JPS59154082A - Photosensor - Google Patents

Photosensor

Info

Publication number
JPS59154082A
JPS59154082A JP58027052A JP2705283A JPS59154082A JP S59154082 A JPS59154082 A JP S59154082A JP 58027052 A JP58027052 A JP 58027052A JP 2705283 A JP2705283 A JP 2705283A JP S59154082 A JPS59154082 A JP S59154082A
Authority
JP
Japan
Prior art keywords
layer
film
amorphous silicon
type layer
doped amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58027052A
Other languages
Japanese (ja)
Other versions
JPH0437592B2 (en
Inventor
Tsutomu Nomoto
野本 勉
Akira Uchiyama
章 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58027052A priority Critical patent/JPS59154082A/en
Publication of JPS59154082A publication Critical patent/JPS59154082A/en
Publication of JPH0437592B2 publication Critical patent/JPH0437592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Abstract

PURPOSE:To obtain the titled device which makes an incident light efficiently reach a P-I film interface and can obtain an output signal efficiently by a method wherein a transparent insulation layer having partial defect parts and a layer composed by forming boron doped layers at said parts are provided between a clear electrode and an amorphous Si layer. CONSTITUTION:The partial defect parts 3a-3p are formed by etching the transparent insulation layer 7 by photolithography in lattice form. A boron doped amorphous Si film is adhered over the entire surfaces at these defect parts by a glow discharging method, and thereafter said film is processed by photolithography etching. Thereby, the amount of light reaching the I type layer 4 can be increased by reducing the amount of light absorption due to the boron doped layer. As a result, the pair of electrons-holes generated in the I type layer 4 by the light passing through the insulation layer 7 makes the resistance value of said layer 4 reduce and transfers to the P-I film interface, thus enabling to largely vary the depletion layer width at said interface in suitable manner. Thus, the photosensitivity remarkably improves, therefore high speed photo detection can be performed without necessitating an amplifier of a high gain.

Description

【発明の詳細な説明】 (技術分野) 本発明は非晶質シリコン半導体よシ形成されたPIN型
ホトダイオードの光感度向上に好適な光センサに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a photosensor suitable for improving the photosensitivity of a PIN photodiode formed of an amorphous silicon semiconductor.

(従来技術) 従来、この種光センサとして第1図に示すものがあった
。第1図(a)は上記光センサの要部縦断面図、同図(
b)は第1図(a)のX−X線平面断面図であって、図
中、1はガラス基板又は石英基板から成る透明絶縁基板
、2は上白透明絶縁基板1上に、例えば電子ビーム蒸着
法によシ被着し、その後所定のパターンl−エツチング
加工して成る透明電極層で、例えばI T O(工n2
 o3+ Sn 02 )などが用いられる。3は上記
透明電極層2上に形成されたボロン(B)ドーピング非
晶質シリコン層(P型層)、4は上記透明絶縁基板1及
び上記Bドーピング非晶質シリコン層(P型層)上に一
段階状に形成されたノンドープの非晶質シリコン層(■
型層)、5は上記ノンドープ非晶質シリコン層(■型層
)4上にその上面形状通シに形成されたPドーピング非
晶質シリコン層(N型層)、6は上記透明絶縁基板1及
び上記Pドーピング非晶質シリゴン層(N型層)上に二
段階状に形成された金属電極層(上部電極)である。
(Prior Art) Conventionally, there has been a photo sensor of this type as shown in FIG. FIG. 1(a) is a vertical sectional view of the main part of the optical sensor, and FIG.
b) is a cross-sectional view taken along the line X-X of FIG. A transparent electrode layer formed by depositing by beam evaporation and then etching in a predetermined pattern, such as ITO (N2).
o3+ Sn 02 ), etc. are used. 3 is a boron (B) doped amorphous silicon layer (P-type layer) formed on the transparent electrode layer 2; 4 is a boron (B)-doped amorphous silicon layer (P-type layer) formed on the transparent insulating substrate 1 and the B-doped amorphous silicon layer (P-type layer); A non-doped amorphous silicon layer (■
(type layer), 5 is a P-doped amorphous silicon layer (N-type layer) formed on the non-doped amorphous silicon layer (■-type layer) 4 in the shape of its upper surface; 6 is the transparent insulating substrate 1; and a metal electrode layer (upper electrode) formed in two stages on the P-doped amorphous silicon layer (N-type layer).

上記構成を備えた従来の光センサの場合、その製造過程
において、まず透明絶縁基板1上に下部電極として透明
電極層2を電子ビーム蒸着法により被着形成し、次に該
透明電極層2上に数100 ppm程度の不純物として
ボロン(B)7)ドーピングで数1ooA程度の膜厚に
Bドーピング非晶質シリコン層3(P型層)を形成し、
更に該P型層3の上にノンドープの非晶質シリコン半導
体層4(I型層)を、そして更に該I型層4の上に数1
100pp程度の不純物としてリン(P)のドーピング
で膜厚が数100X程度の非晶質シリコン層5(N型層
)を被着形成し、最後に上記N型層5の上にAll 、
 Ni Cr −Au等の金属より成る電極膜を上部電
極6として被着加工することにより下部電極(ITO層
)2−P型層3−I型層4−N型層5−上部電極6なる
構造を有する光センサが完成する。なお、上記P型層3
、■型層4及びN型層5は、それぞれ主成分ガスをシラ
ン(SiH4)とし、グロー放電法により連続あるいは
分離して被着形成される。
In the case of a conventional optical sensor with the above configuration, in the manufacturing process, first a transparent electrode layer 2 is formed as a lower electrode on a transparent insulating substrate 1 by electron beam evaporation, and then a transparent electrode layer 2 is deposited on the transparent insulating substrate 1 as a lower electrode. Then, a B-doped amorphous silicon layer 3 (P-type layer) is doped with boron (B) 7) as an impurity of about several hundred ppm to a thickness of about several 100A, and
Further, a non-doped amorphous silicon semiconductor layer 4 (I-type layer) is formed on the P-type layer 3, and a layer of several layers is further formed on the I-type layer 4.
An amorphous silicon layer 5 (N-type layer) with a thickness of about several hundred times is deposited by doping with phosphorus (P) as an impurity of about 100 pp, and finally, on the N-type layer 5, All,
By depositing an electrode film made of a metal such as NiCr-Au as the upper electrode 6, a structure of lower electrode (ITO layer) 2-P type layer 3-I type layer 4-N type layer 5-upper electrode 6 is formed. An optical sensor having the following is completed. Note that the P-type layer 3
, the ■-type layer 4 and the N-type layer 5 each use silane (SiH4) as a main component gas, and are formed continuously or separately by a glow discharge method.

次に、動作について説明する。Next, the operation will be explained.

この光センサは第1図(a)の矢符で示すごとく、基板
1側からの入射光強度に比例して上記PIN層3.4.
5の上記P型層3及びI型層4の間に形成されたPI膜
外界面の空乏層幅が変化し、これに対して逆バイアスを
印加することでその変化分を出力信号として検出するも
のである。しかしながら、上記の如き従来技術では、入
射光が上記Bドーピング非晶質シリコン層(P型層)3
0Bド一ピング層中を通過する時に吸収されて弱くなる
為、上記PI膜外界面到達して上述の空乏層幅変化に寄
与する光量は、入射光のうちの微少な量であり、その結
果この光センサの出力信号は微弱なものとなって検出し
すらいという問題点があった。このような問題点を解決
するためには、一般にゲインの高い増幅器を必要とする
ものの、増幅器のゲインを上げると周波数帯域を狭める
ことになシ、今度は高速の光検出が不可能となるという
技術的な欠点があった。
As shown by the arrow in FIG. 1(a), this optical sensor changes the PIN layer 3.4 in proportion to the intensity of incident light from the substrate 1 side.
The width of the depletion layer at the outer interface of the PI film formed between the P-type layer 3 and the I-type layer 4 in No. 5 changes, and by applying a reverse bias to this, the change is detected as an output signal. It is something. However, in the conventional technology as described above, the incident light is transmitted to the B-doped amorphous silicon layer (P-type layer) 3.
Since it is absorbed and weakened when passing through the 0B doping layer, the amount of light that reaches the outer interface of the PI film and contributes to the change in the depletion layer width is a very small amount of the incident light. There is a problem in that the output signal of this optical sensor is too weak to be detected. In order to solve these problems, an amplifier with high gain is generally required, but increasing the gain of the amplifier will narrow the frequency band, making high-speed optical detection impossible. There were technical shortcomings.

(発明の目的) 本発明は上記の如き欠点を解除するためになされたもの
で、入射光を効率よく上記PI膜外界面到達させ、効率
よく出力信号を得ることが出来る光センサを提供するこ
とを目的としている。
(Objective of the Invention) The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide an optical sensor that allows incident light to efficiently reach the outer interface of the PI film and efficiently obtains an output signal. It is an object.

(実施例) 以下、本発明の二実施例を第2図及び第3図を用いて説
明する。
(Example) Two examples of the present invention will be described below with reference to FIGS. 2 and 3.

第2図は本発明の第1の実施例を示すものであって、同
図(a)は光センサの平面図、同図(b)は第1図(a
)のY−Y@縦断面図である。
FIG. 2 shows a first embodiment of the present invention, in which FIG. 2(a) is a plan view of the optical sensor and FIG. 2(b) is a plan view of the optical sensor.
) is a vertical sectional view taken along Y-Y@.

図において、7はSiH*とN20,5iHaとNH3
’5主成分とする混合ガスをグロー放電法により被着せ
しめたSin、SiNより成る透明絶縁層であシ、この
層を格子状にホトリソエツチングすることで部分的欠陥
部3a〜3pを形成する。そして、これらの欠陥部3a
〜3pにはボロンBドーピング非晶質シリコン膜をグロ
ー放電法により全面被着した後、ホトリソエツチングに
より加工する。これにょシ、上記透明絶縁層7の部分的
欠陥部3a〜3pにBドーピング非晶質シリコン層(P
型層)が選択的に形成される。
In the figure, 7 is SiH* and N20, 5iHa and NH3
A transparent insulating layer made of Sin or SiN is formed by depositing a mixed gas containing the main component '5 by a glow discharge method, and this layer is photolithographically etched in a lattice pattern to form partial defects 3a to 3p. do. And these defective parts 3a
3P, a boron B-doped amorphous silicon film is deposited on the entire surface by a glow discharge method, and then processed by photolithography. In this case, a B-doped amorphous silicon layer (P
A mold layer) is selectively formed.

以上のように構成された本発明の第1の実施例によれば
、第2図に示す如く、微小間隔の格子状配置でBドーピ
ング層を有する部分的欠陥部3a〜3pを構成したこと
にょシ、該Bドーピング層による光の吸収量を減少させ
て工型゛層4に到達する光量を増加させることが可能と
なシ、その結果、透明絶縁層7を通過した光にょシ上記
I型層4で発生した電子−正孔対は、該工型層4の抵抗
値を減少させると共に、上記PI膜外界面も移動し、P
I膜外界面空乏層幅を好適に大きく変化させることが出
来るので、本光センサの出力信号は従来のものよりも著
しく大にすることが出来る。
According to the first embodiment of the present invention constructed as described above, the partial defect parts 3a to 3p having the B-doped layer are arranged in a lattice-like arrangement with minute intervals, as shown in FIG. It is possible to increase the amount of light that reaches the mold layer 4 by reducing the amount of light absorbed by the B-doped layer, and as a result, the amount of light that has passed through the transparent insulating layer 7 is reduced to the above-mentioned I type. The electron-hole pairs generated in the layer 4 reduce the resistance value of the mold layer 4, and also move the outer interface of the PI film, causing the P
Since the width of the depletion layer at the outer interface of the I film can be suitably and largely changed, the output signal of the present optical sensor can be made significantly larger than that of the conventional one.

次に、第3図は本発明゛の第2の実施例を示すものであ
って、同図(a)は光センサの平面図、同図(b)は第
1図(a)のz−2線縦断面図である。
Next, FIG. 3 shows a second embodiment of the present invention, in which FIG. 3(a) is a plan view of the optical sensor, and FIG. It is a two-line vertical cross-sectional view.

図において、8a〜8dは微小間隔の帯状にBドーピン
グ層を有する透明絶縁層7の部分的欠陥部である。
In the figure, 8a to 8d are partial defective portions of the transparent insulating layer 7 having a B-doped layer in the form of strips at minute intervals.

以上のように構成された本発明の第2の実施例によれば
、第3図に示す如く、Bドーピング層8a〜8dが微小
間隔の帯状に形成されたことによシ、上述の第1の実施
例と同様の効果をもたらすことが可能である。すなわち
、PIN構造に逆パ1°アスを印加することで、入射光
強度により変化する上記空乏層幅の変化分を出力信号と
して従来のものよりも大きく検出することが出来る。
According to the second embodiment of the present invention configured as described above, as shown in FIG. It is possible to bring about the same effect as the embodiment. That is, by applying a reverse path of 1° to the PIN structure, the variation in the width of the depletion layer, which changes depending on the intensity of the incident light, can be detected as an output signal to a greater extent than in the conventional case.

なお、本発明の第1及び第2の実施例において開示され
た透明絶縁層70部分的欠陥部にBドーピング層を設け
る技術は、CF4+02 (5% )混合ガスによるプ
ラズマエツチングにより余分な部分を除去することで、
容易に上記部分的欠陥部にBドーピングff13a〜3
p、8a〜8d’に形成することが可能であり、製造上
特に問題となることはないのである。
Note that the technique of providing a B-doped layer in the partially defective portion of the transparent insulating layer 70 disclosed in the first and second embodiments of the present invention involves removing the excess portion by plasma etching using a CF4+02 (5%) mixed gas. by doing,
B doping ff13a to 3 is easily applied to the partial defect portion.
p, 8a to 8d', and there is no particular problem in manufacturing.

(発明の効果) 以上説明した通シ、本発明によれば、PIN構造におい
て透明電極層とノンドープの非晶質シリコン層(工敏層
)との間にあって透明絶縁層の部分的欠陥部にBドーピ
ング非晶質シリコン層(P型層)を部分的に形成したの
で、光感度が著しく向上するという利点が得られ、従つ
七ゲインの高い増幅器を必要とせずに高速の光検出が可
能となるため、高速光センサ用として、また製造方法も
容易であることから大型のラインセンサ用として大なる
実用的効果を奏する。
(Effects of the Invention) As described above, according to the present invention, in the PIN structure, B is present between the transparent electrode layer and the non-doped amorphous silicon layer (technical layer), and in the partially defective portion of the transparent insulating layer. The partial formation of a doped amorphous silicon layer (P-type layer) has the advantage of significantly improving photosensitivity, making it possible to perform high-speed photodetection without the need for a high-gain amplifier. Therefore, it has a great practical effect as a high-speed optical sensor, and because it is easy to manufacture, it can be used as a large line sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来例を示す光センサの要部縦断面図、
−同図(b)は第1図(a)のX−X線平面断面図、第
2図(a)は本発明の第1の実施例による光センナの平
面図、同図Φ)は第2図(a)のY−Y線縦断面図、第
3図(a)は本発明の第2の実施例による光センサの平
面図、同図(b)は第3図(a)のZ−Z線縦断面図で
ある。 1・・・透明絶縁基板、2・・・透明電極層(下部電極
)、3・・・Bドーピング非晶質シリコン層(P型層)
、3a〜3p、8a〜8d・・・Bドーピング非晶質シ
リコン層(P型層)が形成された透明絶縁層の部分的欠
陥部、4・・・ノンドープの非晶質シリコン層(N型層
)、5・・・Pドーピング非晶質シリコン層(N型層)
、6・・・金属電極層(上部電極)、7・・・透明絶縁
層。 なお、図中、同一符号は同一部分又は相当部分を示す。 茄: 1 図 笥2 χ 嬉Jχ 図
FIG. 1(a) is a vertical cross-sectional view of the main part of a conventional optical sensor,
- Figure 1(b) is a cross-sectional view taken along the line X-X of Figure 1(a), Figure 2(a) is a plan view of the optical sensor according to the first embodiment of the present invention, and Figure Φ) is a plan view of the optical sensor according to the first embodiment of the present invention. 2(a) is a vertical sectional view taken along the Y-Y line, FIG. 3(a) is a plan view of the optical sensor according to the second embodiment of the present invention, and FIG. - It is a Z line longitudinal cross-sectional view. 1... Transparent insulating substrate, 2... Transparent electrode layer (lower electrode), 3... B-doped amorphous silicon layer (P-type layer)
, 3a to 3p, 8a to 8d... Partial defects of the transparent insulating layer on which the B-doped amorphous silicon layer (P-type layer) is formed, 4... Non-doped amorphous silicon layer (N-type layer) layer), 5...P-doped amorphous silicon layer (N-type layer)
, 6... Metal electrode layer (upper electrode), 7... Transparent insulating layer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Eggplant: 1 Figure 2 χ Happy Jχ Figure

Claims (1)

【特許請求の範囲】[Claims] 透明電極層と、該透明電極層上に形成されたボロン(B
’lドーピング非晶質シリコン層と、該Bドーピング非
晶質シリコン層上に形成されたノンドープの非晶質シリ
コン層と、該非晶質シリコン層上に形成されたリンCP
)ドーピング非晶質シリコン層と、該Pドーピング非晶
質シリコン層上に形成された金属電極層とを少なくとも
有する光センサにおいて、部分的欠陥部を有する透明絶
縁層と該部分的欠陥部にBドーピング層を形成して成る
層とを上記透明電極層と上記非晶質シリコン層の間に設
けたことを特徴とする光センサ。
A transparent electrode layer and boron (B) formed on the transparent electrode layer.
'L-doped amorphous silicon layer, non-doped amorphous silicon layer formed on the B-doped amorphous silicon layer, and phosphorus CP formed on the amorphous silicon layer.
) A photosensor comprising at least a doped amorphous silicon layer and a metal electrode layer formed on the P-doped amorphous silicon layer; An optical sensor characterized in that a layer comprising a doped layer is provided between the transparent electrode layer and the amorphous silicon layer.
JP58027052A 1983-02-22 1983-02-22 Photosensor Granted JPS59154082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58027052A JPS59154082A (en) 1983-02-22 1983-02-22 Photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58027052A JPS59154082A (en) 1983-02-22 1983-02-22 Photosensor

Publications (2)

Publication Number Publication Date
JPS59154082A true JPS59154082A (en) 1984-09-03
JPH0437592B2 JPH0437592B2 (en) 1992-06-19

Family

ID=12210296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58027052A Granted JPS59154082A (en) 1983-02-22 1983-02-22 Photosensor

Country Status (1)

Country Link
JP (1) JPS59154082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196572A (en) * 1985-02-25 1986-08-30 Hitachi Zosen Corp Amorphous silicon x-ray sensor
JPS61196570A (en) * 1985-02-25 1986-08-30 Hitachi Zosen Corp Amorphous silicon x-ray sensor
US6513674B1 (en) 1998-11-13 2003-02-04 Kabushiki Kaisha Mamia Container for the dishes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196572A (en) * 1985-02-25 1986-08-30 Hitachi Zosen Corp Amorphous silicon x-ray sensor
JPS61196570A (en) * 1985-02-25 1986-08-30 Hitachi Zosen Corp Amorphous silicon x-ray sensor
JPH0546709B2 (en) * 1985-02-25 1993-07-14 Hitachi Shipbuilding Eng Co
JPH0550857B2 (en) * 1985-02-25 1993-07-30 Hitachi Shipbuilding Eng Co
US6513674B1 (en) 1998-11-13 2003-02-04 Kabushiki Kaisha Mamia Container for the dishes

Also Published As

Publication number Publication date
JPH0437592B2 (en) 1992-06-19

Similar Documents

Publication Publication Date Title
US6281561B1 (en) Multicolor-color sensor
JPH0481353B2 (en)
US5663576A (en) Photoelectic conversion element with islands
JPS59154082A (en) Photosensor
JPH03252172A (en) Photosensor and manufacture thereof
JPH059948B2 (en)
JPH04132269A (en) Photoelectric transducer
JPH01140675A (en) Photoelectric transducer
JPH0323679A (en) Photoelectric transducer
JP3242513B2 (en) Photoelectric conversion device
JPS6265480A (en) Thin film solar battery
GB2115980A (en) Color sensor
JPH0542836B2 (en)
JPH0366177A (en) Photovoltaic device
JPS62193172A (en) Manufacture of photodetector array
JPH05291607A (en) Pin diode and contact image sensor using it
JPS59152678A (en) Photodetector
JPS62174979A (en) Semiconductor device
JPS6372154A (en) Manufacture of contact-type image sensor
JPS6171325A (en) Semiconductor device
JPH0323680A (en) Photoelectric transducer
JPS60100466A (en) Photoreceptor
JPS5976461A (en) Manufacture of photosensor
JPH07118525B2 (en) Photoelectric conversion element array
JPS60218884A (en) Photo-sensor and manufacture thereof