JPS61199232A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61199232A
JPS61199232A JP4045885A JP4045885A JPS61199232A JP S61199232 A JPS61199232 A JP S61199232A JP 4045885 A JP4045885 A JP 4045885A JP 4045885 A JP4045885 A JP 4045885A JP S61199232 A JPS61199232 A JP S61199232A
Authority
JP
Japan
Prior art keywords
layer
magnetic
nonmagnetic
substrate
providing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4045885A
Other languages
Japanese (ja)
Inventor
Tomoji Morita
森田 知二
Mitsumasa Umezaki
梅崎 光政
Hirobumi Ouchi
博文 大内
Isato Nishinakagawa
西中川 勇人
Yasuhiro Okamura
康弘 岡村
Teruji Futami
二見 照治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4045885A priority Critical patent/JPS61199232A/en
Publication of JPS61199232A publication Critical patent/JPS61199232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium which is improved in the crystal orientability and magnetic characteristics of a magnetic medium layer, increases the number of times of CSS and has a good squareness ratio by providing a specific nonmagnetic underlying layer on a nonmagnetic substrate via a nonmagnetic hardened layer and providing the magnetic medium layer on the underlying layer. CONSTITUTION:The nonmagnetic hardened layer 2 consisting of an alumite film, etc. is formed on the nonmagnetic substrate 1 consisting of an aluminum alloy, etc. and the surface thereof is finished to a specular surface to improve the surface hardness and accuracy of the substrate 1. The nonmagnetic underlying layer 3 is then formed by sputtering one kind among Si, Ti, Mo, W and Zr on the layer 2 within a range of 50-2,400Angstrom thickness. The ferromagnetic medium layer 4 consisting of gamma-Fe2O3, Co, Co alloy, etc. is formed on the layer 3. The crystal orientability and magnetic characteristics of the magnetic medium are made better by providing the layer 3 than in the case of providing directly the magnetic medium layer 4 on the layer 2. The number of times of CSS is thus increased and the high reliability magnetic disk or the like is obtd.

Description

【発明の詳細な説明】 〔韮業上の利用分野〕 この発明は、たとえはコバルト、コバルト合金。[Detailed description of the invention] [Field of use in dwarf industry] This invention is applicable to cobalt and cobalt alloys.

鉄、鉄合金、ニッケル、ニッケル合金などの金属Ili
!I磁性体よりなる磁性層、あるいは酸化鉄、酸化クロ
ムなどの金属酸化物’is性体よりなる磁性層を有する
磁気記録媒体に関するものである。
Metals such as iron, iron alloys, nickel, nickel alloys, etc.
! The present invention relates to a magnetic recording medium having a magnetic layer made of an I magnetic material or a magnetic layer made of a metal oxide'is material such as iron oxide or chromium oxide.

〔従来の技術〕[Conventional technology]

近年、コンピュータ・システムにおける磁気ディヌク等
の外部記憶装置の重要性が増大し、高記録密度化に対す
る要求はますます高まっている。
In recent years, the importance of external storage devices such as magnetic disks in computer systems has increased, and the demand for higher recording densities is increasing.

磁気記録装置は記録再生ヘッドおよび磁気ディヌクの主
構成部から構成され、磁気ディスクは高速で回転し記録
再生ヘッドは磁気ディスクよシ微小間隔浮上している。
A magnetic recording device is composed of the main components of a recording/reproducing head and a magnetic disk.The magnetic disk rotates at high speed, and the recording/reproducing head floats a minute distance above the magnetic disk.

磁気記録装置の高性能化に伴い、この浮上間隔を小さく
するために記録再生ヘッドの荷重を小さくするとともに
接触始動・停止(コンタクト・スタート・ストップ:C
55)型ヘッド浮揚システムが採用されている。磁気デ
ィスクすなわち磁気記録媒体の高記録密度化、高性能化
を図るためには、記録媒体の薄層化、均−一様化、磁気
特性の改良(保磁力、角形比の向上)。
As the performance of magnetic recording devices improves, the load on the recording/reproducing head is reduced in order to reduce the flying distance, and contact start/stop (C)
55) type head flotation system is adopted. In order to increase the recording density and performance of magnetic disks, that is, magnetic recording media, it is necessary to make the recording media thinner, more uniform, and improve the magnetic properties (improvement of coercive force and squareness ratio).

および低浮上量における安定したヘッド#揚状態を確保
しヘッドとディスクの衝突(ヘッド・クラッシュ)を防
止するためのディスク表面精度の向上、耐ヘッドクラツ
シユ性等の向上が必要である。
In addition, it is necessary to improve disk surface precision and head crush resistance in order to ensure stable head lift conditions at low flying heights and prevent head-disk collisions (head crashes).

それに伴い磁性媒体層を支持する基板の品質の向上が重
要となっている。
Accordingly, it has become important to improve the quality of the substrate that supports the magnetic medium layer.

高密度記録に適する基板の条件としては機械的平坦性お
よび表面粗さが良好であり、欠陥が小さくその数も少な
いことが挙げられる。さらに、記録媒体の薄層化に伴い
基板の十分な硬度も必要とされてきた。すなわち、基板
が軟かいと磁気ヘッドが磁気ディヌクに接続した際に陥
没などの変形を起こし、6B気ヘツドの安定した浮揚状
態が得られないばかりか、磁気記録装置の信頼性を表す
コンタクトスタートストップ(aSS )回数が小さく
なるという問題がある。
Conditions for a substrate suitable for high-density recording include good mechanical flatness and surface roughness, and a small number of defects. Furthermore, as the recording medium becomes thinner, the substrate needs to have sufficient hardness. In other words, if the substrate is soft, it will cause deformation such as depression when the magnetic head is connected to the magnetic disk, and not only will it be impossible to obtain a stable floating state of the 6B air head, but also the contact start stop, which indicates the reliability of the magnetic recording device. (aSS) There is a problem that the number of times becomes small.

従来、磁気ティヌクの基板にはアルミ合金が使われてい
るが9表面硬化や表面精度をだすため。
Conventionally, aluminum alloy has been used for the substrate of magnetic tinuku, but this is due to surface hardening and surface precision.

その上に硬化層を抜機している。この硬化層は研磨性の
良好なN1−Pめつき膜やアルマイト膜が用いられてき
た(たとえば、電々公社研究実用化報告第31巻第9号
1731〜1744貞、先行技術特願昭59−8863
3号、特願昭59−111468号明細書)。
On top of that, a hardened layer is cut out. For this hardened layer, N1-P plated film or alumite film with good abrasiveness has been used (for example, Electric Corporation Research and Practical Application Report Vol. 31 No. 9 1731-1744, Prior Art Patent Application No. 1983- 8863
No. 3, Japanese Patent Application No. 59-111468).

この膜を形成した後、&械加工ケ行い表面精度をあけ、
磁性媒体層を形成する。この磁性媒体層の磁性特性と結
晶配向性には密接な関係があ夛、結晶配向性は磁性媒体
層の下地膜の種類に影響されることがわかっている(た
とえば、太田ら、第8回日本応用磁気学会学術講演概要
集、、15pR−a(1984))。たとえば、  r
 Fe2O3薄膜の場合は[111]配向、00および
00合金薄膜の場合はC軸配向した場合が磁気特性が良
好であることがわかっている。
After forming this film, &machining is performed to improve the surface accuracy.
forming a magnetic medium layer; There is a close relationship between the magnetic properties and crystal orientation of the magnetic medium layer, and it is known that the crystal orientation is influenced by the type of underlying film of the magnetic medium layer (for example, Ota et al. Japanese Society of Applied Magnetics, Abstracts of Academic Lectures, 15pR-a (1984)). For example, r
It is known that magnetic properties are better when Fe2O3 thin films are oriented with [111] orientation, and when 00 and 00 alloy thin films are oriented with C axis.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし2種々の硬化層を形成し磁性媒体層を形成すると
、はとんどの場合望ましい結晶配向性になりに<<、そ
の結果磁化曲線から求められる角形比S”が態化するな
ど磁気特性が良くならないという問題点があった。
However, when two types of hardened layers are formed to form a magnetic medium layer, the desired crystal orientation is achieved in most cases, and as a result, the magnetic properties change, such as the squareness ratio S'' determined from the magnetization curve. The problem was that it didn't get better.

この発明は上記のような問題点を解決するためになされ
たもので、結晶配向性すなわち磁気特性が良好でaSS
l数が増大する信頼性の高い磁気記録媒体を得ることを
目的とする。
This invention was made to solve the above-mentioned problems.
The object of the present invention is to obtain a highly reliable magnetic recording medium in which the l number increases.

〔問題点を解決するための手段〕[Means for solving problems]

この発照の磁気記録媒体は、非磁性硬化層と磁性媒体層
の間にsi、 Ti、 MO,W、およびZrのうちの
いずれか1種よりなる非磁性下地層を形成したものであ
る。
This magnetic recording medium has a nonmagnetic underlayer made of any one of Si, Ti, MO, W, and Zr formed between a nonmagnetic hardened layer and a magnetic medium layer.

〔作用〕[Effect]

この発明に係るsi、 Ti、 MO,W、およびZr
のうちのいずれか1種より成る非磁性下地層の形成によ
り、非磁性硬化層の悪影響を防止し、磁性媒体層の結晶
配向性を良くすることができ、非磁性硬化層の硬く表面
精度の良好な特性を減することがない。
si, Ti, MO, W, and Zr according to this invention
By forming a non-magnetic underlayer made of one of these, it is possible to prevent the adverse effects of the non-magnetic hardened layer, improve the crystal orientation of the magnetic medium layer, and improve the hardness and surface precision of the non-magnetic hardened layer. Good properties are not diminished.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)は非磁性基板であるアルミニウム合
金基板、(2)は非磁性硬化層、(3)はsi非磁性下
地層、(4)は磁性媒体層である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is an aluminum alloy substrate which is a nonmagnetic substrate, (2) is a nonmagnetic hardened layer, (3) is a Si nonmagnetic underlayer, and (4) is a magnetic medium layer.

9下、具体的実施例によりこの発明をより詳細に説明す
るが、この発明はこれに限定されるものではない。
The present invention will be explained in more detail with reference to specific examples below, but the present invention is not limited thereto.

実施例 ディヌク状アルミニウム合金基板(1)上に非磁性硬化
層(2)としてアルマイト膜を4μm被傍した。アルマ
イト膜を鏡面仕上けした後、非磁性下地層(3)として
si膜を反応スパッタ法により形成した。
EXAMPLE An alumite film having a thickness of 4 μm was coated as a non-magnetic hardened layer (2) on a Dinuk-shaped aluminum alloy substrate (1). After mirror-finishing the alumite film, a Si film was formed as a nonmagnetic underlayer (3) by reactive sputtering.

さらに、磁性媒体層(4)としてr Fe2O3薄膜を
形成した。
Furthermore, an rFe2O3 thin film was formed as a magnetic medium layer (4).

si膜の膜厚を変えた試料を作製し9種々の測定を行い
、に果を表にまとめた。結晶配向性については、 xl
IM回折法により測定し、  r  Fe2n5(スピ
ネル型)の222方向のピーク+ (222)  と3
11方向のピークI(311)の比によって表現した。
Samples with different Si film thicknesses were prepared and nine different measurements were performed, and the results are summarized in the table. For crystal orientation, xl
Measured by IM diffraction method, the peaks in the 222 direction of r Fe2n5 (spinel type) + (222) and 3
It was expressed by the ratio of peak I (311) in 11 directions.

角形比8 は磁化曲線より求めた。。The squareness ratio of 8 was determined from the magnetization curve. .

さらに、非磁性下地層の膜厚と各特性値の変化を、非磁
性下地層が8iの場合の例を$2図K。
Furthermore, $2 Figure K shows an example of changes in the thickness of the non-magnetic underlayer and each characteristic value when the non-magnetic underlayer is 8i.

非磁性下地層がTiの場合の例を第3図にそれぞれ示す
。図中2曲線11はI (222)/夏(311)の変
化1曲線12はS”の変化9曲線13はaSS回数の比
の変化を表す。
An example in which the nonmagnetic underlayer is made of Ti is shown in FIG. In the figure, 2 curves 11 represent changes in I (222)/summer (311), 1 curve 12 represents changes in S'', and 9 curves 13 represent changes in the ratio of aSS times.

注)Si膜厚がOA (形成しない)の時のaSS回数
を1として比で表した。
Note) Expressed as a ratio with the number of aSS when the Si film thickness is OA (not formed) as 1.

表および第2図より明らかなよ5に、SIの膜厚が50
;を越えると、結晶配向性およびS薫の値が向上してい
く。一方、Siの膜厚が240OAを越え300OA以
上になると、  aSS回数の悪化がみられた。siの
膜厚が厚すぎると、非磁性硬化層の効果が薄れてしまい
、  cBs回数の悪化につながったと考えられる。ま
た、  300OA以上だと熱**係数の違いから、ク
ラックがはいることが多(。
As is clear from the table and Figure 2, the film thickness of SI is 50
When the value exceeds ;, the crystal orientation and the S value improve. On the other hand, when the Si film thickness exceeded 240 OA and exceeded 300 OA, the number of aSSs deteriorated. It is thought that if the Si film was too thick, the effect of the nonmagnetic hardened layer was weakened, leading to a worsening of the number of cBs cycles. Also, if it is over 300OA, cracks will often occur due to the difference in heat coefficient.

30GOA以上は望ましくない。More than 30 GOA is not desirable.

上記実施例では、Sl膜の場合について説明したカ、 
 Ti、 MO,W、 Zrの場合であっても同様の結
果が得られ、上記実施例と同様の効果を奏する。
In the above embodiment, the functions explained for the case of the Sl film,
Similar results are obtained in the case of Ti, MO, W, and Zr, and the same effects as in the above embodiments are achieved.

〔発明の効果〕〔Effect of the invention〕

以上のよ5に、この発明によれば、非磁性基板と、この
非磁性基板に被覆された非磁性硬化層と。
According to the present invention, there is provided a non-magnetic substrate and a non-magnetic hardened layer coated on the non-magnetic substrate.

この非磁性硬化層に抜身されたsr、 Ti、 MOl
W。
sr, Ti, MOl extracted from this non-magnetic hardened layer
W.

およびZrのうちのいずれか1棟よりなる非磁性下地層
と、この非磁性下地層にweされた磁性媒体層を備えた
ので、結晶配向性および磁気特性が向上し、  aSS
回数が増大し、信頼性の高い磁気記録媒体が得られる効
果がある。
and Zr, and a magnetic medium layer formed on the non-magnetic underlayer, the crystal orientation and magnetic properties are improved, and aSS
This has the effect of increasing the number of times and providing a highly reliable magnetic recording medium.

また*  8+e T+、 Mo、 W、およびZrの
うちのいずれか1種よりなる非磁性下地層の厚さを50
〜24GOAの範囲にすると、一層上述の効果が壇大す
る。
In addition, the thickness of the nonmagnetic underlayer made of any one of *8+e T+, Mo, W, and Zr was 50
When the range is set to 24 GOA, the above-mentioned effect becomes even greater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例により得られた磁気記録媒
体を示す断面図であり、第2図−および第3図は非破性
下地層の膜厚と谷特性値の変化を示イ特性図である。 0)・・・非磁性基板、(2)・・・非磁性硬化層、(
3)・・・8i非磁性下地層、(4)・・・磁性媒体層
FIG. 1 is a cross-sectional view showing a magnetic recording medium obtained according to an embodiment of the present invention, and FIGS. It is a characteristic diagram. 0)...Nonmagnetic substrate, (2)...Nonmagnetic hardened layer, (
3)...8i nonmagnetic underlayer, (4)...magnetic medium layer.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性基板と、この非磁性基板に被覆された非磁
性硬化層と、この非磁性硬化層に被覆されたSi、Ti
、Mo、W、およびZrのうちのいずれか1種よりなる
非磁性下地層と、この非磁性下地層に被覆された磁性媒
体層を備えた磁気記録媒体。
(1) A nonmagnetic substrate, a nonmagnetic hardened layer coated on this nonmagnetic substrate, and a Si, Ti coated on this nonmagnetic hardened layer.
, Mo, W, and Zr, and a magnetic medium layer covered with the nonmagnetic underlayer.
(2)Si、Ti、Mo、W、およびZrのうちのいず
れか1種より形成された非磁性下地層の膜厚を50〜2
400Åの範囲にしたことを特徴とする特許請求の範囲
第1項記載の磁気記録媒体。
(2) The thickness of the nonmagnetic underlayer made of any one of Si, Ti, Mo, W, and Zr is 50 to 2
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a thickness of 400 Å.
JP4045885A 1985-03-01 1985-03-01 Magnetic recording medium Pending JPS61199232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045885A JPS61199232A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045885A JPS61199232A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61199232A true JPS61199232A (en) 1986-09-03

Family

ID=12581199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045885A Pending JPS61199232A (en) 1985-03-01 1985-03-01 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61199232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990362A (en) * 1989-06-16 1991-02-05 Nkk Corporation Method of manufacturing a titanium magnetic disk substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990362A (en) * 1989-06-16 1991-02-05 Nkk Corporation Method of manufacturing a titanium magnetic disk substrate

Similar Documents

Publication Publication Date Title
Bhushan Tribology and mechanics of magnetic storage devices
JPS61199224A (en) Magnetic recording medium
JPS59142738A (en) Magnetic recording medium
US5945190A (en) Magnetic recording medium and magnetic disk device
JPS61199232A (en) Magnetic recording medium
JPS61199236A (en) Magnetic recording medium
JPS61199231A (en) Magnetic recording medium
US4939045A (en) Magnetic recording medium
JPS61199233A (en) Magnetic recording medium
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JPH06243451A (en) Magnetic recording medium and magnetic recorder
JPH0650683B2 (en) Magnetic memory
JPS61199227A (en) Magnetic recording medium
JPS61199230A (en) Magnetic recording medium
JPS61188732A (en) Magnetic recording medium
JPS61199225A (en) Magnetic recording medium
JPS61199226A (en) Magnetic recording medium
JPS61199234A (en) Magnetic recording medium
JPS61199228A (en) Magnetic recording medium
JPS61199222A (en) Magnetic recording medium
JPS61199235A (en) Magnetic recording medium
JPS61188733A (en) Magnetic recording medium
JPS61199237A (en) Magnetic recording medium
JPS61199229A (en) Magnetic recording medium
JPS61199223A (en) Magnetic recording medium