JPS61198669A - Manufacture of amorphous silicon image sensor - Google Patents

Manufacture of amorphous silicon image sensor

Info

Publication number
JPS61198669A
JPS61198669A JP60039997A JP3999785A JPS61198669A JP S61198669 A JPS61198669 A JP S61198669A JP 60039997 A JP60039997 A JP 60039997A JP 3999785 A JP3999785 A JP 3999785A JP S61198669 A JPS61198669 A JP S61198669A
Authority
JP
Japan
Prior art keywords
lower electrode
film
photo
amorphous silicon
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60039997A
Other languages
Japanese (ja)
Inventor
Susumu Kusakawa
草川 進
Tetsuya Ogawa
哲也 小川
Shinichi Soeda
添田 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60039997A priority Critical patent/JPS61198669A/en
Publication of JPS61198669A publication Critical patent/JPS61198669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To largely shorten the manufacturing process by eliminating insulation- based failure at all, by a method wherein the lower electrode is formed on a glass substrate and etched at the side surface by isotropic etching, and a photo-shield film material is adhered from above in the state of adhering a photo resist film; then, the photo resist film is lifted off. CONSTITUTION:After patterning of the required lower electrode, the side surface of the lower electrode is etched larger by isotropic etching in the state of adhering a photo resist film, thus being made smaller than the area of the required lower electrode; then, a photo-shield material is adhered from above. For example, NiCr is formed with a prescribed thickness as the lower electrode 12 over the surface of o.g. a glass substrate 11. Further, after formation of a photo resist film 13 thereon with a thickness of about 1mum, the photo resist film is patterned into a shape of the required lower electrode and developed. Since the lower layer of the lower electrode requires no photo-shield film, and an insulation film is therefore unnecessitated, the manufacturing process for blocking diodes is markedly reduced, and the possibility of short circuit between the lower electrode and the photo-shield film is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アモルファスシリコンイメージセンサの製造
方法に係り、特にイメージセンサのブロッキングダイオ
ードの下部電極と遮光膜の形成方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing an amorphous silicon image sensor, and particularly to a method of forming a lower electrode and a light shielding film of a blocking diode of an image sensor.

近時、イメージセンサが広範囲に普及し、それに使用さ
れるセンサ素子も多種にわたるが、アモルファスシリコ
ンイメージセンサもその一つとして実用化されている素
子である。
In recent years, image sensors have become widespread, and there are a wide variety of sensor elements used therein, and an amorphous silicon image sensor is one of these elements that has been put into practical use.

アモルファスシリコンイメージセンサは、フォトダイオ
ードによって光を検知するが、通常イメージセンサに使
用されるフォトダイオードは8個7m−程度で数百価を
配列されるものであり、その電極引出しの経済性の利点
から、フォトダイオードがマトリックスに接続されるた
めに、フォトダイオードと一対をなすブロッキングダイ
オードが使用されて、廻り込みの電流を阻止している。
Amorphous silicon image sensors detect light using photodiodes, and the photodiodes normally used in image sensors are arrayed in hundreds of rows, with a length of about 8 7m, and the economical advantage of electrode extraction. Since the photodiode is connected to the matrix, a blocking diode paired with the photodiode is used to block the incoming current.

このブロッキングダイオードは、光に対して感応しない
ように、光の入射方向には遮光膜が形成され、その上に
順次絶縁膜、電極、アモルファスシリコン層が積層形成
される構造になっているが、一般に製造工程が複雑であ
り、より容易な製造方法が要望されている。
This blocking diode has a structure in which a light-shielding film is formed in the direction of light incidence so that it is not sensitive to light, and an insulating film, an electrode, and an amorphous silicon layer are sequentially stacked on top of the light-shielding film. Generally, the manufacturing process is complicated, and an easier manufacturing method is desired.

〔従来の技術〕[Conventional technology]

第5図は、従来構造におけるアモルファスシリコンブロ
ッキングダイオードの構造を説明するための要部断面図
である。
FIG. 5 is a sectional view of a main part for explaining the structure of an amorphous silicon blocking diode in a conventional structure.

厚みが約1mm程度のガラス基板1があり、その表面に
ニッケルクロム(NiCr)の遮光膜2が約500人の
厚みで成膜されており、その表面に厚み約1、cr−の
絶縁[13として、例えばポリイミド層が形成されてお
り、その表面に下部電極4として例えばニッケルクロム
(NiCr)膜が数1000人の厚みで成膜され、その
表面上に更に、100μra xi00μ冒の大きさの
アモルファスシリコン5が形成されていて、その上にニ
ッケルクロムの上部電極6が形成されている。
There is a glass substrate 1 with a thickness of about 1 mm, on the surface of which a nickel chromium (NiCr) light-shielding film 2 is formed to a thickness of about 500 mm, and on the surface of the glass substrate 1 with a thickness of about 1 mm, an insulating film 2 of cr- is formed. For example, a polyimide layer is formed on the surface of the polyimide layer, and a nickel chromium (NiCr) film with a thickness of several thousand layers is formed as the lower electrode 4 on the surface of the polyimide layer. Silicon 5 is formed, and a nickel chromium upper electrode 6 is formed thereon.

この構造では、ガラス基板上に多層の成膜が積層されて
おり、製造工程が極めて複雑になる欠点があり、又絶縁
膜3の厚みが1μ濡と比較的薄いのと、又製造の後工程
で素子全体を加熱するために、遮光膜2と下部電極4と
の間の絶縁膜3の絶縁が劣化して、遮光膜と下部電極と
が短絡する恐れがあり、そのために使用する絶縁膜の材
料の選定が限定されるという欠点がある。
This structure has the disadvantage that multiple layers are stacked on the glass substrate, making the manufacturing process extremely complicated.Also, the thickness of the insulating film 3 is relatively thin at 1 μm, and the post-manufacturing process In order to heat the entire element, the insulation of the insulating film 3 between the light shielding film 2 and the lower electrode 4 may deteriorate, causing a short circuit between the light shielding film and the lower electrode. The disadvantage is that the selection of materials is limited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来のアモルファスシリコンブロッキングダイオー
ド構造では、積層が多くて製造工程が複雑であることと
、絶縁膜が比較的薄く、然も製造後工程でダイオードが
熱処理されるために、遮光膜と下部電極間の絶縁膜の絶
縁が劣化して短絡しやすくなることが問題である。
In the conventional amorphous silicon blocking diode structure described above, the manufacturing process is complicated due to the large number of laminated layers, the insulating film is relatively thin, and the diode is heat-treated in the post-manufacturing process, so there is a gap between the light shielding film and the lower electrode. The problem is that the insulation of the insulating film deteriorates, making short circuits more likely.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題点を解消したアモルファスシリコン
イメージセンサの製造方法を提供するもので、その手段
は、ガラス基板上に、アモルファスシリコンイメージセ
ンサのブロッキングダイオードを形成する際に、ガラス
基板上に被膜された下部電極膜上にフォトレジストを被
着して、所定のパターニングを行なって下部電極を形成
した後、等方性エツチングを行って下部電極の側面部を
エツチングを行い、フォトレジスト膜を被着したまま、
上部から遮光膜材料を被着した後、フォトレジスト膜を
リフトオフする工程を含むアモルファスシリコンイメー
ジセンサの製造方法によって達成できる。
The present invention provides a method for manufacturing an amorphous silicon image sensor that solves the above-mentioned problems. A photoresist is deposited on the lower electrode film, and a predetermined patterning is performed to form a lower electrode. Then, isotropic etching is performed to etch the sides of the lower electrode, and the photoresist film is then covered. While wearing it,
This can be achieved by a method for manufacturing an amorphous silicon image sensor that includes a step of depositing a light-shielding film material from above and then lifting off a photoresist film.

〔作用〕[Effect]

本発明は、従来のアモルファスシリコンプロ7キングダ
イオードの構造の欠点である、製造工程の複雑性と、遮
光膜と下部電極間の絶縁膜の絶縁劣化による短絡を防止
するために、基板上に成膜する電極と遮光膜の製造方法
を改善するもので、同一ガラス基板面に、下部電極と遮
光膜を所定の間隙を、バターニングとエツチングにより
形成するが、最初にガラス基板上に下部電極膜を被膜形
成し、その表面上にフォトレジストを被着して、所定の
下部電極のバターニングを行なった後、フォトレジスト
膜を被着したまま、等方性エツチングを行って下部電極
の側面部を大きめにエツチングを行ない、所定の下部電
極の面積より小にした後、上部から遮光膜材料を被着す
ると、フォトレジスト膜の大きさが下部電極の面積より
大きいので、下部電極と遮光膜との間に絶縁空間ができ
るために、これによって下部電極と遮光膜とが絶縁され
ると共に、従来に比較して製造工程が簡易になり、又絶
縁膜の劣化による短絡の危険がなくなるという利点があ
る。
The present invention has been developed to prevent short circuits caused by the complexity of the manufacturing process and insulation deterioration of the insulating film between the light-shielding film and the lower electrode, which are disadvantages of the structure of conventional amorphous silicon PRO7King diodes. This improves the manufacturing method of the electrode and light-shielding film to be filmed.The lower electrode and light-shielding film are formed on the same glass substrate surface with a predetermined gap by buttering and etching. After forming a film, depositing a photoresist on the surface, and performing patterning of a prescribed lower electrode, with the photoresist film still attached, isotropic etching is performed to remove the side surface of the lower electrode. If the photoresist film is larger than the area of the lower electrode, if the photoresist film is larger than the area of the lower electrode, the area of the lower electrode and the light shielding film will be different. Since an insulating space is created between the lower electrode and the light-shielding film, this has the advantage that the lower electrode and the light-shielding film are insulated, the manufacturing process is simpler than before, and there is no risk of short circuits due to deterioration of the insulating film. be.

〔実施例〕〔Example〕

第1図(a)と第1図中)〜第4図(a)と第4図(b
)は、本発明の一実施例の製造方法を説明するための要
部断面図と上面図である。
Figure 1 (a) and Figure 1 middle) to Figure 4 (a) and Figure 4 (b)
) are a sectional view and a top view of essential parts for explaining a manufacturing method according to an embodiment of the present invention.

第1図(a)は、ガラス基板11の表面に下部電極12
として、例えばNiCrを規定の厚みで形成し、更にそ
の表面にフォトレジスト膜13を約1μ−の厚みで形成
した後、フォトレジスト膜を所定の下部電極の形状(例
えば100μta x100μm)にパターニングを行
って、現像を行ったものであり、第1図中)はその上面
図である。
FIG. 1(a) shows a lower electrode 12 on the surface of a glass substrate 11.
For example, after forming NiCr to a specified thickness and further forming a photoresist film 13 to a thickness of about 1 μm on the surface thereof, the photoresist film is patterned into a predetermined shape of a lower electrode (for example, 100 μta x 100 μm). 1) is a top view.

第2図(a)は、ガラス基板11の表面の下部電極12
をフォトレジスト膜13を被着したまま、エツチングを
行った後の断面図であるが、等方性エツチング液として
硝酸セリウム第2アンモンの50%水溶液を用い、液温
を約40℃にして数十秒の時間で工ッチングを行なうが
、この際にオーバエツチングを行い、下部電極の側面部
を約10%程度の長さだけ余分にエツチングをするもの
で(例えば90μ層に90μ−)、第2図中)はその上
面図である。
FIG. 2(a) shows the lower electrode 12 on the surface of the glass substrate 11.
This is a cross-sectional view after etching with the photoresist film 13 still attached, using a 50% aqueous solution of ceric ammonium nitrate as an isotropic etching solution and setting the solution temperature to about 40°C for several seconds. Etching is carried out for 10 seconds, but at this time over-etching is performed, and the side surface of the lower electrode is etched by about 10% of the extra length (for example, 90μ layer on 90μ layer). 2) is its top view.

第3図(a)は、形成された下部電極上のフォトレジス
トll1113を被着したまま、遮光膜材料14として
例えばニッケルクロム等を通常の真空蒸着により被着し
たものであり、自動的に遮光膜と下部電極間に間隙15
が形成できるもので、第3図Cb)はその上面図を示し
ている。
In FIG. 3(a), a light shielding film material 14 such as nickel chromium is deposited by ordinary vacuum deposition while the photoresist ll1113 is still deposited on the formed lower electrode. Gap 15 between the membrane and the lower electrode
can be formed, and FIG. 3Cb) shows its top view.

第4図<8)は、下部電極上のフォトレジストl1i1
3をリフトオフ法により除去したものであって、第4図
(b)はその上面図を示している。
FIG. 4<8) shows the photoresist l1i1 on the lower electrode.
3 was removed by the lift-off method, and FIG. 4(b) shows a top view thereof.

本発明による実施例によれば、従来と比較して下部電極
の下層に遮光膜を必要とせず、従って絶縁膜も不必要に
なるので、ブロッキングダイオードの製造工程が著しく
短縮され、又下部電極と遮光膜との間の短絡の危険が無
くなるという効果がある。
According to the embodiment of the present invention, compared to the conventional method, there is no need for a light-shielding film under the lower electrode, and therefore no insulating film is required, so the manufacturing process of the blocking diode is significantly shortened, and the lower electrode and This has the effect of eliminating the risk of short circuit with the light shielding film.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明のアモルファスシ
リコンのイメージセンサの製造方法を採用することによ
り、従来の絶縁に基づく不良が皆無になると共に、製造
工程が大幅に短縮することが可能になり効果大なるもの
がある。
As explained above in detail, by adopting the method of manufacturing an amorphous silicon image sensor of the present invention, defects caused by conventional insulation can be completely eliminated, and the manufacturing process can be significantly shortened. There are some things that are very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alと第1図(b)、第2図(a)と第2図山
)、第3図(1!)と第3図(b)、第4図(a)と第
4図山)は本発明になるアモルファスシリコンのイメー
ジセンサの製造方法を説明するための断面図と上面図、
第5図は従来の製造方法によるアモルファスシリコンの
イメージセンサの構造を示す断面図、図において、 11はガラス基板、   12は下部電極、13はフォ
トレジスト膜、14は遮光膜材料、15は間隙、 をそれぞれ示している。 第5図
Figure 1 (al and Figure 1 (b), Figure 2 (a) and Figure 2 mountain), Figure 3 (1!) and Figure 3 (b), Figure 4 (a) and Figure 4 Figure 2) is a cross-sectional view and a top view for explaining the method of manufacturing an amorphous silicon image sensor according to the present invention.
FIG. 5 is a cross-sectional view showing the structure of an amorphous silicon image sensor manufactured by a conventional manufacturing method. In the figure, 11 is a glass substrate, 12 is a lower electrode, 13 is a photoresist film, 14 is a light shielding film material, 15 is a gap, are shown respectively. Figure 5

Claims (1)

【特許請求の範囲】[Claims] ガラス基板上に、アモルファスシリコンイメージセンサ
のブロッキングダイオードを形成する際に、該ガラス基
板上に被膜された下部電極膜上にフォトレジストを被着
して、所定のパターニングを行なって下部電極を形成し
た後、等方性エッチングを行って該下部電極の側面部を
エッチングを行い、上記フォトレジスト膜を被着したま
ま、上部から遮光膜材料を被着した後、該フォトレジス
ト膜をリフトオフする工程を含むことを特徴とするアモ
ルファスシリコンイメージセンサの製造方法。
When forming a blocking diode for an amorphous silicon image sensor on a glass substrate, a photoresist was deposited on the lower electrode film coated on the glass substrate, and a lower electrode was formed by performing predetermined patterning. After that, isotropic etching is performed to etch the side surface of the lower electrode, a light shielding film material is deposited from above while the photoresist film is still deposited, and a step of lifting off the photoresist film is performed. A method of manufacturing an amorphous silicon image sensor, comprising:
JP60039997A 1985-02-27 1985-02-27 Manufacture of amorphous silicon image sensor Pending JPS61198669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039997A JPS61198669A (en) 1985-02-27 1985-02-27 Manufacture of amorphous silicon image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039997A JPS61198669A (en) 1985-02-27 1985-02-27 Manufacture of amorphous silicon image sensor

Publications (1)

Publication Number Publication Date
JPS61198669A true JPS61198669A (en) 1986-09-03

Family

ID=12568567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039997A Pending JPS61198669A (en) 1985-02-27 1985-02-27 Manufacture of amorphous silicon image sensor

Country Status (1)

Country Link
JP (1) JPS61198669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519528U (en) * 1991-08-21 1993-03-12 高野 國夫 Supercharger at engine overload

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519528U (en) * 1991-08-21 1993-03-12 高野 國夫 Supercharger at engine overload

Similar Documents

Publication Publication Date Title
GB2278496A (en) Infrared detecting element
JPH08313359A (en) Focal plane array for hybrid thermal imaging device and manufacture thereof
JPS6212454B2 (en)
JP4496751B2 (en) Thermal infrared solid-state imaging device and manufacturing method thereof
JPH07286894A (en) Method for manufacturing infrared ray detector
JPS61198669A (en) Manufacture of amorphous silicon image sensor
JPH0485829A (en) Semiconductor device and manufacture thereof
JP3269199B2 (en) Pyroelectric infrared detector
JP3461242B2 (en) Pyroelectric infrared thin film element and method of manufacturing the same
JPH0360064A (en) Semiconductor device and manufacture thereof
JP2533088B2 (en) Method of manufacturing thermal head
JPS6151968A (en) Manufacture of semiconductor device
JPH06317482A (en) Thin film thermister
KR0150543B1 (en) Method for fabricating optical path control apparatus
JPS60242669A (en) Photosensor array device
JPS62204570A (en) Alpha-si image sensor
JPH0391266A (en) Infrared ray detecting element and its manufacture
JPS6284553A (en) Preparation of photosensor device
JP2000356546A (en) Infrared detection element and its manufacture
JPH10178191A (en) Infrared detecting element of separated multielement structure and manufacture thereof
JPS61124172A (en) Manufacture of amorphous silicon image sensor
JPS61116869A (en) Manufacture of image sensor
JPS63174376A (en) Manufacture of infrared detector
JPH06204217A (en) Manufacturing method of semiconductor device
JPS61100981A (en) Manufacture of semiconductor device