JPS61195682A - Fermentation apparatus for liquor - Google Patents

Fermentation apparatus for liquor

Info

Publication number
JPS61195682A
JPS61195682A JP3539685A JP3539685A JPS61195682A JP S61195682 A JPS61195682 A JP S61195682A JP 3539685 A JP3539685 A JP 3539685A JP 3539685 A JP3539685 A JP 3539685A JP S61195682 A JPS61195682 A JP S61195682A
Authority
JP
Japan
Prior art keywords
fermentation
carbon dioxide
dioxide gas
mash
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3539685A
Other languages
Japanese (ja)
Inventor
Eiichi Fujita
藤田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON YOKI KOGYO KK
Original Assignee
NIPPON YOKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON YOKI KOGYO KK filed Critical NIPPON YOKI KOGYO KK
Priority to JP3539685A priority Critical patent/JPS61195682A/en
Publication of JPS61195682A publication Critical patent/JPS61195682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To enable the production of fermented liquor having uniform quality, by detecting the rate of generation of carbon dioxide gas during the fermentation process, and controlling the temperature of the fermentation system in a manner to equalize the measured rate to that of the preset cycle of carbon dioxide gas generation during the fermentation. CONSTITUTION:The side wall 4 of the closed fermentation vessel 1 has double- walled jacket structure 6, and the jacket 6 is supplied with cooling water of a specific temperature by the cooler 14 attached to the jacket 6 via the control valve 19 and the pipings. The vessel 1 is furnished with a gas flow meter 12 via a pipe, and the signal corresponding to the volume of carbon dioxide gas generated in the vessel 1 by fermentation is inputted to a computer system 18. A signal is outputted periodically from the system to the control valve 19 so as to equalize the rate of the generated carbon dioxide gas to that of the preset value memorized in the system 18 as a function of the elapsed time. The opening of the valve 19 is controlled by the signal to control the circulation of the cooling water, and accordingly to control the temperature of the fermentation system. The fermentation can be proceeded at a CO2 generation rate coinciding with the preset value by this process.

Description

【発明の詳細な説明】 従来より酒類醗酵の進行度合は、もろみの品l呂を調節
してこれを加減しながら、醗酵期間の成る時点での経過
を泡立の状況観察及びもろみ成分の経過分析から経験的
に判断している。一般には、もろみの品温を高めるとf
fi酵は盛んとなり進行速度が早くなる。しかし実際に
は原料の配合を同一としても、もろみ成分中の原料、酒
母の種類によって醗酵の進行度合が違うので、醗酵期間
中もろみの品温を同じように変化させても各仕込毎に必
ずしも同一の醗酵酒は出来ない。経験的に、もろみの品
温を制御する従来の仕込m酵では、醗酵の進行度合を正
しく制御するには不十分である。
[Detailed Description of the Invention] Conventionally, the progress of fermentation of alcoholic beverages has been determined by adjusting the quality of the mash and by observing the progress of the fermentation period by observing the state of foaming and the progress of the components of the mash. Judgments are made empirically from analysis. In general, if you raise the temperature of mash,
Fi fermentation becomes more active and progresses faster. However, in reality, even if the raw material composition is the same, the rate of fermentation progress will differ depending on the raw materials in the mash and the type of yeast mash, so even if the temperature of the mash is changed in the same way during the fermentation period, it will not necessarily be the same for each preparation. It is not possible to make the same fermented sake. Experience has shown that conventional mash fermentation, which controls the temperature of mash, is insufficient to accurately control the progress of fermentation.

本発明は、酒類醗酵のアルコール化反応に比例して炭酸
ガスが発生する乙とから、仕込醗酵中成酸ガスの発生速
度を検知しこれを予め設定した醗酵の炭酸ガス発生サイ
クルと合致するように、もろみの品温を調節することか
らなる酒類の醗酵装置に関する。すなわち密閉型醗酵槽
(以下に槽とする)の上部にガス排出口を設け、これを
所定場所にあるガス流量計と接続しである。槽内もろみ
の醗酵により発生した炭酸ガス(以下にガスとする)は
ガス流量計に入り醗酵の全期間にわたりガス発生速度が
検知される。槽にジャケットを設け、ここに冷却水を通
してもろみの品温を調節するように冷却機を付設し制御
弁を介してジャケット内に供給するものである。酒類醗
酵においては、一般に醗酵熱で槽内のもろみの品温が十
昇するのでこれを抑制するための冷却が必要であるが、
もろみの品温を上昇させる必要がある場合は槽の底部に
L記と同様にしてもろみを加温するためのジャケット及
び温水機をまたは加温ヒーターを付設することもある。
The present invention detects the rate at which carbon dioxide gas is generated during fermentation, from which carbon dioxide gas is generated in proportion to the alcoholization reaction of alcoholic beverage fermentation, and adjusts this to match a preset fermentation carbon dioxide gas generation cycle. The present invention relates to a fermentation device for alcoholic beverages that adjusts the temperature of mash. That is, a gas outlet is provided at the top of a closed fermentation tank (hereinafter referred to as tank), and this is connected to a gas flow meter located at a predetermined location. Carbon dioxide gas (hereinafter referred to as gas) generated by the fermentation of mash in the tank enters a gas flow meter, and the gas generation rate is detected throughout the fermentation period. A jacket is provided in the tank, and a cooler is attached to the tank to adjust the temperature of the mash through which cooling water is passed, and the mash is supplied into the jacket via a control valve. In the fermentation of alcoholic beverages, the temperature of the mash in the tank generally rises by ten degrees due to fermentation heat, so cooling is required to suppress this.
If it is necessary to raise the temperature of the mash, a jacket and a water heater or a heating heater may be attached to the bottom of the tank to heat the mash in the same manner as described in L.

ガスをガス流量計が計量した信号がコンピューターシス
テム(以下にコンピューターとする)に入力され、その
ガス発生速度が該コンピューターに予め記憶させた設定
炭酸ガス発生速度−経過時間サイクル(以下に設定サイ
クルとする)と合致するように、もろみの品温と冷却水
温度、制御弁の開閉度の相関から演算しコンピューター
から信号を出力させ、制御弁の開閉度を制御してもろみ
の品温を加減することにより、設定炭酸ガス発生に合致
した醗酵を進行させるようにしたことを特長とするもの
である。本発明によればガス発生速度か・らもろみの醗
酵状況をオンラインで数値的に知り、かつこの値を管理
者の所定とする設定サイクルに合致させて効率的に酒類
醗酵を行うことが出来る。
The signal measured by the gas flow meter is input to a computer system (hereinafter referred to as a computer), and the gas generation rate is calculated from a set carbon dioxide gas generation rate - elapsed time cycle (hereinafter referred to as a set cycle) stored in advance in the computer. The temperature of the mash is calculated from the correlation between the temperature of the mash, the temperature of the cooling water, and the degree of opening and closing of the control valve, and a signal is output from the computer to control the degree of opening and closing of the control valve to adjust the temperature of the mash. This is characterized by allowing fermentation to proceed in accordance with the set carbon dioxide gas generation. According to the present invention, it is possible to numerically know the fermentation status of mash from the gas generation rate online, and to match this value with the set cycle prescribed by the administrator to efficiently ferment alcoholic beverages.

図面について本発明の装置の詳細を説明する。The details of the device of the invention will be explained with reference to the drawings.

第1図において、槽1の天井部にはもろみ充填口2及び
密閉可能な蓋3を装置し、ここからもろみ原料を仕込む
。槽1の側面の周壁を二重4,5にして、その間にジャ
ケット6を設け、該ジャケット6には下部に冷却水送入
管7をまた上部に冷却水送出管8を設けて冷却水を矢符
のように送入しこれがジャケット内を通過し、付設した
冷却機]4と制御弁19を介して循環することにより槽
1内もろみの品温を調節するようにしである。槽】のほ
ぼ中央天井部にガス排出口9を設け、該ガス排出口9を
導管10と連結し、ガスは導管10を通り水分分離器1
1を経てガス流量計12を通過して大気中に放出される
。槽1の下部に取出バルブ13を設置し醗酵を終了した
もろみはここから集め出される。槽1の側壁面の適当な
位置に1個または複数個の温度検出素子15を設置しも
ろみの品温を測定する。まt:ガス流量計12のガス放
出口16にガスの温度を測定するためのl黒度検出素子
】7が取付けである。温度検出素子15.17及びガス
流量計12はそれぞれ点線で示す電気回路でコンピュー
ター18に連絡している。ガス流量計12で計量したガ
ス量は、温度検出素子17からの温度信号と相関しコン
ピューター18に入力し演算され15℃換算のガス発、
生速度としてコンピューター18に記憶゛される。制御
弁]9は点線で示す電気回路でコンピューター18と連
結しており、ガス発生速度が設定サイクルと合致しない
場合コンピューター18中で温度検出素子15からのも
ろみの品温と冷却水温度、ガス発生速度の相関から演算
してコンピューター18から制御弁19に信号が出力さ
れ制御弁の開閉度が変化しそれに対応j7て冷却水がジ
ャケット6内を循環する構成となっている。なお酒類醗
酵の種類によりその反応機作や反応式からガス発生速度
を積算してガス量を知り、もろみ中に生成したアルコー
ル濃度を算定することは容易であるので、ガス発生速度
からアルコール濃度に換算した設定アルコール濃度−経
過時間サイクルを用いることも可能である。
In FIG. 1, the ceiling of a tank 1 is equipped with a mash filling port 2 and a sealable lid 3, through which the mash raw material is charged. The peripheral walls on the sides of the tank 1 are made double 4 and 5, and a jacket 6 is provided between them, and the jacket 6 is provided with a cooling water inlet pipe 7 at the lower part and a cooling water outlet pipe 8 at the upper part to supply the cooling water. The mash is fed in as shown by the arrow, passes through the jacket, and circulates through the attached cooler 4 and control valve 19, thereby regulating the temperature of the mash in the tank 1. A gas discharge port 9 is provided at approximately the center ceiling of the tank, and the gas discharge port 9 is connected to a conduit 10, and the gas passes through the conduit 10 to the moisture separator 1.
1, the gas flows through a gas flow meter 12, and is released into the atmosphere. A take-out valve 13 is installed at the bottom of the tank 1, and the fermented mash is collected from there. One or more temperature detection elements 15 are installed at appropriate positions on the side wall surface of the tank 1 to measure the temperature of the mash. 7 is the installation of a blackness detection element for measuring the temperature of the gas at the gas discharge port 16 of the gas flowmeter 12. The temperature detection elements 15, 17 and the gas flow meter 12 are each connected to the computer 18 by electrical circuits shown by dotted lines. The amount of gas measured by the gas flow meter 12 correlates with the temperature signal from the temperature detection element 17, is input into the computer 18, and is calculated, and the gas is emitted at a rate of 15°C.
It is stored in the computer 18 as a raw speed. The control valve] 9 is connected to the computer 18 by an electric circuit shown by a dotted line, and if the gas generation rate does not match the set cycle, the computer 18 controls the temperature of the mash, the temperature of the cooling water, and the gas generation from the temperature detection element 15. A signal is output from the computer 18 to the control valve 19 based on a calculation based on the correlation of speeds, and the degree of opening and closing of the control valve changes, and the cooling water circulates within the jacket 6 in response to the change. Depending on the type of alcoholic beverage fermentation, it is easy to calculate the alcohol concentration produced in the mash by integrating the gas generation rate from the reaction mechanism and reaction formula to determine the amount of gas, so it is easy to calculate the alcohol concentration from the gas generation rate. It is also possible to use a converted set alcohol concentration-elapsed time cycle.

実施例として容量6 kQの槽を用いて総米2トンの清
酒四段仕込について説明する。原料配合は次の如く初添
から四段までの工程に分けて槽に仕込充填した。醸造協
会7号酵母を用いそれぞれ原料は従来の清酒の仕込醗酵
に使用する品質のもので、本発明実施のtコめに特別の
原料は必要としない。
As an example, a four-stage preparation of sake with a total amount of 2 tons of rice will be explained using a tank with a capacity of 6 kQ. The raw materials were mixed in the following steps from initial addition to four stages and charged into the tank. Brewing Association No. 7 yeast is used, and the raw materials are of the quality used in conventional brewing and fermentation of sake, and no special raw materials are required for implementing the present invention.

仕込の初期から仲添までの間槽内もろみの品温は醗酵が
遅いのでほとんど12〜12.5℃と変化もな(泡立も
少ない。留添では汲水に一部氷を混合してもろみを冷や
し品温を13℃どまりに抑えた。
From the beginning of preparation to Nakazoe, the temperature of the mash in the tank hardly changes between 12 and 12.5℃ due to slow fermentation (there is also little foaming). The moromi was chilled to keep the product temperature below 13℃.

6一 この期間槽ジャケットには11’Cの井戸水を張ったま
ま制御弁を閉じ冷却機は停止させていた。
6- During this period, the control valve was closed and the cooler was stopped while the tank jacket was filled with well water at 11'C.

冷却機は1馬力の冷凍機を直結し800リツターの冷水
タンクに常時5℃の冷却水を貯蔵している。
The cooler is directly connected to a 1-horsepower refrigerator, and the 800-liter cold water tank constantly stores cooling water at 5°C.

留添後槽内もろみは醗酵が盛んとなり全面発泡立状態と
なって発熱し品温が」二昇し炭酸ガス発生が顕著となる
ので冷却機を始動させ、ジャケット内に冷却水を循環す
る。第2図に留添以降の醗酵期間における炭酸ガス発生
速度の経過曲線を示した。
After distillation, fermentation of the mash in the tank increases and the entire surface becomes foamy, generating heat, raising the temperature of the product and producing significant carbon dioxide, so the cooler is started and cooling water is circulated inside the jacket. Figure 2 shows a curve of the rate of carbon dioxide gas generation during the fermentation period after distillation.

点線Aはコンピューターにプログラムした設定サイクル
で、4〜10日の経過日数期間においてはガス発生速度
が設定値を超過すると、制御弁が冷却必要度に応じて開
き冷却水を最高601.7分の流量で循環しもろみの品
温を下げ醗酵速度を抑える。実線Bはこのようにして醗
酵を経過させた実際のガス発生速度曲線である。この醗
酵経過において、もろみの品温は留添時の12℃から経
過日数5日目には15.5℃と上昇し10日1以降除々
に降下し200日目は12℃となる変化をたどった。
Dotted line A is a set cycle programmed into the computer. During the elapsed period of 4 to 10 days, when the gas generation rate exceeds the set value, the control valve opens according to the cooling requirement and cools the water for up to 601.7 minutes. It circulates through the flow to lower the temperature of the mash and suppress the fermentation speed. The solid line B is the actual gas generation rate curve obtained through fermentation in this manner. During this fermentation process, the temperature of the mash rose from 12°C at the time of distillation addition to 15.5°C on the 5th day, gradually decreased after 10th day, and reached 12°C on the 200th day. Ta.

以上のように本発明の醗酵装置は、従来のもろみの品温
を調節し外部から目視により醗酵を管理するものと異な
り、槽内で実際に機作している醗酵を設定通りに自動的
に制御して行わせることが可能でかつ炭酸ガス発生速度
やアルコール生成速度など醗酵状況をオンラインで検知
しながら効率良く酒類の醗酵を管理することが出来、つ
ねに同一の醗酵酒の製造が可能となり有用である。なお
本発明の装置は槽の形状、その容量に拘束されることな
く適用が可能である。
As described above, the fermentation device of the present invention is different from the conventional fermentation device in which the temperature of the mash is adjusted and the fermentation is managed visually from the outside. It is possible to control the fermentation of alcoholic beverages, and it is possible to efficiently manage the fermentation of alcoholic beverages while monitoring the fermentation status such as carbon dioxide gas generation rate and alcohol production rate online, and it is useful because it allows the production of the same fermented alcoholic beverage at all times. It is. Note that the device of the present invention can be applied without being restricted by the shape of the tank or its capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の概略構成図、第2図は本発明装置
を用いた酒類醗酵の一具体例における炭酸ガス発生速度
と醗酵経過日数の状況を示した図である。 図面符号の説明 1 密閉型醗酵槽、2・ もろみ充填口、3・蓋、4 
密閉型醗酵槽周壁、5 ジャケット壁、6ジヤケツト、
7−冷却水送入管、8 冷却水送出管、9 炭酸ガス排
出口、10・−ガス導管、11・水分分離器、12− 
ガス流量計、13 もろみ取出バルブ、14 rfj却
機、15・・もろみの品温検出素子、16 炭酸ガス放
出口、17 炭酸ガス温度検出素子、18 コンピュー
ターシステム、19 制御弁
FIG. 1 is a schematic diagram of the apparatus of the present invention, and FIG. 2 is a diagram showing the rate of carbon dioxide gas generation and the number of days of fermentation in a specific example of fermentation of alcoholic beverages using the apparatus of the present invention. Explanation of drawing symbols 1 Closed fermentation tank, 2. Moromi filling port, 3. Lid, 4
Closed type fermenter surrounding wall, 5 jacket wall, 6 jacket,
7 - Cooling water inlet pipe, 8 Cooling water outlet pipe, 9 Carbon dioxide gas outlet, 10 - Gas conduit pipe, 11 - Moisture separator, 12 -
Gas flow meter, 13 Mash removal valve, 14 RFJ quencher, 15... Mash temperature detection element, 16 Carbon dioxide gas release port, 17 Carbon dioxide temperature detection element, 18 Computer system, 19 Control valve

Claims (1)

【特許請求の範囲】[Claims] 1)側壁面を二重のジャケット構造となし、該ジャケッ
トに、所定の冷却水を供給する冷却機を制御弁を介して
配管接続し冷却水を循環させる構造としたことからなる
酒類の密閉型醗酵槽において、該醗酵槽にガス流量計を
配管接続し醗酵槽内もろみの醗酵により発生する炭酸ガ
スを計量した信号をコンピューターシステムに入力し、
発生炭酸ガス速度が該コンピューターシステムに予め記
憶された設定炭酸ガス発生速度−経過時間サイクルと合
致するように、該コンピューターシステムから信号を定
期的に出力させ前記制御弁の開閉度を制御して冷却水の
循環を調節し、もろみの品温を加減することにより、設
定炭酸ガス発生速度に合致した炭酸ガス発生速度となる
ように醗酵を進行させることを特長とする酒類の醗酵装
置。
1) A closed type for alcoholic beverages, which has a double jacket structure on the side wall surface, and a chiller that supplies a prescribed amount of cooling water is connected to the jacket via a control valve to circulate the cooling water. In the fermentation tank, a gas flow meter is connected to the fermentation tank via piping, and a signal obtained by measuring the carbon dioxide gas generated by fermentation of the mash in the fermentation tank is input into the computer system,
Cooling is performed by periodically outputting a signal from the computer system and controlling the opening/closing degree of the control valve so that the carbon dioxide gas generation rate matches a set carbon dioxide gas generation rate-elapsed time cycle stored in advance in the computer system. An apparatus for fermenting alcoholic beverages, which is characterized by adjusting water circulation and controlling the temperature of mash to advance fermentation to a carbon dioxide gas generation rate that matches a set carbon dioxide gas generation rate.
JP3539685A 1985-02-26 1985-02-26 Fermentation apparatus for liquor Pending JPS61195682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3539685A JPS61195682A (en) 1985-02-26 1985-02-26 Fermentation apparatus for liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3539685A JPS61195682A (en) 1985-02-26 1985-02-26 Fermentation apparatus for liquor

Publications (1)

Publication Number Publication Date
JPS61195682A true JPS61195682A (en) 1986-08-29

Family

ID=12440760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3539685A Pending JPS61195682A (en) 1985-02-26 1985-02-26 Fermentation apparatus for liquor

Country Status (1)

Country Link
JP (1) JPS61195682A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247078A (en) * 1988-03-30 1989-10-02 Hitachi Ltd Method for feeding chemical solution for culture tank and apparatus therefor
JP2001299327A (en) * 2000-04-28 2001-10-30 Mitsubishi Chemical Engineering Corp Method for controlling temperature of batch-wise fermentation plant
KR100445628B1 (en) * 2001-09-13 2004-08-21 오성근 The method and apparatus for manufacturing of fruit wine
WO2006134451A1 (en) * 2005-06-14 2006-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fermentation unit with liquid nitrogen cooling
JP2013132282A (en) * 2011-12-27 2013-07-08 Asahi Breweries Ltd Inspection method and production facility
CN111254030A (en) * 2020-02-24 2020-06-09 江苏青蒿酒业有限责任公司 Brewing device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247078A (en) * 1988-03-30 1989-10-02 Hitachi Ltd Method for feeding chemical solution for culture tank and apparatus therefor
JP2001299327A (en) * 2000-04-28 2001-10-30 Mitsubishi Chemical Engineering Corp Method for controlling temperature of batch-wise fermentation plant
KR100445628B1 (en) * 2001-09-13 2004-08-21 오성근 The method and apparatus for manufacturing of fruit wine
WO2006134451A1 (en) * 2005-06-14 2006-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fermentation unit with liquid nitrogen cooling
US7704732B2 (en) 2005-06-14 2010-04-27 American Air Liquide, Inc. Fermentation unit with liquid nitrogen cooling
JP2013132282A (en) * 2011-12-27 2013-07-08 Asahi Breweries Ltd Inspection method and production facility
CN111254030A (en) * 2020-02-24 2020-06-09 江苏青蒿酒业有限责任公司 Brewing device and method

Similar Documents

Publication Publication Date Title
US4064015A (en) Control of biosynthesis in submerged culture
CN109884281B (en) Test device for on-line monitoring carbonate corrosion
EP0052890B1 (en) Process and apparatus for controlling cultivation of microorganisms
JPS60203180A (en) Fermentation control apparatus and method
US4463019A (en) Stationary process for producing vinegar
JPS61195682A (en) Fermentation apparatus for liquor
US4711785A (en) Process of vinification
CN210596315U (en) Vertical pulling single crystal furnace
US4358343A (en) Method for quenching coke
JP2007312676A (en) Solid fermentation apparatus
US4343231A (en) Brewing apparatus having sampling means delivering suspension to fermenting vessel
CN103237879B (en) Method and device in particular for mashing in the production of beer
CN109741842A (en) Nuclear power plant holds control case deoxygenation test macro and method
RU2423559C2 (en) Procedure for growth of mono crystal of sapphire on seed left in melt under automatic mode
JPH059057B2 (en)
CN210279001U (en) Constant-temperature water bath oscillator capable of automatically monitoring and adjusting liquid level of water bath
JP2010081805A (en) Method and apparatus for cell culture
JP2001299327A (en) Method for controlling temperature of batch-wise fermentation plant
US3014804A (en) Method for producing acetic acid from alcohol containing fermentation medium
JP2001300204A (en) Temperature control method in batchwise crystallization apparatus
JPS6331191B2 (en)
SU1735372A1 (en) System for automatic control of growing microorganisms in fermenter
JPH0215189B2 (en)
CN110724620A (en) Microwave distillation wine brewing equipment and distillation process
JPH06141839A (en) Stirring device for fermentation tank of unrefined sake @(3754/24)unrefined rice wine)