JPS61196572A - Amorphous silicon x-ray sensor - Google Patents

Amorphous silicon x-ray sensor

Info

Publication number
JPS61196572A
JPS61196572A JP60036200A JP3620085A JPS61196572A JP S61196572 A JPS61196572 A JP S61196572A JP 60036200 A JP60036200 A JP 60036200A JP 3620085 A JP3620085 A JP 3620085A JP S61196572 A JPS61196572 A JP S61196572A
Authority
JP
Japan
Prior art keywords
amorphous silicon
semiconductor film
type
film
silicon semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60036200A
Other languages
Japanese (ja)
Other versions
JPH0550857B2 (en
Inventor
Hidehiko Maehata
英彦 前畑
Atsuo Hori
堀 厚生
Yoshihiro Hamakawa
圭弘 浜川
Hiroaki Okamoto
博明 岡本
Koufu Gi
魏 光普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP60036200A priority Critical patent/JPS61196572A/en
Publication of JPS61196572A publication Critical patent/JPS61196572A/en
Publication of JPH0550857B2 publication Critical patent/JPH0550857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/362Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Abstract

PURPOSE:To provide high output current and to clear the pattern detecting signal image, by arraying fluorescent material on an amorphous silicon semiconductor and by defining V-shaped grooves between respective elements on the fluorescent material face. CONSTITUTION:On the surface of a substrate 11 of material such as glass or transparent film which can transmit visible rays, fluorescent material 12 such as zinc sulfide doped with nickel is arrayed. On the back face of the substrate 11, a thin transparent conductive film 13 such as ITO, SnO2 is arrayed. Using a plasma decomposing method, a P-type amorphous silicon carbide semiconductor film 14, i-type amorphous silicon semiconductor film 15 and N-type amorphous silicon semiconductor film or N-type minute-crystalline silicon semiconductor film 16 are formed thereon in turn and moreover a number of small area back face electrodes 17 consisting of thin film electrodes are formed with aluminium evaporating, etc., to constitute a multi-element photo electromotive sensor which has V-shaped or nearly V-shaped grooves 18 between respective elements on the surface of the fluorescent material 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アモルファスシリコン半導体型ノXIaセ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an amorphous silicon semiconductor type XIa sensor.

〔従来の技術〕[Conventional technology]

一般に、放射線センサは、電離作用を利用する0M計数
管、不活性ガスのイオン化作用を利用する比例計数管、
固体中の電離作用を利用する半導体放射線センサ等があ
る。
In general, radiation sensors include 0M counter tubes that utilize ionization, proportional counter tubes that utilize ionization of inert gas,
There are semiconductor radiation sensors that utilize the ionization effect in solids.

そして、とくに、後者の半導体放射線センサば、前2者
に比して、電子−正孔対を作るのに費されるエネルギが
きわめて小さいことから、よシ多くのイオン対が生成で
き、大きな利得を持つ。また、気体に比して半導体は密
度が大きいことから、必要厚さすなわち検出器の大きさ
を非常に小さくすることができ、このために電荷の集収
時間すなわち検出信号の立上シ時間が短い特長がある。
In particular, the latter type of semiconductor radiation sensor requires much less energy to create electron-hole pairs than the former two, so more ion pairs can be generated, resulting in a larger gain. have. In addition, since semiconductors have a higher density than gases, the required thickness, ie the size of the detector, can be made very small, and therefore the charge collection time, ie the rise time of the detection signal, is short. It has its features.

そのほか、入射放射線のエネルギとセンサ出力の比例性
が良く、また磁場の影響を受けにくいといった特長を有
する。
Other features include a good proportionality between the energy of incident radiation and the sensor output, and less sensitivity to magnetic fields.

反面、放射線の損傷を受けやすく、またゲルマニウムの
ものは液体窒素などで冷却して使用しなければならない
という問題点がある。
On the other hand, there are problems in that they are easily damaged by radiation, and germanium materials must be cooled with liquid nitrogen before use.

また、種々の放射線の中でも、XMは医療機器。Also, among various types of radiation, XM is a medical device.

科学分析機器などの広い分野に使用されているが、それ
に応じて半導体X線センサも、X線断層撮影装置、自動
X線露光装置、ポケットX線線量計。
It is used in a wide range of fields such as scientific analysis equipment, but also semiconductor X-ray sensors, X-ray tomography equipment, automatic X-ray exposure equipment, and pocket X-ray dosimeters.

螢光X線分析装置およびX線残留応力分析装置などに使
われている。
It is used in fluorescent X-ray analyzers, X-ray residual stress analyzers, etc.

そして、第4図は、現在実用されている単結晶半導体放
射線センサの原理、構造を説明するものである。
FIG. 4 explains the principle and structure of a single-crystal semiconductor radiation sensor currently in use.

そして、そのセンサのダイオード構造は、p型のシリコ
ンまたはゲルマニウムにリンやリチウムを拡散させて見
掛上真性に近い高抵抗半導体が造られるものであシ、第
4図に示すように、n型半導体(1)の裏面に順次i型
真性半導体(2)およびp型半導体(3)が形成され、
それらの表面および裏面にアルミニウム蒸着による前面
電極(4)および裏面電極(5)が形成され、両型fM
(4) 、 (5)に電源(6)から抵抗(7)を介し
て逆方向のバイアス電圧Vが印加されている。
The diode structure of the sensor is made by diffusing phosphorus or lithium into p-type silicon or germanium to create a high-resistance semiconductor that is close to intrinsic in appearance. An i-type intrinsic semiconductor (2) and a p-type semiconductor (3) are sequentially formed on the back surface of the semiconductor (1),
A front electrode (4) and a back electrode (5) are formed by aluminum evaporation on the front and back surfaces, and both types of fM
A reverse bias voltage V is applied to (4) and (5) from a power source (6) via a resistor (7).

そして、センサに放射線(8)が入射すると、n型半導
体(2)の層中で電子と正孔対を生成し、n型半導体(
幻の厚みをaとすると、電界F(=V/a)によシそれ
ぞれn型半導体(1)およびp型半導体(3)に向って
動き、両電極(4) 、 (5)の外部出力端(9)、
GOに電気信号を出力する。
When radiation (8) is incident on the sensor, electron and hole pairs are generated in the layer of the n-type semiconductor (2), and the n-type semiconductor (
If the phantom thickness is a, the electric field F (=V/a) moves toward the n-type semiconductor (1) and the p-type semiconductor (3), respectively, and the external output of both electrodes (4) and (5) edge (9),
Outputs an electrical signal to GO.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、第4図の場合、結晶中の不純物や欠陥によシ
ミ子や正孔は捕獲され、SN比は低下するが、このSN
比を向上させるためにそれぞれの平均自由行程をBe 
、6hとすると、n型半導体(2)の厚みaよりずつと
大きくすることが必要になる。たとえば、8i半導体検
出器ではa岬HcII(le、1h=200cII) 
 、 Ge半導体検出器ではa=8−”−5cIl(I
le、1h=2oo3)である。
By the way, in the case of Figure 4, impurities and defects in the crystal capture ions and holes, reducing the S/N ratio.
To improve the ratio, each mean free path Be
, 6h, it is necessary to make the thickness gradually larger than the thickness a of the n-type semiconductor (2). For example, in the 8i semiconductor detector, a cape HcII (le, 1h = 200cII)
, for a Ge semiconductor detector, a=8−”−5cIl(I
le, 1h=2oo3).

しかし、単結晶半導体放射線センサは大面積化がむずか
しいことから断層撮影や大面積構造材の欠陥検出などに
適用する場合、走査機構を必要とする。
However, since it is difficult to make a single crystal semiconductor radiation sensor large in area, a scanning mechanism is required when it is applied to tomography or defect detection in large area structural materials.

また、逆バイアスを印加するために電源を必要とし、ま
た、半導体は放射線による損傷を受けやすいことから量
産性に富み安価であることが望まれる。
Furthermore, since a power source is required to apply a reverse bias, and semiconductors are easily damaged by radiation, it is desired that the device be mass-producible and inexpensive.

一方、可視光を透過しやすい基板材料の表面に螢光体材
料を配し、前記基板材料の裏面に順次、Ijt明導電1
! 、 p型アモルファスシリコンカーバイド半導体膜
、n型アモルファスシリコン半導体膜。
On the other hand, a phosphor material is arranged on the surface of a substrate material that easily transmits visible light, and Ijt bright conductive 1 is sequentially placed on the back surface of the substrate material.
! , p-type amorphous silicon carbide semiconductor film, and n-type amorphous silicon semiconductor film.

n型アモルファスシリコン半導体膜またはn型微結晶シ
リコン半導体膜および小面積の多数の裏面電極を配して
多素子光起電力形に形成したアモルファスシリコンX線
センサが考えられるが、この場合、可視光線が隣接する
素子に乱入し、パターン検出信号像が不鮮明になる欠点
がある。
An amorphous silicon X-ray sensor can be considered that is formed into a multi-element photovoltaic type by arranging an n-type amorphous silicon semiconductor film or an n-type microcrystalline silicon semiconductor film and a large number of small-area backside electrodes. This has the disadvantage that the pattern detection signal image becomes unclear as the pattern detection signal image intrudes into adjacent elements.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなされたものであり、
可視光を透過しやすい基板材料の表面に螢光体材料を配
し、前記基板材料の裏面に順次、透11導電膜、 pf
fiアモルファスシリコンカーバイド半導体膜、n型ア
モルファスシリコン半導体膜。
This invention was made with the above points in mind,
A phosphor material is arranged on the surface of a substrate material that easily transmits visible light, and a transparent 11 conductive film, pf
fi amorphous silicon carbide semiconductor film, n-type amorphous silicon semiconductor film.

n型アモルファスシリコン半導体膜またはn型微結晶シ
リコン半導体膜および小面積の多数の裏面電極を配して
多素子光起電力形に形成し、かつ、前記螢光体材料の面
の前記各素子間にV形状または■形状に近い形状の溝を
形成したことを特徴とするアモルファスシリコンX線セ
ンサである。
An n-type amorphous silicon semiconductor film or an n-type microcrystalline silicon semiconductor film and a large number of small-area back electrodes are arranged to form a multi-element photovoltaic type, and between each of the elements on the surface of the phosphor material. This is an amorphous silicon X-ray sensor characterized by having a groove shaped like a V-shape or a shape close to a ■-shape.

〔作 用〕[For production]

したがって、この発明によると、アモルファスシリコン
半導体に螢光体材料が配されているため、入射するX線
が可視光に変換される光起電力型センサとなシ、入射す
るX線が螢光体材料によりアモルファスシリコン半導体
の光感度ピークと一致する励起光を発生し、きわめて高
い出力電流が得られ、かつ、溝により可視光線が隣接素
子に乱入しなく、パターン検出信号像が鮮明になり、大
面積化が可能である。
Therefore, according to the present invention, since a phosphor material is arranged on an amorphous silicon semiconductor, it is possible to form a photovoltaic sensor in which incident X-rays are converted into visible light. The material generates excitation light that matches the photosensitivity peak of amorphous silicon semiconductors, resulting in an extremely high output current, and the grooves prevent visible light from entering adjacent elements, making the pattern detection signal image clear and large. Can be converted into area.

〔実施例〕〔Example〕

つぎにこの発明を、そのI実施例を示した第1図ととも
に、詳細に説明する。
Next, this invention will be explained in detail with reference to FIG. 1 showing an embodiment of the invention.

可視光を透過しやすいガラス、透明フィルムなどの基板
材料Ql)の表面に、ニッケルをドーピングした硫化亜
鉛などの螢光体材料(2)を配置し、基板材料αηの裏
面にITO,5nOzなどの薄状の透明導電膜α]を配
し、その透明導電膜α場の上にプラズマ分解法などによ
るp型アモルファスシリコンカーバイド半導体膜a4お
よびi型アモルファスシリコン半m 体膜Q5およびn
型アモルファスシリコン半導体膜またはn型機結晶シリ
コン半導体膜αQを形成し、さらに、前記n型機結晶シ
リコン半導体膜QQ上にアルミニウム蒸着などによる薄
膜電極からなり小面積の多数の裏面電極αηを形成して
多素子光起電力型のセンサを形成し、かつ、螢光体材料
(2)の面の各素子間にV形状またはV形状に近い形状
の溝(至)を形成したものである。
A phosphor material (2) such as nickel-doped zinc sulfide is placed on the surface of a substrate material Ql) such as glass or transparent film that easily transmits visible light, and a phosphor material (2) such as ITO, 5nOz, etc. is placed on the back side of the substrate material αη. A p-type amorphous silicon carbide semiconductor film a4 and an i-type amorphous silicon half-m body film Q5 and n are formed by plasma decomposition or the like on the transparent conductive film α field.
A type amorphous silicon semiconductor film or an n-type mechano-crystalline silicon semiconductor film αQ is formed, and a large number of small-area back electrodes αη made of thin film electrodes formed by aluminum evaporation or the like are further formed on the n-type mechacrystalline silicon semiconductor film QQ. A multi-element photovoltaic type sensor is formed by forming a multi-element photovoltaic sensor, and grooves having a V-shape or a shape close to a V-shape are formed between each element on the surface of the phosphor material (2).

そして、p型半導体は、X線励起による可視光の窓層に
なるため、光吸収槽をおさえるよう膜厚100〜500
 Aのアモルファスシリコンカーバイドを用いる。
Since the p-type semiconductor becomes a window layer for visible light due to X-ray excitation, the film thickness is 100 to 500 to suppress the light absorption tank.
Amorphous silicon carbide of A is used.

また、n型半導体は、導電率が高く、金属層との接着性
が良好なこと、光学的禁止帯幅をi層より高くすること
による正孔の流入防止および裏面電極aηの金属層から
の反射光を有効利用する点などから膜厚500人前後の
微結晶シリコンを用いる。
In addition, the n-type semiconductor has high conductivity, good adhesion with the metal layer, and has an optical band gap higher than that of the i layer to prevent the inflow of holes and to prevent the inflow of holes from the metal layer of the back electrode aη. Microcrystalline silicon with a film thickness of approximately 500 nm is used to effectively utilize reflected light.

さらに、真性半導体層は、アモルファスシリコンを用い
るが、膜厚はX線励起による発光帯(400〜600n
m)に依存し、第2図に示すように、適正膜厚は100
0〜6000人である。
Furthermore, although amorphous silicon is used for the intrinsic semiconductor layer, the film thickness is determined to be within the emission band (400 to 600 nm) due to X-ray excitation.
m), as shown in Figure 2, the appropriate film thickness is 100
0 to 6000 people.

つぎに、前記実施例の効果を、第3図を用いて説明する
Next, the effects of the above embodiment will be explained using FIG. 3.

第3図の破線で示すデータは、ガラス/ITO/pa−
8iO/i  a−8i/n  μC−8i/Allな
どの構成で作られるX線センサの測定結果の1例である
。この場合、センサ単位面積あたシの出力電流は、X線
管電流に比例して増大するが微弱電流である。
The data indicated by the broken line in Figure 3 is glass/ITO/pa-
This is an example of the measurement results of an X-ray sensor made with a configuration such as 8iO/i a-8i/n μC-8i/All. In this case, the output current per unit area of the sensor increases in proportion to the X-ray tube current, but it is a weak current.

これに対して、第3図の実線で示すデータは、前記実施
例によるX線センサの測定結果の1例でアリ、前記アモ
ルファスシリコンセンサIIC対シ、1〜2桁高い出力
電流が得られるとともに、X線管電流、すなわちX線の
強度に比例する値が得られる。
On the other hand, the data shown by the solid line in FIG. 3 is an example of the measurement results of the X-ray sensor according to the above-mentioned embodiment. , a value proportional to the X-ray tube current, that is, the intensity of the X-rays, is obtained.

これは入射するX線が、アモルファスシリコン半導体の
光感度ピークと一致する励起光を発生する硫化亜鉛など
の螢光物質を設けたことによる効果である。
This is an effect due to the provision of a fluorescent substance such as zinc sulfide, which generates excitation light whose incident X-rays coincide with the photosensitivity peak of the amorphous silicon semiconductor.

また、前記実施例のX線センサは前記半導体センサの場
合と同様に、逆バイアス電圧を印加することにより出力
電流をさらに増大させることができる。
Further, in the X-ray sensor of the above embodiment, as in the case of the semiconductor sensor, the output current can be further increased by applying a reverse bias voltage.

したがって、アモルファスシリコン薄膜半導体に、アモ
ルファスシリコン半導体のスペクトル感度のピーク値と
合致する光に変換する螢光物質を配することによシ、実
用レベルのX線強度測定センサを提供することができ、
また、高純度単結晶半導体X線センサと比べると、大面
積化および一次元、二次元検出、イメージ化のセンサの
作成が可能となる。さらに、量産性に富むとともに安価
なX線センサを提供できる特徴を有している。その上、
X線による励起光を殆んど検出光として利用できるほか
、溝(至)により、第4図に示すように、可視光線が隣
接素子に乱入しなく、したがって、パターン検出信号像
が鮮明になる。
Therefore, by providing an amorphous silicon thin film semiconductor with a fluorescent substance that converts the light into light that matches the peak value of the spectral sensitivity of the amorphous silicon semiconductor, a practical level X-ray intensity measurement sensor can be provided.
Furthermore, compared to a high-purity single crystal semiconductor X-ray sensor, it is possible to create a sensor with a large area and one- and two-dimensional detection and imaging. Furthermore, it has the advantage of being highly mass-producible and capable of providing an inexpensive X-ray sensor. On top of that,
Most of the excitation light from X-rays can be used as detection light, and the grooves prevent visible light from intruding into adjacent elements, as shown in Figure 4, making the pattern detection signal image clearer. .

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明のアモルファスシリコンX線セ
ンサニヨルト、アモルファスシリコン半導体に螢光物質
が配されているので、入射するX線を可視光に変換して
光起電力型センサにすることができ、入射するX線を螢
光物質によりアモルファスシリコン半導体のスペクトル
感度のピーク値と合致する光に変換することができ、き
わめて高い出力電流が得られ、量産性に富むとともに安
価であシ、大面積化や一次元、二次元のX線入射位置を
測定する集積型も容易に作成可能であシ、X線による励
起光を殆んど検出光として利用できる。
As described above, since the amorphous silicon X-ray sensor of the present invention has a fluorescent substance disposed on the amorphous silicon semiconductor, it is possible to convert incident X-rays into visible light and create a photovoltaic sensor. Incident X-rays can be converted into light that matches the peak value of the spectral sensitivity of amorphous silicon semiconductors using a fluorescent substance, resulting in an extremely high output current, ease of mass production, low cost, and large surface area. It is also possible to easily create an integrated type that measures the X-ray incident position in one or two dimensions, and most of the excitation light from X-rays can be used as detection light.

その上、多素子光起電力形のセンサにおいて、溝(至)
によシ可視光線の隣接素子への乱入を防止し、パターン
検出信号像が鮮明になる。
Moreover, in multi-element photovoltaic type sensors, grooves (to)
It also prevents visible light from entering adjacent elements, making the pattern detection signal image clearer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のアモルファスシリコンX線センサの
1実施例の正面図、第2図は1層膜厚と相対感度の関係
図、第3図はX線管電流と出力電流の関係図、第4図は
第1図の一部の拡大図、第5図は従来の単結晶半導体放
射線センサの正面図である。 aυ・・・基板材料、(2)・・・螢光体材料、α葎・
・・透明導電膜、Q4)・・・p型アモルファスシリコ
ンカーバイド半導体膜、α目・・・i5アモルファスシ
リコン半導体膜、Oe・・・n型微結晶シリコン半導体
膜、αη・・・裏面電極、(至)・・・溝。
FIG. 1 is a front view of one embodiment of the amorphous silicon X-ray sensor of the present invention, FIG. 2 is a diagram of the relationship between one layer thickness and relative sensitivity, and FIG. 3 is a diagram of the relationship between X-ray tube current and output current. FIG. 4 is an enlarged view of a part of FIG. 1, and FIG. 5 is a front view of a conventional single crystal semiconductor radiation sensor. aυ...substrate material, (2)...fluorescent material, αυ・
...Transparent conductive film, Q4)...p-type amorphous silicon carbide semiconductor film, α-th...i5 amorphous silicon semiconductor film, Oe...n-type microcrystalline silicon semiconductor film, αη...back electrode, ( To)...groove.

Claims (1)

【特許請求の範囲】[Claims] (1)可視光を透過しやすい基板材料の表面に螢光体材
料を配し、前記基板材料の裏面に順次、透明導電膜、p
型アモルファスシリコンカーバイド半導体膜、i型アモ
ルファスシリコン半導体膜、n型アモルファスシリコン
半導体膜またはn型微結晶シリコン半導体膜および小面
積の多数の裏面電極を配して多素子光起電力形に形成し
、かつ、前記螢光体材料の面の前記各素子間にV形状ま
たはV形状に近い形状の溝を形成したことを特徴とする
アモルファスシリコンX線センサ。
(1) A phosphor material is arranged on the surface of a substrate material that easily transmits visible light, and a transparent conductive film, a p
forming a multi-element photovoltaic type by arranging an amorphous silicon carbide semiconductor film, an i-type amorphous silicon semiconductor film, an n-type amorphous silicon semiconductor film, or an n-type microcrystalline silicon semiconductor film and a large number of small-area back electrodes; An amorphous silicon X-ray sensor characterized in that a groove having a V-shape or a shape close to a V-shape is formed between each of the elements on the surface of the phosphor material.
JP60036200A 1985-02-25 1985-02-25 Amorphous silicon x-ray sensor Granted JPS61196572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036200A JPS61196572A (en) 1985-02-25 1985-02-25 Amorphous silicon x-ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036200A JPS61196572A (en) 1985-02-25 1985-02-25 Amorphous silicon x-ray sensor

Publications (2)

Publication Number Publication Date
JPS61196572A true JPS61196572A (en) 1986-08-30
JPH0550857B2 JPH0550857B2 (en) 1993-07-30

Family

ID=12463090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036200A Granted JPS61196572A (en) 1985-02-25 1985-02-25 Amorphous silicon x-ray sensor

Country Status (1)

Country Link
JP (1) JPS61196572A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243780A (en) * 1987-03-30 1988-10-11 Kanegafuchi Chem Ind Co Ltd X-ray detector
US5291036A (en) * 1989-12-28 1994-03-01 Minnesota Mining And Manufacturing Company Amorphous silicon sensor
US5420452A (en) * 1990-02-09 1995-05-30 Minnesota Mining And Manufacturing Company Solid state radiation detector
NL1003390C2 (en) * 1996-06-21 1997-12-23 Univ Delft Tech Planar sensor for neutron, X-ray or gamma radiation
US5942771A (en) * 1997-04-14 1999-08-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector
JP2005523438A (en) * 2002-04-18 2005-08-04 フォルシェングスツェントルム ユーリッヒ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Position-sensitive germanium detector with microstructure on both contact surfaces
JP4894921B2 (en) * 2007-05-24 2012-03-14 コニカミノルタホールディングス株式会社 Radiation detector, method for manufacturing radiation detector, and method for manufacturing support substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169382A (en) * 1974-12-13 1976-06-15 Hitachi Ltd
JPS59154082A (en) * 1983-02-22 1984-09-03 Oki Electric Ind Co Ltd Photosensor
JPS59182561A (en) * 1983-03-31 1984-10-17 Mitsubishi Electric Corp Semiconductor image sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169382A (en) * 1974-12-13 1976-06-15 Hitachi Ltd
JPS59154082A (en) * 1983-02-22 1984-09-03 Oki Electric Ind Co Ltd Photosensor
JPS59182561A (en) * 1983-03-31 1984-10-17 Mitsubishi Electric Corp Semiconductor image sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243780A (en) * 1987-03-30 1988-10-11 Kanegafuchi Chem Ind Co Ltd X-ray detector
US5291036A (en) * 1989-12-28 1994-03-01 Minnesota Mining And Manufacturing Company Amorphous silicon sensor
US5420452A (en) * 1990-02-09 1995-05-30 Minnesota Mining And Manufacturing Company Solid state radiation detector
NL1003390C2 (en) * 1996-06-21 1997-12-23 Univ Delft Tech Planar sensor for neutron, X-ray or gamma radiation
US5942771A (en) * 1997-04-14 1999-08-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector
JP2005523438A (en) * 2002-04-18 2005-08-04 フォルシェングスツェントルム ユーリッヒ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Position-sensitive germanium detector with microstructure on both contact surfaces
JP4894921B2 (en) * 2007-05-24 2012-03-14 コニカミノルタホールディングス株式会社 Radiation detector, method for manufacturing radiation detector, and method for manufacturing support substrate

Also Published As

Publication number Publication date
JPH0550857B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
JPS5950579A (en) Semiconductor optical position detector
US5512756A (en) X-ray detector with direct conversion
JPS58500465A (en) Improved photo detector
US5682037A (en) Thin film detector of ultraviolet radiation, with high spectral selectivity option
US6043495A (en) Ionizing radiation detection apparatus using high-resistivity semiconductor
US9590128B2 (en) Particle detector and method of detecting particles
JPS61196572A (en) Amorphous silicon x-ray sensor
Lorenz et al. Fast readout of plastic and crystal scintillators by avalanche photodiodes
JPH0546709B2 (en)
Perez-Mendez et al. Amorphous silicon based radiation detectors
JPS61196582A (en) Amorphous silicon x-ray sensor
CN106997913B (en) Solar blind ultraviolet light detector unit and array
JPH0476509B2 (en)
Markakis et al. Mercuric iodide photodetectors for scintillation spectroscopy
US20230165541A1 (en) Spectrally and Spatially Resolved X-Ray and Particle Detection System
Kalita et al. Synthesis and development of solid-state X-ray and UV radiation sensor
JPS639984A (en) Amorphous semiconductor device
EP0378728B1 (en) X ray detecting device
CN208690262U (en) A kind of imaging sensor substrate
JPH01253683A (en) Neutron detector and neutron detector array
Keppner et al. X-Ray Detectors Based on “Thick” a-Si: H Layers Deposited by the VHF-GD Process
JP2000266855A (en) Radiation detector
JPH08327744A (en) Radiation detector
CN106997908B (en) Visible blind ultraviolet detector unit and array
JPS6027977Y2 (en) scintillation camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees