JPS61199229A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61199229A
JPS61199229A JP4045585A JP4045585A JPS61199229A JP S61199229 A JPS61199229 A JP S61199229A JP 4045585 A JP4045585 A JP 4045585A JP 4045585 A JP4045585 A JP 4045585A JP S61199229 A JPS61199229 A JP S61199229A
Authority
JP
Japan
Prior art keywords
magnetic
layer
nonmagnetic
film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4045585A
Other languages
Japanese (ja)
Inventor
Tomoji Morita
森田 知二
Mitsumasa Umezaki
梅崎 光政
Hirobumi Ouchi
博文 大内
Isato Nishinakagawa
西中川 勇人
Yasuhiro Okamura
康弘 岡村
Teruji Futami
二見 照治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4045585A priority Critical patent/JPS61199229A/en
Publication of JPS61199229A publication Critical patent/JPS61199229A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the crystal orientation and magnetic characteristic of a magnetic layer and to increase the number of times of CSS by providing a nonmagnetic underlying layer consisting of one kind among VC, VC2 and VN between a nonmagnetic hardened layer and magnetic medium layer. CONSTITUTION:An alumite film is coated as the nonmagnetic hardened layer 2 to about 4mum on a disk-shaped aluminum alloy substrate 1. After the film is finished to a specular surface, the coating consisting of one kind among VC, VC2 and VN is formed as the nonmagnetic underlying layer 3 thereon to the thickness ranging 50-2,400Angstrom and a thin gamma-Fe2O3 film is formed as the magnetic medium layer 4 thereon. The adverse effect of the nonmagnetic hardened layer 2 is prevented and the crystal orientation and magnetic characteristic of the magnetic layer are improved by providing the nonmagnetic underlying layer 3 consisting of, for example, the VC film in the above-mentioned manner. The increase in the number of times of CSS is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、fcとえばコバルト、コバルト合金。[Detailed description of the invention] [Industrial application field] This invention applies to fc such as cobalt and cobalt alloys.

鉄、鉄合金、ニッケル、ニッケル合金などの金属強出性
体よりなる磁性層、あるいは酸化鉄、酸化クロムなどの
金属酸化物強磁性体よりなる磁性層を有する磁気記録媒
体に関するものである。
The present invention relates to a magnetic recording medium having a magnetic layer made of a metal ferromagnetic material such as iron, iron alloy, nickel, or nickel alloy, or a magnetic layer made of a metal oxide ferromagnetic material such as iron oxide or chromium oxide.

〔従来の技術〕[Conventional technology]

近年、コンピュータ・システムにおける磁気ディスク等
の外部記憶装置の重要性が増大し、高記録密度化に対す
る要求はますます高まっている。
In recent years, the importance of external storage devices such as magnetic disks in computer systems has increased, and the demand for higher recording densities is increasing.

磁気記録装置は記録再生ヘッドおよび磁気ディスクの主
構成部から構成され、磁気ディスクは高速で回転し記録
再生ヘッドは磁気ディスクより微小間隔浮上している。
A magnetic recording device is composed of the main components of a recording/reproducing head and a magnetic disk. The magnetic disk rotates at high speed, and the recording/reproducing head floats a minute distance above the magnetic disk.

磁気記録装置の高性能化に伴い、この浮上間隔を小さく
するために記録再生ヘッドの荷重を小さくするとともに
接触始動・停止(コンタクト・スタート・ストップ:c
ss)型ヘッド浮揚システムが採用されている。磁気デ
ィスクすなわち磁気記録媒体の高記録密度化、高性能化
を図るためには、記録媒体の薄層化、均−一様化、磁気
特性の改良(保磁力、角形比の向上)。
As the performance of magnetic recording devices improves, the load on the recording/reproducing head is reduced in order to reduce the flying distance, and contact start/stop (contact start/stop: c
ss) type head flotation system is adopted. In order to increase the recording density and performance of magnetic disks, that is, magnetic recording media, it is necessary to make the recording media thinner, more uniform, and improve the magnetic properties (improvement of coercive force and squareness ratio).

および低浮上教における安定したヘッド浮揚状態を確保
しヘッドとディスクの衝突(ヘッド・クラッシュ)を防
止するためのディスク表面精度の向上、耐ヘッドクラツ
シユ性等の向上が必要である。
In addition, it is necessary to improve the precision of the disk surface and the head crash resistance in order to ensure a stable head flying state in low-flying systems and prevent collisions between the head and the disk (head crash).

それに伴い磁性媒体層を支持する基板の品質の向上が重
要となっている。
Accordingly, it has become important to improve the quality of the substrate that supports the magnetic medium layer.

高密度記録に適する基板の条件としては機械的平担性お
よび表面粗さが良好であり、欠陥が小さくその数も少な
いことが挙げられる。さらに、記録媒体の薄層化に伴い
基板の十分な硬度も必要とされてきた。すなわち、基板
が軟かいと磁気ヘッドが磁気ディスクに接続した際に陥
没などの変形を起こし、磁気ヘッドの安定し次浮揚状態
が得られないばかりか、磁気記録装置の信頼性を表すコ
ンタクトスタートストップ(C88)回数が小さくなる
という問題がある。
Conditions for a substrate suitable for high-density recording include good mechanical flatness and surface roughness, and a small number of defects. Furthermore, as the recording medium becomes thinner, the substrate needs to have sufficient hardness. In other words, if the substrate is soft, it will cause deformation such as depression when the magnetic head is connected to the magnetic disk, and not only will the magnetic head not be able to achieve a stable floating state, but also the contact start stop, which indicates the reliability of the magnetic recording device. (C88) There is a problem that the number of times becomes small.

従来、磁気ディスクの基板にはアルミ合金が使われてい
るが9表面硬化や表面精度をだすため。
Traditionally, aluminum alloys have been used for the substrates of magnetic disks because of their surface hardening and surface precision.

その上に硬化層を被覆している。この硬化層は研磨性の
良好なN1−Pめつき展やアルマイト膜が用いられてき
次(たとえば、電々公社研究実用化報告第31巻第9号
1731〜1744頁、先行技術特願昭59−8863
3 号9%願昭59−111468号明細書)。この膜
を形成した後2機械加工を行い表面精度をあげ、磁性媒
体層を形成する。この磁性媒体層の磁気特性と結晶配向
性には密接な関係があり、結晶配向性は磁性媒体層の下
地膜の種類に影響されることがわかっている(たとえば
、太田ら、第8回日本応用磁気学会学術講演概要集。
A hardened layer is coated thereon. For this hardened layer, N1-P plating or alumite film with good abrasiveness has been used (for example, Electric Corporation Research and Practical Application Report Vol. 31, No. 9, pp. 1731-1744, Prior Art Patent Application No. 1973- 8863
No. 3 9% Application No. 111468/1989). After forming this film, two machining processes are performed to improve the surface precision and form a magnetic medium layer. There is a close relationship between the magnetic properties and crystal orientation of this magnetic medium layer, and it is known that the crystal orientation is influenced by the type of underlying film of the magnetic medium layer (for example, Ota et al. A collection of academic lecture summaries from the Japan Society of Applied Magnetics.

15pB−8(1984))o ftとえば、1−Fe
2O3薄膜の場合[111〕配向、 Coおよび00合
金薄膜の場合はC軸配向した場合が磁気特性が良好であ
ることがわかっている。
15pB-8 (1984)) for example, 1-Fe
It is known that the magnetic properties are better when the 2O3 thin film has the [111] orientation, and when the Co and 00 alloy thin films have the C-axis orientation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし9種々の硬化層を形成し磁性媒体層を形成すると
、はとんどの場合望ましい結晶配向性になりに<<、そ
の結果磁化曲線から求められる角形比Sか悪化するなど
磁気特性が良くならないという問題点があった。
However, when forming a magnetic medium layer by forming various hardened layers, in most cases the desired crystal orientation is not obtained, and as a result, the magnetic properties do not improve, such as the squareness ratio S determined from the magnetization curve worsening. There was a problem.

この発明は上記のような問題点を解決するためになされ
たもので、結晶配向性すなわち磁気特性が良好で088
回数が増大する信頼性の高い磁気記録媒体を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and has good crystal orientation, that is, magnetic properties, and
The purpose is to obtain a highly reliable magnetic recording medium that can be used repeatedly.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の磁気記録媒体は、非磁性硬化層と磁性媒体層
の間に、 V Cm VC2#およびVNのうちのいず
れか1員よりなる非磁性下地層を形成したものである。
The magnetic recording medium of the present invention has a nonmagnetic underlayer made of one of V Cm VC2# and VN formed between the nonmagnetic hardened layer and the magnetic medium layer.

〔作 用〕[For production]

この発明に係るVC、VC2,およびVNのうちのいず
れか1aiより成る非磁性下地層の形成により。
By forming a nonmagnetic underlayer made of any one of VC, VC2, and VN according to the present invention.

非磁性硬化層の悪影へ9を防止し、磁性媒体層の結晶配
向性を良くすることができ、非磁性硬化層の硬く表面精
度の良好な特性を減することがない。
It is possible to prevent the negative effects of the non-magnetic hardened layer, improve the crystal orientation of the magnetic medium layer, and not reduce the hardness and good surface precision properties of the non-magnetic hardened layer.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、11ノは非磁性基板であるアルミニウム合
金基板、(2)は非磁性硬化層、(3)はVC非磁性下
地層、(4)は磁性媒体層である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, numeral 11 is an aluminum alloy substrate which is a non-magnetic substrate, (2) is a non-magnetic hardened layer, (3) is a VC non-magnetic underlayer, and (4) is a magnetic medium layer.

以下、具体的実施例によりこの発明をより詳細に説明す
るが、この発明はこれに限定されるものではない。
This invention will be explained in more detail below with reference to specific examples, but the invention is not limited thereto.

実施例 ディスク状1アフルミニウム合金基板(1)上に非磁性
硬化層(2)としてアルマイト膜を4μm被覆した。
EXAMPLE A disk-shaped affluminium alloy substrate (1) was coated with an alumite film having a thickness of 4 μm as a nonmagnetic hardened layer (2).

アルマイト膜を鏡面仕上げした後、非磁性下地層(3)
としてVC膜を反応スパッタ法により形成した。
After mirror finishing the alumite film, non-magnetic underlayer (3)
A VC film was formed by a reactive sputtering method.

さらに、磁性媒体層(4)としてγ−F′e205薄膜
を形成したO VC#の膜厚を変えた試料を作製し9種々の測定を行い
、結果を表にまとめた。結晶配向性については+XS回
折法により測定し−r Fe203(スピネル型)の2
22方向のピー、り!(22□)と311方向のピーク
I   の比によって表現した。角膨比S嘔磁化曲線よ
り求め念。
Furthermore, samples of OVC# having different film thicknesses in which a γ-F'e205 thin film was formed as the magnetic medium layer (4) were prepared, and nine different measurements were performed, and the results are summarized in a table. The crystal orientation was measured by +XS diffraction method.
Beep in 22 directions! It is expressed by the ratio of the peak I in the (22□) and 311 directions. The angular swelling ratio S is calculated from the magnetization curve.

さらに、非磁性下地層の膜厚と各特性値の変化を、非磁
性下地層がVCの場合の例を第2図に。
Furthermore, FIG. 2 shows an example of changes in the thickness of the non-magnetic underlayer and each characteristic value when the non-magnetic underlayer is VC.

非磁性下地層がVNの場合の例を第3図にそれぞれ示す
。図中9曲線11は1(222)/ l (311)の
変化1曲線12はSの変化9曲線13は089回数の比
の変化を表す。
An example in which the nonmagnetic underlayer is VN is shown in FIG. In the figure, 9 curves 11 represent changes in 1(222)/l (311), 1 curve 12 represents changes in S, and 9 curves 13 represent changes in the ratio of 089 times.

注)VC膜季がQA[形成しない]の時のCSS回数を
1として比で表した。
Note) Expressed as a ratio, with the number of CSSs when the VC film is QA [not formed] as 1.

表および第2図より明らかなように、VCの膜厚が5O
Aを越えると、結晶配向性およびSの値が向上していく
。一方、VCの膜厚が240OAを越え30GOA以上
になると、088回数の悪化が与られた。
As is clear from the table and Figure 2, the film thickness of VC is 5O
When A is exceeded, the crystal orientation and the S value improve. On the other hand, when the VC film thickness exceeded 240 OA and became 30 GOA or more, 088 deteriorations were given.

VCの膜厚が厚すぎると、非磁性硬化層の効果が薄れて
しまい、088回数の悪化につながり几と考えられる。
It is considered that if the VC film thickness is too thick, the effect of the nonmagnetic hardened layer will be weakened, leading to a worsening of the 088 times.

また、300OA以上だと熱膨張係数の違いから、クラ
ックがはいることが多く 、300OA以上は望ましく
ない。
Moreover, if it is over 300 OA, cracks will often occur due to the difference in the coefficient of thermal expansion, so 300 OA or more is not desirable.

上記実施例では、VC膜の場合について説明したが、V
C2,VNの場合であっても同様の結果が得られ、上記
実施例と同様の効果を秦する。
In the above embodiment, the case of VC film was explained, but V
Similar results are obtained even in the case of C2 and VN, and the same effects as in the above embodiment are obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、非磁性基板と。 As described above, according to the present invention, a non-magnetic substrate.

この非磁性基板に被覆された非磁性硬化層と、この非磁
性硬化層に被覆されたVC,VC2,およびVNのうち
のいずれか1種よりなる非磁性下地層と、この非磁性下
地層に被覆された磁性媒体層を備えたので。
a nonmagnetic hardened layer coated on the nonmagnetic substrate; a nonmagnetic underlayer made of any one of VC, VC2, and VN coated on the nonmagnetic hardened layer; With a coated magnetic media layer.

結晶配向性および磁気特性が向上し、CSS回数が増大
し、信頼性の高い磁気記録媒体が得られる効果がある。
This has the effect of improving crystal orientation and magnetic properties, increasing the number of CSS operations, and providing a highly reliable magnetic recording medium.

また、 vc 、vc2.およびVNのうちのいずれか
1種よりなる非磁性下地層の厚さを50〜240dの蛇
口にすると、−ノー上述の効果が増大する。
Also, vc, vc2. When the thickness of the non-magnetic underlayer made of any one of VN and VN is set to 50 to 240 d, the above-mentioned effects are enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例により得られた磁気記録媒
体を示す断面図であり、第2図および第3図は非磁性下
地層の膜厚と各特性値の変化を示す特性図である。 (1)・・・非磁性基板、(2)・・・非磁性硬化層、
(3)・・・VC非磁性下地層、(4)・・・磁性媒体
層。
FIG. 1 is a cross-sectional view showing a magnetic recording medium obtained by an embodiment of the present invention, and FIGS. 2 and 3 are characteristic diagrams showing changes in the film thickness of the nonmagnetic underlayer and each characteristic value. be. (1)...Nonmagnetic substrate, (2)...Nonmagnetic hardened layer,
(3)...VC nonmagnetic underlayer, (4)...magnetic medium layer.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性基板と、この非磁性基板に被覆された非磁
性硬化層と、この非磁性硬化層に被複されたVC、VC
_2、およびVNのうちのいずれか1種よりなる非磁性
下地層と、この非磁性下地層に被覆された磁性媒体層を
備えた磁気記録媒体。
(1) A non-magnetic substrate, a non-magnetic hardened layer coated on this non-magnetic substrate, VC, VC coated on this non-magnetic hardened layer
A magnetic recording medium comprising a nonmagnetic underlayer made of any one of _2 and VN, and a magnetic medium layer covered with the nonmagnetic underlayer.
(2)VC、VC_2およびVNのうちのいずれか1種
より形成された非磁性下地層の膜厚を50〜2400Å
の範囲にしたことを特徴とする特許請求の範囲第1項記
載の磁気記録媒体。
(2) The thickness of the non-magnetic underlayer formed from any one of VC, VC_2 and VN is 50 to 2400 Å.
The magnetic recording medium according to claim 1, characterized in that the magnetic recording medium is within the range of .
JP4045585A 1985-03-01 1985-03-01 Magnetic recording medium Pending JPS61199229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045585A JPS61199229A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045585A JPS61199229A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61199229A true JPS61199229A (en) 1986-09-03

Family

ID=12581113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045585A Pending JPS61199229A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61199229A (en)

Similar Documents

Publication Publication Date Title
JPH0566647B2 (en)
JPS61199224A (en) Magnetic recording medium
JPH0474772B2 (en)
JPS61199236A (en) Magnetic recording medium
JPS61199229A (en) Magnetic recording medium
JPS62157323A (en) Magnetic recording medium
JPS61199231A (en) Magnetic recording medium
JPS5961107A (en) Magnetic memory body
JPS61199233A (en) Magnetic recording medium
JPH0568771B2 (en)
JPS61199232A (en) Magnetic recording medium
JP2644994B2 (en) Disk-shaped magnetic recording medium
JPS61199230A (en) Magnetic recording medium
JPS61199227A (en) Magnetic recording medium
JPS61188732A (en) Magnetic recording medium
JPS61199226A (en) Magnetic recording medium
JPS61199225A (en) Magnetic recording medium
JPS61199228A (en) Magnetic recording medium
JPS61199223A (en) Magnetic recording medium
JPS5996539A (en) Magnetic recording disc
JPS61199237A (en) Magnetic recording medium
JPS61199234A (en) Magnetic recording medium
JPS61188733A (en) Magnetic recording medium
JPH0514325B2 (en)
JPS61199222A (en) Magnetic recording medium