、 (b)は従来のステッピングモータ
の回転子の構造を示す断面図である。 1・・・・・固定子ヨーク、2・・・・・・固定子巻線
、11・・・・・回転子軸、12・・・・・スペーサ、
13 a、 13b・・・・回転子ヨーク、14a、1
4b・・・・・回転子ヨーク、16・・・・・・永久磁
石。
Fig. 1 θ is a cross-sectional view of the rotor of the stepping motor according to the embodiment of the present invention, Fig. 2 (2L) l (b) is a vertical cross-sectional view and a transverse cross-sectional view showing the structure of a conventional stepping motor, and Fig. 3 ( FIGS. 1A and 2B are cross-sectional views showing the structure of a rotor of a conventional stepping motor. 1... Stator yoke, 2... Stator winding, 11... Rotor shaft, 12... Spacer,
13a, 13b...Rotor yoke, 14a, 1
4b...Rotor yoke, 16...Permanent magnet.

Claims (1)

【特許請求の範囲】[Claims]  励磁巻線が施された固定子と、この固定子に対し空隙
を維持して回転自在に保持された回転子とを備え、前記
回転子は、回転子軸と、この回転子軸に固定された非磁
性体よりなるスペーサと、このスペーサに固定された一
組の回転子ヨークと、この回転子ヨークの間に位置し、
前記スペーサに対し径方向外側に位置する永久磁石とに
より構成してなるステッピングモータ。
The rotor includes a stator provided with excitation windings and a rotor rotatably held with an air gap maintained relative to the stator, and the rotor includes a rotor shaft and a rotor fixed to the rotor shaft. a spacer made of a non-magnetic material, a set of rotor yokes fixed to the spacer, and a rotor yoke located between the rotor yokes,
A stepping motor comprising a permanent magnet located radially outward with respect to the spacer.
JP3919885A 1985-02-28 1985-02-28 Stepping motor Pending JPS61199455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3919885A JPS61199455A (en) 1985-02-28 1985-02-28 Stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3919885A JPS61199455A (en) 1985-02-28 1985-02-28 Stepping motor

Publications (1)

Publication Number Publication Date
JPS61199455A true JPS61199455A (en) 1986-09-03

Family

ID=12546422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3919885A Pending JPS61199455A (en) 1985-02-28 1985-02-28 Stepping motor

Country Status (1)

Country Link
JP (1) JPS61199455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624878U (en) * 1985-06-25 1987-01-13
EP1018797A2 (en) * 1999-01-07 2000-07-12 Minebea Co., Ltd. Stepping motor
JP2009171809A (en) * 2008-01-21 2009-07-30 Tamagawa Seiki Co Ltd Rotor structure of stepping motor
JP2009171808A (en) * 2008-01-21 2009-07-30 Tamagawa Seiki Co Ltd Rotor structure of stepping motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624878U (en) * 1985-06-25 1987-01-13
EP1018797A2 (en) * 1999-01-07 2000-07-12 Minebea Co., Ltd. Stepping motor
EP1018797A3 (en) * 1999-01-07 2001-02-14 Minebea Co., Ltd. Stepping motor
US6467150B1 (en) 1999-01-07 2002-10-22 Minebea Co., Ltd. Stepping motor
US6920683B2 (en) 1999-01-07 2005-07-26 Minebea Co., Ltd. Process for producing a rotor assembly of a stepping motor
US7127795B2 (en) 1999-01-07 2006-10-31 Minebea Co., Ltd. Rotor assembly and method for making the rotor assembly
JP2009171809A (en) * 2008-01-21 2009-07-30 Tamagawa Seiki Co Ltd Rotor structure of stepping motor
JP2009171808A (en) * 2008-01-21 2009-07-30 Tamagawa Seiki Co Ltd Rotor structure of stepping motor

Similar Documents

Publication Publication Date Title
JPH0378458A (en) Motor
JPS61199455A (en) Stepping motor
JP3262986B2 (en) Motor structure
JPS5855747B2 (en) Brushless rotary motor
JPH02254954A (en) Slot motor
JPH0670476U (en) Brushless motor
JPH05168182A (en) Brushless motor
JP2945441B2 (en) Motor using permanent magnet
JPH0649104Y2 (en) Carrying drive step motor
JP3591660B2 (en) Three-phase claw pole type permanent magnet type rotating electric machine
JP3633965B2 (en) Brushless motor
JPH0815388B2 (en) DC brushless motor
JP2958483B2 (en) Stepping motor
JP3109022B2 (en) Inductor type electric motor
JPH06339241A (en) Permanent magnet type motor and manufacture thereof
JPS627361A (en) Stepping motor
JPH05276724A (en) Brushless motor
JPS62233054A (en) Motor
JPS6339452A (en) Permanent magnet type stepping motor
JPS6139842A (en) Motor
JPH0695825B2 (en) Step Motor
JP3322910B2 (en) Stepping motor
JPH0386056A (en) Stepping motor
JPS62189965A (en) Stepping motor
JPS6311865B2 (en)