JPS61198778A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61198778A
JPS61198778A JP3909185A JP3909185A JPS61198778A JP S61198778 A JPS61198778 A JP S61198778A JP 3909185 A JP3909185 A JP 3909185A JP 3909185 A JP3909185 A JP 3909185A JP S61198778 A JPS61198778 A JP S61198778A
Authority
JP
Japan
Prior art keywords
layer
insulating film
region
forming
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3909185A
Other languages
Japanese (ja)
Other versions
JPH0571132B2 (en
Inventor
Hiroshi Horie
博 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3909185A priority Critical patent/JPS61198778A/en
Publication of JPS61198778A publication Critical patent/JPS61198778A/en
Publication of JPH0571132B2 publication Critical patent/JPH0571132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To manufacture a semiconductor characterized by high degree of integration and less parasitic capacity, by etching away an insulating film, which is formed on the side wall of a pattern used for selective oxidation, and forming a base contact region and an emitter region by self-alignment. CONSTITUTION:In a P-type Si substrate 1, arsenic ions are implanted, and a high concentration N-type embedded layer 2 and an N-type epitaxial layer 3 are formed. An Si dioxide layer 12, an Si nitride layer 13 and an insulating film of an Si dioxide layer 14 are formed thereon. A part other than an element forming region is removed. Then, an Si nitride film 15 and the Si dioxide film 14 are formed. With the layers 14 and 15 as masks, an Si dioxide layer 16 is provided. Then, a polycrystalline Si layer 17 including B and the like is formed. Its protruded part is removed, and the surface layer of the layer 17 is oxidized and converted into an Si dioxide layer 18. Thereafter, a base region 20 is formed by the implantation of B. A pure polycrystalline Si layer 21 is formed only on the side wall of the layer 18. The layer 13 is removed, and an opening is formed. The opening 22 is expanded at the lower part. Then, an emitter electrode 24, a base electrode 25 and a collector electrode 26 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プレーナ型バイポーラ半導体装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a planar bipolar semiconductor device.

〔従来の技術〕[Conventional technology]

半導体装置において、集積度の向上と動作速度の向上と
が重要な要請であることは周知の事実である。
It is a well-known fact that in semiconductor devices, it is important to increase the degree of integration and increase the operating speed.

ところで、従来技術におけるプレーナ型バイポーラトラ
ンジスタは、一般に第13図に概略断面図を示す如きも
のである。図において、1は一導電型例えばp型の半導
体基板であり、2は反対導電型の高不純物濃度埋め込み
層であり、3は反対導電型例えばn型のエピタキシャル
成長層でありコレクタを構成し、4は一導電型の素子分
離領域である。5は一導電型の拡散層でありベースを構
成し、6は反対導電型の拡散層でありエミッタを構成す
る。7は反対導電型のコレクタ電極引き出し領域であり
、8.9、lOは金属層よりなり、それぞれ、コレクタ
、ベース、エミフタの各電極を構成する。尚、 11は
フィールド絶縁膜である。
Incidentally, a planar type bipolar transistor in the prior art is generally as shown in a schematic cross-sectional view in FIG. 13. In the figure, 1 is a semiconductor substrate of one conductivity type, for example, p-type, 2 is a high impurity concentration buried layer of the opposite conductivity type, 3 is an epitaxially grown layer of the opposite conductivity type, for example, n-type, which constitutes a collector, and 4 is an element isolation region of one conductivity type. Reference numeral 5 denotes a diffusion layer of one conductivity type and constitutes the base, and numeral 6 denotes a diffusion layer of the opposite conductivity type and constitutes the emitter. Reference numeral 7 denotes a collector electrode lead-out region of the opposite conductivity type, and 8.9 and 1O are made of metal layers, which constitute the collector, base, and emifter electrodes, respectively. Note that 11 is a field insulating film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

か−る構造のブレーナ型バイポーラトランジスタにおい
ては、ベース電極9とエミッタ電極lOとの絶縁距離を
確保するため、ベース領域5はエミッタ領域6よりかな
り大きくせざるを得ない。しかし、トランジスタ作用を
なす活性領域はp−n接合に沿う領域特にエミッタ領域
6の直下の領域のみであり、それ以外の領域はベース電
極引き出し領域であるから、その大きさはできるだけ小
さいことが望ましい。
In the Brainer type bipolar transistor having such a structure, the base region 5 must be made considerably larger than the emitter region 6 in order to ensure an insulating distance between the base electrode 9 and the emitter electrode IO. However, the active region that acts as a transistor is only the region along the p-n junction, especially the region directly under the emitter region 6, and the other region is the base electrode extraction region, so it is desirable that the size of the active region be as small as possible. .

ところが、上記せるとおり、従来技術におけるブレーナ
型バイポーラトランジスタにおいては、ベース領域を機
能的に必要とする大きさより大きくせざるを得す集積度
を向上する制約となり、同時に、寄性容量が大きくなる
ので、動作速度も制限するという欠点があった。
However, as mentioned above, in the conventional brainer type bipolar transistor, the base region has to be made larger than the functionally necessary size, which is a constraint on improving the degree of integration, and at the same time, the parasitic capacitance increases. , which also had the disadvantage of limiting the operating speed.

か−る欠点は、エミッタ・ベース・コレクタを立体的に
積層して形成して立型構造とすれば、かなり解消される
ので、エミッタeベース番コレクタが基板表面に対して
垂直な方向に積層され立体的に形成されてなる立型構造
のバイポーラトランジスタとその製造方法を開発する努
力が種々となされている。
This drawback can be largely eliminated if the emitter, base, and collector are stacked three-dimensionally to form a vertical structure. Various efforts have been made to develop vertical bipolar transistors formed three-dimensionally and methods for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、この要請に沿うものであり、その手段は、コ
レクタをなす一導電型の半導体層上に第1の絶縁膜、第
2の絶縁膜、第3の絶縁膜を形成する工程、該第3.2
、■の絶縁膜を素子形成予定領域上のみに残留しその他
の領域から除去する工程、第4の絶縁膜を、前記残留し
た第3.2.1の絶縁膜の側壁に形成する工程、前記第
3,4の絶縁膜によって覆われていない領域において前
記半導体層の表層を第5の絶縁膜に転換する工程、前記
第4の絶縁膜を除去する工程、反対導電型の不純物を含
む第1の導電膜を形成し、該第1の導電膜と前記半導体
層とを接続する工程、前記第3の絶縁膜を除去する工程
、前記第1の導電膜の表層を第6の絶縁膜に転換する工
程1反対導電型の不純物を導入して前記半導体層の表層
にベースをなす反対導電型領域を形成する工程、半導体
層を、前記第1の導電膜の表層が転換された第6の絶縁
膜の側壁に形成する工程、前記第2.1の絶縁膜に開口
を形成する工程、該開口に一導電型の半導体層を形成し
該半導体層をパターニングしてエミッタ電極を形成し前
記開口下部の前記半導体層表層を一導電型に再転換して
エミッタを形成する工程を含むことを特徴とする半導体
装置の製造方法にある。
The present invention meets this requirement, and its means include a step of forming a first insulating film, a second insulating film, and a third insulating film on a semiconductor layer of one conductivity type forming a collector; Section 3.2
, (2) remaining the insulating film only on the area where the element is to be formed and removing it from other areas; forming a fourth insulating film on the sidewall of the remaining insulating film 3.2.1; converting the surface layer of the semiconductor layer into a fifth insulating film in a region not covered by the third and fourth insulating films; removing the fourth insulating film; forming a conductive film and connecting the first conductive film and the semiconductor layer; removing the third insulating film; converting the surface layer of the first conductive film into a sixth insulating film. step 1: introducing impurities of opposite conductivity type to form a base opposite conductivity type region in the surface layer of the semiconductor layer; forming an opening in the second insulating film, forming a semiconductor layer of one conductivity type in the opening, patterning the semiconductor layer to form an emitter electrode, and forming an emitter electrode under the opening; A method of manufacturing a semiconductor device, comprising the step of reconverting the surface layer of the semiconductor layer to one conductivity type to form an emitter.

〔作用〕[Effect]

本発明は、選択酸化に使用したパターン側壁(第3.2
、lの絶縁膜の側壁)に形成された第4の絶縁膜をエツ
チング除去して、ベース・コンタクト領域とエミッタ領
域とをセルファラインで形成するというアイデアにもと
づくものである。
In the present invention, the pattern sidewall (3.2) used for selective oxidation is
This is based on the idea of etching away the fourth insulating film formed on the side walls of the insulating film of , l, and forming a base contact region and an emitter region in a self-aligned manner.

〔実施例〕〔Example〕

以丁1図面を参照しつ一1木発明の一実施例に係る立型
バイポーラトランジスタの製造方法についてさらに説明
する。
A method of manufacturing a vertical bipolar transistor according to an embodiment of the present invention will be further described below with reference to the drawings.

第1図参照 p型シリコン基板lの表面に、ヒ素等n型不純物をイオ
ン注入して、高濃度n型埋め込み層2を形成した後、n
型エピタキシャル層3を形成する。このn型エピタキシ
ャル層3は厚さが2μ層程度であり、不純物濃度は10
15C11−3程度である。
Refer to FIG. 1. After forming a high concentration n-type buried layer 2 by ion-implanting n-type impurities such as arsenic into the surface of a p-type silicon substrate l,
A mold epitaxial layer 3 is formed. This n-type epitaxial layer 3 has a thickness of about 2μ, and an impurity concentration of 10
It is about 15C11-3.

厚さ50nm程度の二酸化シリコンM(第1の絶縁1り
)12と厚さ 100n+s程度の窒化シリコン層(第
2の絶縁膜) 13と厚さ 600n層程度の二酸化シ
リコン層(第3の絶縁膜) 14とを形成する。これら
の層はCVD法をもって容易に形成しうる。
A silicon dioxide layer (first insulating film) 12 with a thickness of about 50 nm, a silicon nitride layer (second insulating film) with a thickness of about 100 n+s, and a silicon dioxide layer (third insulating film) with a thickness of about 600 nm ) 14. These layers can be easily formed using the CVD method.

第2図参照 フォトリソグラフィー法を使用して、二酸化シリコン層
(第3の絶縁膜)14と窒化シリコン層(第2の絶縁膜
) 13と二酸化シリコン層(第1の絶縁膜) +2と
を、素子形成領域上以外から除去する。この除去工程は
、三フッ化メタンを反応性ガスとする反応性イオンエツ
チング法を使用して可能である。
Refer to FIG. 2 Using a photolithography method, a silicon dioxide layer (third insulating film) 14, a silicon nitride layer (second insulating film) 13, and a silicon dioxide layer (first insulating film) +2 are formed. It is removed from areas other than the element formation area. This removal step is possible using a reactive ion etching method using trifluoromethane as the reactive gas.

第3図参照 CVD法を使用して、 300nm程度の厚さに窒化シ
リコン層(第4の絶l&膜)15を、一旦基板全面に形
成した後、三フッ化メタンを反応性ガスとする反応性イ
オンエツチング法を使用して除去し、素子形成領域に残
留した二酸化シリコン層(第3の絶縁膜) 14と窒化
シリコン層〔第2の絶縁膜〕13と二酸化シリコン層(
第1の絶縁膜)12との側壁のみに残留する。
Refer to Figure 3. After forming a silicon nitride layer (fourth insulation film) 15 to a thickness of about 300 nm on the entire surface of the substrate using the CVD method, a reaction using trifluoromethane as a reactive gas is performed. The silicon dioxide layer (third insulating film) 14, the silicon nitride layer [second insulating film] 13, and the silicon dioxide layer (second insulating film) 14, which remained in the element formation region after being removed using a chemical ion etching method,
It remains only on the side wall with the first insulating film) 12.

第4図参照 窒化シリコン層14.15をマスクとして基板全面を酸
化して厚さ 300n11程度の二酸化シリコン層(第
5の絶縁膜)16を形成する。
Referring to FIG. 4, the entire surface of the substrate is oxidized using the silicon nitride layers 14 and 15 as masks to form a silicon dioxide layer (fifth insulating film) 16 having a thickness of about 300 nm.

第5図参照 窒化シリコン層15を除去してn型エピタキシャル層3
を露出する。この露出された領域がベースのコンタクト
領域となる。この工程は、熱リン酸によるにツチンクを
もって実行しうる。ベース・コンタクト領域は0.3p
m程度が得られる。
Refer to FIG. 5. Remove the silicon nitride layer 15 and form the n-type epitaxial layer 3.
to expose. This exposed area becomes the contact area of the base. This step can be carried out by rinsing with hot phosphoric acid. Base contact area is 0.3p
About m can be obtained.

第6図参照 ポロン等p型不純物を102°CI+−3程度に含有す
る多結晶シリコン層(第1の導電膜) 17を厚さ80
0n層程度に形成する。
Refer to Figure 6. A polycrystalline silicon layer (first conductive film) containing p-type impurities such as poron at a concentration of about 102°CI+-3.
It is formed to about 0n layer.

第7図参照 多結晶シリコン層(第1の導電膜) 17の凸部のみを
除去する。この工程は、バイアススパッタ法をもって容
易に可能である。
Refer to FIG. 7. Only the convex portions of the polycrystalline silicon layer (first conductive film) 17 are removed. This step is easily possible using bias sputtering.

第8図参照 ツー/酸等を使用して二酸化シリコン層(第3の絶縁膜
) 14をエツチング除去し、多結晶シリコン層(第1
の導電膜)17の表層を300nm程度の厚さに酸化し
て二酸化シリコン層(第6の絶縁M)18に転換する。
Refer to FIG. 8. The silicon dioxide layer (third insulating film) 14 is etched away using an acid or the like, and the polycrystalline silicon layer (first insulating film) is removed by etching.
The surface layer of the conductive film (conductive film) 17 is oxidized to a thickness of about 300 nm to convert it into a silicon dioxide layer (sixth insulator M) 18.

この工程において、多結晶シリコン層(第1の導電M)
t7がn型エピタキシャルR3と接触する領域でもp型
不純物の拡散が行なわれて、P領域(ベースコンタクト
領域) 19が形成される。
In this step, a polycrystalline silicon layer (first conductive M)
The p-type impurity is also diffused in the region where t7 contacts the n-type epitaxial layer R3, and a P region (base contact region) 19 is formed.

第9図参照 ポロン等p型不純物をイオン注入してベース領域を形成
する。このベース領域20の深さは0.31Lm程度と
なり、不純物濃度は1017c■−3程度となる。
Referring to FIG. 9, a p-type impurity such as poron is ion-implanted to form a base region. The depth of this base region 20 is approximately 0.31 Lm, and the impurity concentration is approximately 1017c-3.

なお、ベースコンタクト領域18の深さは0.5 uL
■程度となり不純物濃度は1020c層−3程度となる
Note that the depth of the base contact region 18 is 0.5 uL.
The impurity concentration becomes approximately 1020c layer -3.

第10図参照 不純物を含まない多結晶シリコン層21を300nm程
度の厚さに一旦形成した後、四フッ化炭素を反応性ガス
とする反応性イオンエツチング法を使用してこれを除去
して、二酸化シリコン層18の側壁のみに残留する。こ
の工程において、窒化シリコン層(第2の絶縁膜) 1
3も一部除去され、開口22が形成される。
Refer to FIG. 10. After a polycrystalline silicon layer 21 containing no impurities is once formed to a thickness of about 300 nm, it is removed using a reactive ion etching method using carbon tetrafluoride as a reactive gas. It remains only on the sidewalls of the silicon dioxide layer 18. In this step, silicon nitride layer (second insulating film) 1
3 is also partially removed to form an opening 22.

第11図参照 二酸化シリコン層(第4の絶縁@) 12の露出部を、
フッ酸等を使用して除去して、開口22を下方に拡大す
る。
Refer to FIG. 11. The exposed portion of the silicon dioxide layer (fourth insulator) 12 is
The opening 22 is enlarged downward by removing it using hydrofluoric acid or the like.

第12図参照 ヒ素等n型不純物を高濃度に含む多結晶シリコン層を形
成した後、エミッタ電極・配線領域以外から除去し、熱
処理をなして、エミッタ23とエミッタ電極・配線24
とを形成する。エミッタ23の厚さは0.1〜0.2ル
腸となりその不純物濃度は1020CI+−3となる。
Refer to FIG. 12. After forming a polycrystalline silicon layer containing a high concentration of n-type impurities such as arsenic, it is removed from areas other than the emitter electrode/wiring area, heat-treated, and the emitter 23 and emitter electrode/wiring 24 are removed.
to form. The thickness of the emitter 23 is 0.1 to 0.2 mm, and its impurity concentration is 1020 CI+-3.

また、エミッタ電極24の不純物濃度も1020c11
−3程度となる。
Furthermore, the impurity concentration of the emitter electrode 24 is also 1020c11.
It will be about -3.

ベース電極25、コレクタ電極2Bは、従来技術におけ
る場合と同様に、フォトリソグラフィー法を使用してコ
ンタクト窓明けをなし、そこにアルミニウム等の金属の
蒸着をなして容易に形成しうる。
The base electrode 25 and the collector electrode 2B can be easily formed by forming a contact window using photolithography and depositing a metal such as aluminum thereon, as in the case of the prior art.

以」;の工程をもって製造される立型構造のバイポーラ
トランジスタは、エミツタ幅が0.5〜tg■程度、ベ
ース・コンタクト領域が0.31Ls程度と極めて小さ
くなり、集積度の向上に寄与する。また1゛S生容量も
小さくなり、スイッチングスピードは従来技術に比して
30%程度向上する。
The vertical structure bipolar transistor manufactured through the following process has an extremely small emitter width of about 0.5 to tg and a base contact region of about 0.31 Ls, contributing to an improvement in the degree of integration. Furthermore, the 1°S raw capacity is also reduced, and the switching speed is improved by about 30% compared to the conventional technology.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係る、半導体装置の製造
方法は1選択酸化に使用したパターン側壁(第3.2.
1の絶縁膜の側壁)に形成された第4の絶縁膜をエツチ
ング除去して、ベース・コンタクト領域とエミッタ領域
とをセルファラインで形成するというアイデアにもとづ
いており、従来技術に比して、集積度が向上し、寄生容
蓋が小さく、スイッチング速度が大幅に向上している。
As explained above, the method for manufacturing a semiconductor device according to the present invention is based on the pattern sidewalls (3.2.
This method is based on the idea of etching away the fourth insulating film formed on the sidewalls of the first insulating film to form a base contact region and an emitter region in a self-aligned manner. Higher integration, smaller parasitic capacitors, and significantly faster switching speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜12図は、本発明の一実施例に係る立型バイポー
ラトランジスタの主要製造工程完了後の基板断面図であ
る。第13図は従来技術に係るプレーナ型バイポーラト
ランジスタの基板断面図である。 ■・・・p型半導体基板、 2・・・n型高不純物濃度
埋め込み層、 3・・争n型エピタキシャル層、  4
11Φ・素子分離領域、  5・・・・P型拡散歴(ベ
ース)、 6・ ・ ・ n型拡散層(エミッタ)、 
8・φ−コレクタ電極。 9・・・ベース電極、 10・・拳エミッタ電極、11
−・・フィールド絶縁膜、 12・ ・や二酸化シリコ
ン層(第1の絶縁膜)、 13・・・窒化シリコン層(
第2の絶縁膜)、 14・・会二酸化シリコン層(第3
の絶縁膜)、 15・・・窒化シリコン層(第4の絶縁
II!り、  te・・・二酸化シリコン層(第5の絶
縁IPJ)、  17−−、多結晶シリコン層(第1の
導電膜)、18・・・二酸化シリコン層(第6の絶縁膜
)、 19・・・p領域(ベースコンタクト領域)、 
20・・・ベース領域、 21・・・多結晶シリコン層
(半導体層)、22・Φ・開口、 23・・Φエミッタ
、24・・・エミッタ電極・配線、25拳 ・eベース
電極、第1Bfl 第2図 第3図 第4図 第5図 第6!!y 第7図 第1o図 第11図 @12rlJ 第13図
1 to 12 are cross-sectional views of a substrate after completion of the main manufacturing steps of a vertical bipolar transistor according to an embodiment of the present invention. FIG. 13 is a sectional view of a substrate of a planar bipolar transistor according to the prior art. ■...P-type semiconductor substrate, 2...N-type high impurity concentration buried layer, 3...N-type epitaxial layer, 4
11Φ・Element isolation region, 5... P-type diffusion layer (base), 6... N-type diffusion layer (emitter),
8・φ-Collector electrode. 9...Base electrode, 10...Fist emitter electrode, 11
-...field insulating film, 12... and silicon dioxide layer (first insulating film), 13... silicon nitride layer (
second insulating film), 14... silicon dioxide layer (third
15... silicon nitride layer (fourth insulating film), te... silicon dioxide layer (fifth insulating IPJ), 17--, polycrystalline silicon layer (first conductive film) ), 18... silicon dioxide layer (sixth insulating film), 19... p region (base contact region),
20... Base region, 21... Polycrystalline silicon layer (semiconductor layer), 22, Φ, opening, 23... Φ emitter, 24... Emitter electrode/wiring, 25 fist, e base electrode, 1st Bfl Figure 2 Figure 3 Figure 4 Figure 5 Figure 6! ! y Figure 7 Figure 1o Figure 11 @12rlJ Figure 13

Claims (1)

【特許請求の範囲】[Claims] コレクタをなす一導電型の半導体層上に第1の絶縁膜、
第2の絶縁膜、第3の絶縁膜を形成する工程、該第3、
2、1の絶縁膜を素子形成予定領域上のみに残留しその
他の領域から除去する工程、第4の絶縁膜を、前記残留
した第3、2、1の絶縁膜の側壁に形成する工程、前記
第3、4の絶縁膜によって覆われていない領域において
前記半導体層の表層を第5の絶縁膜に転換する工程、前
記第4の絶縁膜を除去する工程、反対導電型の不純物を
含む第1の導電膜を形成し、該第1の導電膜と前記半導
体層とを接続する工程、前記第3の絶縁膜を除去する工
程、前記第1の導電膜の表層を第6の絶縁膜に転換する
工程、反対導電型の不純物を導入して前記半導体層の表
層にベースをなす反対導電型領域を形成する工程、半導
体層を、前記第1の導電膜の表層が転換された第6の絶
縁膜の側壁に形成する工程、前記第2、1の絶縁膜に開
口を形成する工程、該開口に一導電型の半導体層を形成
し該半導体層をパターニングしてエミッタ電極を形成し
前記開口下部の前記半導体層表層を一導電型に再転換し
てエミッタを形成する工程を含むことを特徴とする半導
体装置の製造方法。
a first insulating film on a semiconductor layer of one conductivity type forming a collector;
a step of forming a second insulating film and a third insulating film;
2. A step of leaving the first insulating film only on the region where the element is to be formed and removing it from other regions; a step of forming a fourth insulating film on the sidewalls of the remaining third, second, and first insulating films; converting the surface layer of the semiconductor layer into a fifth insulating film in a region not covered by the third and fourth insulating films; removing the fourth insulating film; a step of forming a first conductive film and connecting the first conductive film and the semiconductor layer; a step of removing the third insulating film; and a step of converting the surface layer of the first conductive film into a sixth insulating film. a step of introducing an impurity of an opposite conductivity type to form a base opposite conductivity type region in the surface layer of the semiconductor layer; a step of forming an opening in the second and first insulating films, forming a semiconductor layer of one conductivity type in the opening, patterning the semiconductor layer to form an emitter electrode, and forming an emitter electrode in the opening; A method for manufacturing a semiconductor device, comprising the step of converting the lower surface layer of the semiconductor layer again to one conductivity type to form an emitter.
JP3909185A 1985-02-28 1985-02-28 Manufacture of semiconductor device Granted JPS61198778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3909185A JPS61198778A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3909185A JPS61198778A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61198778A true JPS61198778A (en) 1986-09-03
JPH0571132B2 JPH0571132B2 (en) 1993-10-06

Family

ID=12543402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3909185A Granted JPS61198778A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61198778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124564A (en) * 1986-11-14 1988-05-28 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124564A (en) * 1986-11-14 1988-05-28 Toshiba Corp Manufacture of semiconductor device
JPH054810B2 (en) * 1986-11-14 1993-01-20 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPH0571132B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
JPH1117166A (en) Manufacturing for semiconductor device
US4698127A (en) Process for fabricating a self-aligned bipolar transistor
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
JP3346348B2 (en) Method for manufacturing semiconductor device
KR0139596B1 (en) Method for manufacturing semiconductor device with reduced junction capacitance
JPS61198778A (en) Manufacture of semiconductor device
JP3349198B2 (en) Method for manufacturing bipolar transistor
US4546537A (en) Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation
JP2907323B2 (en) Semiconductor device and manufacturing method thereof
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JP2842075B2 (en) Method for manufacturing semiconductor device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPS62120040A (en) Manufacture of semiconductor device
JP2712889B2 (en) Method for manufacturing semiconductor device
JP2785854B2 (en) Method for manufacturing semiconductor device
JP2812282B2 (en) Method for manufacturing semiconductor device
JP3146490B2 (en) Method for manufacturing semiconductor device
JP2677258B2 (en) Semiconductor device and manufacturing method thereof
JPH02304931A (en) Semiconductor device and manufacture thereof
JPH0240921A (en) Manufacture of bipolar transistor
JPH01112770A (en) Manufacture of semiconductor device
JPS59217363A (en) Manufacture of bi-polar type semiconductor device
JP2000114267A (en) Manufacture of semiconductor device
JPH0212940A (en) Manufacture of semiconductor device
JPS63133645A (en) Method of forming semiconductor element isolation region