JPS6311865B2 - - Google Patents

Info

Publication number
JPS6311865B2
JPS6311865B2 JP8050779A JP8050779A JPS6311865B2 JP S6311865 B2 JPS6311865 B2 JP S6311865B2 JP 8050779 A JP8050779 A JP 8050779A JP 8050779 A JP8050779 A JP 8050779A JP S6311865 B2 JPS6311865 B2 JP S6311865B2
Authority
JP
Japan
Prior art keywords
pole
magnet
magnetic
poles
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8050779A
Other languages
Japanese (ja)
Other versions
JPS566664A (en
Inventor
Makoto Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8050779A priority Critical patent/JPS566664A/en
Publication of JPS566664A publication Critical patent/JPS566664A/en
Publication of JPS6311865B2 publication Critical patent/JPS6311865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)

Description

【発明の詳細な説明】 本発明は、2相のコイルに交互に電流を通電す
ることによつて所定方向への持続的な回転力を得
る直流モータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC motor that obtains continuous rotational force in a predetermined direction by alternately passing current through two-phase coils.

米国特許第3299335号明細書には、ステータに
2相のコイルを配設し、ロータに固定磁化された
マグネツトを取付け、ロータの回転に応じて2相
のコイルへの通電電流を切換えて行くことによつ
て回転力を得るブラシレス直流モータが記載され
ている。この様なモータにおいてはロータにN極
とS極と無機性極を配置する必要があり、単一の
マグネツトにこれらのN極、S極、無磁性極を交
互に所要角度幅設けることは難かしく、特に、無
磁性極の部分および境界部分において着磁バラツ
キが発生しやすい。
U.S. Pat. No. 3,299,335 discloses that two-phase coils are disposed in the stator, a fixed magnet is attached to the rotor, and the current applied to the two-phase coils is switched according to the rotation of the rotor. A brushless DC motor that obtains rotational power by is described. In such a motor, it is necessary to arrange N poles, S poles, and inorganic poles on the rotor, and it is difficult to arrange these N poles, S poles, and non-magnetic poles alternately in the required angular width on a single magnet. However, magnetization variations are likely to occur particularly in the non-magnetic pole portion and the boundary portion.

また、日本特許公開昭54−41406号公報には、
マグネツトの磁極の構成を等角度幅にN極、S極
を設け、かつN極とS極の片側の境界の一部分に
おいて隣接してN極内にS極を、S極内にN極を
設けるようにし、N極単独部分と、両極が共存す
る第1の部分と、該第1の部分と磁極が反転し、
かつ両極が共存する第2の部分と、S極単独部分
といつた4つの部分が交互に繰り返して配置され
ているブラシレス直流モータが記載されている。
本例においても、ステータに2相のコイルを配設
し、ロータに前述のマグネツトを取付け、ロータ
の回転に応じて2相のコイルへの通電電流を切換
えて行くことによつて回転力を得るようにしてい
る。
Also, in Japanese Patent Publication No. 54-41406,
The configuration of the magnetic poles of the magnet is to provide an N pole and a S pole with equal angular width, and to provide an S pole within the N pole and an N pole within the S pole adjacent to each other at a part of the border on one side of the N pole and the S pole. so that the N pole only part, the first part where both poles coexist, and the first part and the magnetic pole are reversed,
Moreover, a brushless DC motor is described in which four parts are alternately arranged, including a second part where both poles coexist and a part with only an S pole.
In this example as well, rotational force is obtained by disposing two-phase coils on the stator, attaching the aforementioned magnets to the rotor, and switching the current flowing to the two-phase coils according to the rotation of the rotor. That's what I do.

しかし、この様なマグネツトの構成では、N極
内にS極を、S極内にN極を設けるようにしてい
るため、これらの小さな磁極をマグネツトに着磁
するのが難かしく、多極化、小形化を図るために
は問題がある。
However, in this type of magnet configuration, the S pole is provided within the N pole and the N pole is provided within the S pole, so it is difficult to magnetize these small magnetic poles into the magnet, and it is difficult to magnetize the magnet with multiple poles and miniaturization. There are problems in trying to achieve this goal.

本発明は、そのような点を考慮し、マグネツト
の磁極の構成を簡単にして、着磁バラツキを小さ
くし、かつ多極化、小形化に適した直流モータを
提供するものである。以下、本発明を図示の実施
例に基いて説明する。第1図乃至第4図に本発明
の直流モータの基本原理を示し、第5図と第6図
にそれぞれ本発明の実施例の具体的な構成を示
す。
The present invention takes these points into consideration and provides a DC motor that simplifies the structure of the magnetic poles of the magnet, reduces variations in magnetization, and is suitable for multipolarization and miniaturization. Hereinafter, the present invention will be explained based on illustrated embodiments. FIGS. 1 to 4 show the basic principle of the DC motor of the present invention, and FIGS. 5 and 6 show specific configurations of embodiments of the present invention, respectively.

第1図のaは本発明の直流モータの基本原理を
示す構造の縦断面図、bはaにおけるX−X線の
横断面図である。同図において、ロータ1の回転
軸2はベアリング3,4によつてステータ6に回
転自在に支承され、ロータ1の内面には固定磁化
された円環状のマグネツト5が取付けられてい
る。電機子鉄心7の外周にはマグネツト5の磁極
面と対向する2相のコイル8,9が設けられてい
る。また、マグネツト5の下端面に対向して位置
検出用のホール素子10がステータ6に固定配置
されている。なお、その具体的な取付け構造につ
いては図示を省略する。
In FIG. 1, a is a vertical cross-sectional view of the structure showing the basic principle of the DC motor of the present invention, and b is a cross-sectional view taken along line X--X at a. In the figure, a rotating shaft 2 of a rotor 1 is rotatably supported by a stator 6 through bearings 3 and 4, and a fixed magnetized annular magnet 5 is attached to the inner surface of the rotor 1. Two-phase coils 8 and 9 are provided on the outer periphery of the armature core 7, facing the magnetic pole surface of the magnet 5. Further, a Hall element 10 for position detection is fixedly arranged on the stator 6 so as to face the lower end surface of the magnet 5. Note that illustration of the specific mounting structure is omitted.

第2図aに、本発明の基本原理を示す第1図の
マグネツト5および2相のコイル8,9の平面展
開図を示す。同図において、マグネツト5は内周
面(内周)をN極(N極領域)、S極(S極領域)
に2極着磁され、N極が単独で存在するN極部
と、S極が単独で存在するS極部と、N極とS極
が共存する実効的無磁性極部を交互に等角度幅
(120゜)または略等角度幅づつ1組有している。
マグネツト5の生じる界磁磁束密度Br(Ψ、Z)
を軸方向に平均化した平均磁束密度r(Ψ)=
1/h∫h pB(Ψ、Z)dZの特性を第2図bに示す。
FIG. 2a shows a developed plan view of the magnet 5 and two-phase coils 8 and 9 shown in FIG. 1, illustrating the basic principle of the present invention. In the figure, the magnet 5 has an inner peripheral surface (inner periphery) as an N pole (N pole area) and an S pole (S pole area).
It is bipolarly magnetized, and the N-pole part where the N-pole exists alone, the S-pole part where the S-pole exists alone, and the effective non-magnetic pole part where the N-pole and S-pole coexist are alternately arranged at equal angles. One set each has a width (120°) or approximately equal angular width.
Field magnetic flux density B r (Ψ, Z) generated by magnet 5
Average magnetic flux density r (Ψ) =
The characteristics of 1/h∫ h p B (Ψ, Z) dZ are shown in Figure 2b.

同図の実線は矩形波状に近似した特性であり、破
線は実際の極の変化に伴う特性である。ここに、
Ψは角度変数、Zは軸方向変数、hはコイルの実
効対向長さである(詳しくは、微小角度dΨ内の
実効対向長さhの矩形領域dSを通る磁束dΦから
B(Ψ)=dΦ/dSとして求められる)。
The solid line in the figure is a characteristic that approximates a rectangular wave shape, and the broken line is a characteristic that accompanies actual changes in poles. Here,
Ψ is an angular variable, Z is an axial variable, and h is the effective opposing length of the coil. /dS).

実効的無磁性極部においてはN極とS極が共存
するために、その平均磁束密度r(Ψ)は零ま
たは、かなり小さくなり、N極部、S極部の平均
磁束密度に較べてかなり小さくしている。通常、
N極部、S極部の平均磁束密度r(Ψ)の絶対
最大値r1に比較して、実効的無磁性極部の平均
磁束密度r(Ψ)の絶対最大値r2r2r1/2 …(1) になされる。もちろん、r2は小さい方が望まし
いが、r2r1/4の範囲であれば十分良好な特性
が得られる。
Since the north and south poles coexist in the effective non-magnetic pole, the average magnetic flux density r (Ψ) is zero or considerably small, and is considerably smaller than the average magnetic flux density at the north and south poles. I'm keeping it small. usually,
Compared to the absolute maximum value r1 of the average magnetic flux density r (Ψ) of the north and south pole parts, the absolute maximum value r2 of the average magnetic flux density r (Ψ) of the effective non-magnetic pole part is r2 < r1/2 …(1) It is done. Of course, it is desirable that r2 be smaller, but sufficiently good characteristics can be obtained if r2r1/4 .

2相のコイル8,9の中心線を第2図aに一点
鎖線にて示す。各コイル8,9の実効ピツチはマ
グネツト5の実効的無磁性極部の角度幅(120゜)
と等しく、または略等しくされ、コイル8と9は
マグネツト5の磁極周期360゜(N極部、実効的無
磁性極部、S極部の1組の角度)の1/2の位相差
180゜を有するように電機子鉄心に配置されてい
る。
The center lines of the two-phase coils 8 and 9 are shown by dashed lines in FIG. 2a. The effective pitch of each coil 8, 9 is the angular width of the effective non-magnetic pole part of the magnet 5 (120°)
The coils 8 and 9 have a phase difference of 1/2 of the magnetic pole period of 360° (one set of angles of the N pole part, the effective non-magnetic pole part, and the S pole part).
It is arranged on the armature core so that it has an angle of 180°.

第2図cはマグネツト5の下端面(ホール素子
10と対向する面)の平面展開図であり、前記円
周面のN極部、実効的無磁性極部、S極部の組数
に等しい組数のN極、S極が等角度幅または略等
角度幅に着磁され位置検出に利用される。第2図
dはマグネツト5の下端面の軸方向の磁束密度
Ba(Ψ)の特性である。
FIG. 2c is a plan development view of the lower end surface of the magnet 5 (the surface facing the Hall element 10), which is equal to the number of sets of the N pole part, the effective non-magnetic pole part, and the S pole part on the circumferential surface. A set of N poles and S poles are magnetized to have equal angular width or approximately equal angular width and are used for position detection. Figure 2 d shows the magnetic flux density in the axial direction of the lower end surface of magnet 5.
This is a characteristic of B a (Ψ).

次に、第1図、第2図に示した直流モータの動
作を説明する。コイル8,9に電流を流したとき
の発生トルクTは、有効コイル辺A,Bおよび
C,Dにおける平均磁束密度と電流値Iとの積に
比例する(フレミングの左手の法則)。すなわち、 T1∝I・〔r(θ)−r(θ+120゜)〕…(2) T2∝I・〔r(θ+180゜)−r(θ+300゜)〕…(3
) となる。ここに、θはマグネツト5の点Rpとコ
イル8,9の点Kpを回転軸心よりみた回転角で
ある。2相のコイル8,9の有効コイル辺の平均
磁束密度差r(θ)−r(θ+120゜)およびr
(θ+180゜)−r(θ+300゜)は、第3図a,bに
示すように変化する。従つて第3図d,eに示す
ごとく、一定値の電流i1,i2を回転角θに応じて、
マグネツト5の磁極周期(N極部、実効的無磁性
極部、S極部の1組の角度)の1/2回転毎に通電
するコイルを切換えてゆくならば、第3図fに示
すように、むらのない回転トルクTを得ることが
できる。
Next, the operation of the DC motor shown in FIGS. 1 and 2 will be explained. The torque T generated when current is passed through the coils 8 and 9 is proportional to the product of the average magnetic flux density at the effective coil sides A, B, C, and D and the current value I (Fleming's left-hand rule). That is, T 1 ∝I・[ r (θ) − r (θ+120°)]…(2) T 2 ∝I・[ r (θ+180°) − r (θ+300°)]…(3
) becomes. Here, θ is the rotation angle between the point R p of the magnet 5 and the point K p of the coils 8 and 9 when viewed from the rotation axis. Average magnetic flux density difference between the effective coil sides of two-phase coils 8 and 9 r (θ) − r (θ + 120°) and r
(θ+180°) − r (θ+300°) changes as shown in FIGS. 3a and b. Therefore, as shown in Fig. 3d and e, constant values of currents i 1 and i 2 are changed according to the rotation angle θ,
If the coil to be energized is switched every 1/2 rotation of the magnetic pole period of the magnet 5 (one set of angles of the N pole part, the effective non-magnetic pole part, and the S pole part), the result will be as shown in Figure 3 f. Therefore, even rotational torque T can be obtained.

第4図に駆動回路例を示す。同図において、ホ
ール素子10がマグネツト5の下端面の位置検出
用磁極と対向しているため、そのホール電圧E1
E2は第3図cのように回転角θに応じて変化す
る。ホール電圧E1,E2は差動回路を構成するト
ランジスタQ3,Q4の各ベースに加えられ、ベー
ス電圧の低いトランジスタ、たとえばQ3がオン
となり、Q4はオフとなる。その結果、駆動トラ
ンジスタQ1がオン状態となり、第1相のコイル
8に電流i1を供給し、駆動トランジスタQ2はオフ
状態となり、第2相のコイル9には電流は流れな
い。ロータの回転に伴つてホール素子10の出力
電圧E1,E2は変化し、通電状態となるコイルを
選択的かつ相補的に切換えてゆき、第3図d,e
のごとく常時いずれか一方のコイルに電流を供給
する。
FIG. 4 shows an example of a drive circuit. In the figure, since the Hall element 10 faces the position detection magnetic pole on the lower end surface of the magnet 5, its Hall voltage E 1 ,
E 2 changes depending on the rotation angle θ as shown in FIG. 3c. The Hall voltages E 1 and E 2 are applied to the bases of transistors Q 3 and Q 4 constituting the differential circuit, and the transistor with a lower base voltage, for example, Q 3 is turned on, and Q 4 is turned off. As a result, the drive transistor Q 1 is turned on, supplying the current i 1 to the first phase coil 8, and the drive transistor Q 2 is turned off, so that no current flows through the second phase coil 9. As the rotor rotates, the output voltages E 1 and E 2 of the Hall element 10 change, selectively and complementarily switching the coils to be energized, as shown in Fig. 3 d and e.
Current is always supplied to one of the coils as shown below.

なお、第4図中の11は電流制御器であり、抵
抗R1の電圧降下によつて供給電流を検出し、指
令信号12と比較して、指令信号12に応じた供
給電流となすようにトランジスタQ3,Q4のエミ
ツタ電流Ieすなわち駆動トランジスタQ1,Q2
ベース電流を制御している。その結果、電流i1
i2の切換わりは円滑になり、かつトランジスタの
hFEバラツキにもとづく供給電流の変動は小さく
なる。
In addition, 11 in FIG. 4 is a current controller, which detects the supplied current by the voltage drop of the resistor R1 , compares it with the command signal 12, and adjusts the supplied current according to the command signal 12. It controls the emitter current Ie of the transistors Q 3 and Q 4 , that is, the base current of the drive transistors Q 1 and Q 2 . As a result, the current i 1 ,
The switching of i 2 becomes smooth and the transistor
h Fluctuations in supply current due to FE variations become smaller.

このように、相補的に2相のコイル8,9に一
方向の電流を供給するならば、発生トルクに切れ
めがなく、均一な回動を得ることができる。
In this way, if unidirectional current is supplied to the two-phase coils 8 and 9 in a complementary manner, there is no discontinuity in the generated torque, and uniform rotation can be obtained.

なお、位置検出素子としてはホール素子に限ら
ず、一般の磁電変換素子を使用できる。
Note that the position detection element is not limited to a Hall element, but a general magnetoelectric transducer can be used.

このように、マグネツト5の界磁磁極面を、く
まなく、かつ交互にN極(N極領域)とS極(S
極領域)に着磁しながらも、N極の一部分とS極
の一部分を回転方向に対して直角方向に共存させ
ることによつて所定角度幅の実効的無磁性極を形
成し、N極部、実効的無磁性極部、およびS極部
を順次配置するならば、通電構成の簡単な2相の
直流モータを得ることができる。また、マグネツ
ト5の着磁は、次の点から極めて容易となる。
In this way, the field magnetic pole surface of the magnet 5 is covered with alternating N poles (N pole area) and S poles (S
By making part of the N pole and part of the S pole coexist in the direction perpendicular to the rotation direction, an effective non-magnetic pole with a predetermined angular width is formed, and the N pole part is magnetized. , the effective non-magnetic pole part, and the S pole part are arranged in sequence, it is possible to obtain a two-phase DC motor with a simple current-carrying configuration. Further, magnetization of the magnet 5 is extremely easy from the following point.

(1) N極とS極が共存し相互に磁気的な効果を相
殺させて実効的な無磁性極を形成させているた
め、N極およびS極を完全着磁(残留磁束密度
が最大となるような着磁)をすれば良く、着磁
バラツキが小さくなる。
(1) Since the north and south poles coexist and cancel each other's magnetic effects to form an effective non-magnetic pole, the north and south poles are completely magnetized (residual flux density is maximum). It is sufficient to perform magnetization such that

(2) N極領域、S極領域が大きくとれるため、マ
グネツトの着磁用ヨークの突極が大きくでき、
また、その巻線処理も容易となり、均一な着磁
が得られる。特に、多極化、小型化した場合に
その効果は大きい。
(2) Since the N-pole area and S-pole area can be made larger, the salient pole of the magnetizing yoke of the magnet can be made larger.
Further, the winding process becomes easy, and uniform magnetization can be obtained. This effect is particularly significant when multipolar and miniaturized.

第5図に本発明の一実施例の平面展開図を示
す。本実施例は、第1図乃至第4図に示した基本
原理図において、マグネツトの極数およびコイル
数を2倍に増やし、さらに、それらの構成・配置
に工夫をこらしたものである。
FIG. 5 shows a developed plan view of an embodiment of the present invention. In this embodiment, the number of poles of the magnet and the number of coils are doubled in the basic principle diagrams shown in FIGS. 1 to 4, and the structure and arrangement thereof are further improved.

同図aにおいて、マグネツト21の内周面には
N極(N極領域)、S極(S極領域)が交互に4
極着磁され、2組のN極部、実効的無磁性極部、
S極部を順次形成している。本例では、軸方向の
位置精度バラツキによつてコイルへの鎖交磁束が
変動しないように、マグネツト21の隣接するN
極領域とS極領域はN極部とS極部の境界線(第
5図の0゜線と180゜線)に対して対称的または略対
称的に設けられている(この効果については後述
する)。マグネツト21の内周面の平均磁束密度
r(Ψ)の特性は第5図bのようになる。同図
の実線は矩形波状に近似したものであり、破線は
実際の極の変化に伴う特性である。
In the same figure a, the inner peripheral surface of the magnet 21 has four N poles (N pole area) and S poles (S pole area) alternately.
Pole magnetized, two sets of N pole part, effective non-magnetic pole part,
S-pole portions are formed one after another. In this example, the adjacent N
The polar region and the south pole region are provided symmetrically or approximately symmetrically with respect to the boundary line between the north and south poles (0° line and 180° line in Figure 5) (this effect will be discussed later). do). The characteristics of the average magnetic flux density B r (Ψ) on the inner peripheral surface of the magnet 21 are as shown in FIG. 5b. The solid line in the figure is an approximation to a rectangular waveform, and the broken line is a characteristic associated with actual changes in poles.

マグネツト21の磁極に対向してコイル22
a,22bからなる第1相のコイルとコイル23
a,23bからなる第2相のコイルがマグネツト
21の磁極周期(180゜)の1/2の位相差(90゜)を
有するように配置されている。
A coil 22 is placed opposite the magnetic pole of the magnet 21.
The first phase coil consisting of a and 22b and the coil 23
The second phase coils consisting of a and 23b are arranged so as to have a phase difference (90 degrees) that is half the magnetic pole period (180 degrees) of the magnet 21.

本例でも、第5図cに示すように、マグネツト
21の下端面に等角度幅(90゜)にN、S極を2
組着磁して、位置検出に利用している。第5図d
はその磁束密度Ba(Ψ)の特性である。従つて、
第4図の駆動回路によつてロータを回転駆動する
ことができる。
In this example as well, as shown in Fig. 5c, two N and S poles are placed on the lower end surface of the magnet 21 at equal angular widths (90 degrees).
It is assembled and magnetized and used for position detection. Figure 5d
is the characteristic of its magnetic flux density B a (Ψ). Therefore,
The rotor can be rotationally driven by the drive circuit shown in FIG.

次に、本実施例のマグネツト21の隣接するN
極領域とS極領域をN極部とS極部の境界線に対
して対称または略対称にした効果について詳述す
る。第5図aにおいて、コイル22a,23a,
22b,23bとマグネツト21が軸方向にず
れ、マグネツト21が図面の下部の方向に所定距
離だけ移動した場合を考える。このとき、コイル
22aの鎖交磁束はN極の磁束が増え、コイル2
3aもN極の磁束が増え、コイル22bは逆にS
極の磁束が増え(N極の磁束が減り)、コイル2
3bもS極の磁束が増える(N極の磁束が減る)。
コイル22aとコイル22bが直列接続されて第
1相のコイル22a,22bを形成しているの
で、コイル22aの鎖交磁束の変化とコイル22
bの鎖交磁束の変化が相殺する。すなわち、第1
相のコイルへの鎖交磁束は軸方向のずれのない場
合と同じ磁束が鎖交する。第2相のコイル23
a,23bについても同様である。直流モータの
発生トルクは、マグネツト21の回転に伴うコイ
ルの鎖交磁束の変化分に関係するが、上述のごと
き構成にするならば、軸方向のずれが生じても各
相のコイルへの鎖交磁束は変化しないので、軸方
向のずれのない場合と同様な均一の発生トルクを
得ることができる。
Next, the adjacent N of the magnet 21 of this embodiment
The effect of making the polar region and the S-pole region symmetrical or substantially symmetrical with respect to the boundary line between the N-pole portion and the S-pole portion will be described in detail. In FIG. 5a, coils 22a, 23a,
Consider a case where the magnets 22b, 23b and the magnet 21 are shifted in the axial direction, and the magnet 21 moves a predetermined distance toward the bottom of the drawing. At this time, the N-pole flux linkage of the coil 22a increases, and the coil 22a increases.
3a also increases the magnetic flux of the N pole, and conversely the magnetic flux of the coil 22b becomes S.
The magnetic flux of the pole increases (the magnetic flux of the N pole decreases), and the coil 2
3b also increases the magnetic flux of the S pole (the magnetic flux of the N pole decreases).
Since the coil 22a and the coil 22b are connected in series to form the first phase coils 22a and 22b, changes in the interlinkage magnetic flux of the coil 22a and the coil 22
The changes in the flux linkage of b cancel each other out. That is, the first
The magnetic flux linkage to the phase coil is the same as in the case where there is no shift in the axial direction. Second phase coil 23
The same applies to a and 23b. The torque generated by a DC motor is related to the change in the interlinkage magnetic flux of the coils due to the rotation of the magnet 21, but if the configuration is as described above, even if there is an axial shift, the linkage to the coils of each phase will be maintained. Since the alternating magnetic flux does not change, it is possible to obtain the same uniform generated torque as in the case where there is no deviation in the axial direction.

第6図に本発明のもう一つの実施例の平面展開
図を示す。本例は前述の第5図の実施例におい
て、マグネツトの下端部に設けた位置検出用磁極
部をマグネツトの界磁磁極面(内周面)に配設し
た例である。
FIG. 6 shows a developed plan view of another embodiment of the present invention. This example is an example in which the position detecting magnetic pole part provided at the lower end of the magnet is arranged on the field magnetic pole surface (inner peripheral surface) of the magnet in the embodiment shown in FIG. 5 described above.

同図aにおいて、マグネツト31の内周面には
N極(N極領域)、S極(S極領域)が交互に4
極着磁されて2組のN極部、実効的無磁性極部、
S極部を順次形成している点は前述の第5図の実
施例と同様であるが、本例においては、マグネツ
ト31の界磁磁極面内の回転軸心を中心とする下
端部近傍の円上に2組のN極とS極を等角度幅
(90゜)または略等角度幅に設け、ホール素子10
と対向させている。その結果、マグネツトの下端
面等の位置検出用の磁極は不要となる。なお、コ
イル22a,22bが第1相のコイル群を、コイ
ル23a,23bが第2相のコイル群を構成して
いるのは前述の第5図の実施例と同様である。ま
た、第6図bはマグネツト31の平均磁束密度
(Ψ)の特性である。
In the same figure a, the inner peripheral surface of the magnet 31 has four N poles (N pole region) and four S poles (S pole region) alternately.
Pole magnetized and two sets of N pole parts, effective non-magnetic pole parts,
The point that the S pole parts are formed sequentially is similar to the embodiment shown in FIG. Two sets of N and S poles are provided on a circle with equal angular width (90°) or approximately equal angular width, and the Hall element 10
I am facing it. As a result, there is no need for a magnetic pole for detecting the position of the lower end surface of the magnet, etc. The coils 22a and 22b constitute a first-phase coil group, and the coils 23a and 23b constitute a second-phase coil group, as in the embodiment shown in FIG. 5 described above. In addition, Fig. 6b shows the average magnetic flux density of the magnet 31.
This is a characteristic of r (Ψ).

なお、前述の実施例では、ロータにマグネツト
を、そしてステータに2相のコイルからなる電機
子を設けたブラシレス直流モータを例にとつて説
明したが、逆に、ロータに電機子を、そしてステ
ータにマグネツトを設けてブラシコミユテータに
よつて駆動相を切換えるようにしても良い。
In the above embodiment, a brushless DC motor was explained in which the rotor was equipped with a magnet and the stator was equipped with an armature consisting of two-phase coils. Alternatively, a magnet may be provided in the drive phase, and the drive phase may be switched by a brush commutator.

さらに、本発明においては電機子鉄心に溝を設
けて2組のコイルを溝内に収納することにより、
効率を上げることも可能である。
Furthermore, in the present invention, by providing a groove in the armature core and storing two sets of coils in the groove,
It is also possible to increase efficiency.

以上の説明から明らかなように、本発明の直流
モータは、マグネツトの磁極の構成が簡単であ
り、また、その駆動構成も極めて簡素である。従
つて、本発明に基いて、特に音響機器用ブラシレ
ス直流モータを構成するならば、安価で高性能の
音響機器を実現することが可能となる。
As is clear from the above description, in the DC motor of the present invention, the magnetic poles of the magnets have a simple configuration, and the driving configuration thereof is also extremely simple. Therefore, if a brushless DC motor for audio equipment is constructed based on the present invention, it becomes possible to realize an inexpensive and high-performance audio equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の直流モータの基本原理
を示す構造の縦断面図と横断面図、第2図a,
b,c,dは本発明の直流モータの基本原理を示
すマグネツトとコイルの関係を磁束密度と共に示
した展開図、第3図a,b,c,d,e,fは本
発明の直流モータの基本原理を示す動作説明用の
図、第4図は駆動回路例を示す結線図、第5図
a,b,c,dは本発明の一実施例を示す平面展
開図、第6図a,bは本発明の他の実施例を示す
平面展開図である。 5,21,31……マグネツト、8,9,22
a,22b,23a,23b……コイル。
Figures 1a and b are longitudinal and cross-sectional views of the structure showing the basic principle of the DC motor of the present invention, and Figures 2a and 2 are
Figures b, c, and d are developed diagrams showing the relationship between the magnet and the coil along with the magnetic flux density, showing the basic principle of the DC motor of the present invention. Figure 3 a, b, c, d, e, and f are the DC motor of the present invention FIG. 4 is a wiring diagram showing an example of a drive circuit; FIGS. 5 a, b, c, and d are plan development views showing an embodiment of the present invention; FIG. 6 a , b are plan development views showing other embodiments of the present invention. 5, 21, 31...Magnet, 8, 9, 22
a, 22b, 23a, 23b...coil.

Claims (1)

【特許請求の範囲】 1 固定磁化された磁極を有するマグネツトと、
前記マグネツトの径方向に磁化された磁極による
界磁磁束と鎖交する2相のコイルを有する電機子
と、前記マグネツトと前記電機子の相対位置に応
じて前記2相のコイルへの通電を切換える通電切
換手段を具備し、前記マグネツトの磁極と前記電
機子が径方向に対向しながら、前記マグネツトと
前記電機子のうち、いずれか一方を他方に対して
回転自在となした直流モータであつて、前記マグ
ネツトが回転方向に交互に着磁されたm組(ただ
し、mは2以上の偶数)のN極領域とS極領域を
有し、前記N極領域の一部分と前記S極領域の一
部分を回転軸心の方向に共存させることにより所
定角度幅の実効的無磁性極部を形成し、回転方向
にm組のN極部、実効的無磁性極部、S極部を順
次形成し、かつ、前記マグネツトのN極部とS極
部の境界線に対して隣接するN極領域とS極領域
の形状を対称または略対称となしたことを特徴と
する直流モータ。 2 マグネツトは円環状マグネツトであり、前記
マグネツトの円周面にm組のN極部、実効的無磁
性極部、S極部を有すると共に、前記マグネツト
の端面にm組のN極、S極を等角度幅または略等
角度幅に有することを特徴とする特許請求の範囲
第1項に記載の直流モータ。 3 マグネツトのN極領域とS極領域は、m組の
N極部、実効的無磁性極部、S極部を有すると共
に、前記マグネツトの磁極面の回転軸心を中心と
する円上においてm組のN極、S極を等角度幅ま
たは略等角度幅に交互に配置した部分も形成した
ことを特徴とする特許請求の範囲第1項に記載の
直流モータ。
[Claims] 1. A magnet having fixed magnetized magnetic poles;
an armature having two-phase coils interlinked with field magnetic flux generated by magnetic poles magnetized in the radial direction of the magnet; and switching energization to the two-phase coils according to relative positions of the magnet and the armature. A direct current motor comprising an energization switching means, wherein the magnetic poles of the magnet and the armature are opposed to each other in the radial direction, and one of the magnet and the armature is freely rotatable relative to the other. , the magnet has m sets (where m is an even number of 2 or more) of N-pole regions and S-pole regions magnetized alternately in the rotation direction, a part of the N-pole region and a part of the S-pole region; are made to coexist in the direction of the rotation axis to form an effective non-magnetic pole part with a predetermined angular width, and m sets of N-pole part, effective non-magnetic pole part, and S-pole part are sequentially formed in the rotation direction, A direct current motor characterized in that the shapes of the adjacent N-pole region and S-pole region are symmetrical or substantially symmetrical with respect to the boundary line between the N-pole portion and the S-pole portion of the magnet. 2. The magnet is an annular magnet, and has m sets of N pole part, effective non-magnetic pole part, and S pole part on the circumferential surface of the magnet, and m sets of N pole part and S pole part on the end face of the magnet. 2. The DC motor according to claim 1, wherein the DC motor has equal angular width or approximately equal angular width. 3. The N-pole region and the S-pole region of the magnet have m pairs of N-pole portions, effective non-magnetic pole portions, and S-pole portions, and m pairs on a circle centered on the rotation axis of the magnetic pole surface of the magnet. 2. The DC motor according to claim 1, further comprising a portion in which sets of N poles and S poles are alternately arranged with equal angular width or approximately equal angular width.
JP8050779A 1979-06-26 1979-06-26 Dc motor Granted JPS566664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8050779A JPS566664A (en) 1979-06-26 1979-06-26 Dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8050779A JPS566664A (en) 1979-06-26 1979-06-26 Dc motor

Publications (2)

Publication Number Publication Date
JPS566664A JPS566664A (en) 1981-01-23
JPS6311865B2 true JPS6311865B2 (en) 1988-03-16

Family

ID=13720220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8050779A Granted JPS566664A (en) 1979-06-26 1979-06-26 Dc motor

Country Status (1)

Country Link
JP (1) JPS566664A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925562A (en) * 1982-07-28 1984-02-09 Matsushita Electric Works Ltd Brushless motor
JPS61185054A (en) * 1985-02-08 1986-08-18 Sanyo Electric Co Ltd Brushless motor

Also Published As

Publication number Publication date
JPS566664A (en) 1981-01-23

Similar Documents

Publication Publication Date Title
JP2575628B2 (en) Brushless motor
US6741006B2 (en) Magnet type stepping motor
US4644233A (en) D.C. brushless motor having wider and narrower pole parts
KR890001476Y1 (en) Motors
US4499407A (en) Brushless DC motor assembly with improved stator pole
US4396875A (en) DC Motor
JPS6223536B2 (en)
JPH0444504B2 (en)
EP0431178B1 (en) Synchronous machine
JPS6311865B2 (en)
JPH06339240A (en) Permanent magnet type motor
JPS5932985B2 (en) surface facing motor
JPH02280642A (en) Slot motor
JPS58107058A (en) Plane confronting brushless motor
JPS6122553B2 (en)
JP3045935B2 (en) Permanent magnet type stepping motor
JPH0522917A (en) Direct current motor
JPH0441752Y2 (en)
JPH07213040A (en) Three-phase brushless motor
JPH07336989A (en) Three-phase claw pole type permanent magnet rotary electric machine
JP3128283B2 (en) Brushless motor
JPH0723027Y2 (en) Brushless motor
JPH0370457A (en) Dc motor
JPS61189159A (en) Dc brushless motor
JPH07322588A (en) Three-phase brushless motor