JPS6331191B2 - - Google Patents

Info

Publication number
JPS6331191B2
JPS6331191B2 JP59272125A JP27212584A JPS6331191B2 JP S6331191 B2 JPS6331191 B2 JP S6331191B2 JP 59272125 A JP59272125 A JP 59272125A JP 27212584 A JP27212584 A JP 27212584A JP S6331191 B2 JPS6331191 B2 JP S6331191B2
Authority
JP
Japan
Prior art keywords
gas
culture
solenoid valve
culture tank
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59272125A
Other languages
Japanese (ja)
Other versions
JPS61149080A (en
Inventor
Hideo Tanaka
Hiroshi Kataoka
Sensuke Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWASHA EE DEII EMU KK
Original Assignee
IWASHA EE DEII EMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWASHA EE DEII EMU KK filed Critical IWASHA EE DEII EMU KK
Priority to JP27212584A priority Critical patent/JPS61149080A/en
Publication of JPS61149080A publication Critical patent/JPS61149080A/en
Publication of JPS6331191B2 publication Critical patent/JPS6331191B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、工業用大型培養装置の培養槽内にお
ける培養液の培養物性を、実験用小型培養装置の
培養槽内に再現させるための、スケールアツプ用
生物細胞培養装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for reproducing the culture physical properties of a culture solution in a culture tank of a large-scale industrial culture device in a culture tank of a small-scale experimental culture device. This invention relates to biological cell culture equipment for scale-up.

[従来技術とその問題点] 小さな規模の培養装置で得られた培養結果を大
きな規模の培養装置で再現させる、いわゆる、ス
ケールアツプは、従来、両装置内の培養液物性
(培地組成、温度、PH溶存酸素など)が等しいと
いう仮定のもとにおこなわれてきた。
[Prior art and its problems] So-called scale-up, in which the culture results obtained in a small-scale culture device are reproduced in a large-scale culture device, has conventionally been achieved by changing the physical properties of the culture solution (medium composition, temperature, etc.) in both devices. This has been done on the assumption that the pH (dissolved oxygen, etc.) is equal.

しかしながら、フラスコやジヤーフアーメンタ
ーなどの小さな規模の培養装置内では、それらの
培養物性が均一であるのに対し、数十トン、数百
トンという工業規模での大型培養装置では、液深
が数メートルから数十メートルとなり、培養槽内
の液表面と槽底の間にかなりの圧差が生じ、それ
に伴い、培養物性のいくつかは、槽内で不均一と
なる。たとえば、大型の塔型培養装置内では、液
流動がプラツグフローに近いために、槽底から液
表面の間で生ずる圧力分布と同様に種々の溶存ガ
スの濃度分布が生ずるし、完全混合状態が形成さ
れる通気撹拌型培養装置においても、大型培養装
置においては、槽底から液表面の間で生ずる圧力
分布はもとより、溶存ガス濃度分布も生ずること
が報告されている(R.Manfredini等、
Biotechnol.Bioeng.、第25巻、第3115頁、1983
年)。
However, in small-scale culture devices such as flasks and jar fermentors, the culture properties are uniform, whereas in large-scale culture devices on an industrial scale of tens or hundreds of tons, the liquid depth varies. The length ranges from several meters to several tens of meters, and a considerable pressure difference occurs between the liquid surface and the bottom of the culture tank, and as a result, some of the physical properties of the culture become non-uniform within the tank. For example, in a large tower-type culture device, the liquid flow is close to plug flow, so the concentration distribution of various dissolved gases occurs similar to the pressure distribution between the tank bottom and the liquid surface, and a completely mixed state is formed. It has been reported that in large-scale culture apparatuses, not only a pressure distribution occurs between the tank bottom and the liquid surface, but also a dissolved gas concentration distribution occurs in large-scale culture apparatuses, even in aeration-stirred culture apparatuses.
Biotechnol.Bioeng., Volume 25, Page 3115, 1983
Year).

このように、小型培養装置内では均一である
が、大型培養装置では不均一となる培養物性に関
しては、従来のスケールアツプにおいてほとんど
考慮されていない。大型培養装置内での不均一な
培養物性のなかで、もつとも重要なものは溶存ガ
ス濃度であり、そのなかでも、酸素と炭酸ガスに
あるものと考えられる。
As described above, in conventional scale-up, little consideration is given to the physical properties of culture, which are uniform in a small culture device but non-uniform in a large culture device. Among the non-uniform culture properties in a large-scale culture apparatus, the most important one is the concentration of dissolved gases, and among these, oxygen and carbon dioxide gas are considered to be the most important.

特に酸素は、好気培養において培養結果を支配
する最も重要な因子であり、また炭酸ガスは、培
養液のPHや細胞の生理活性に大きな影響を及ぼす
因子である。さらに不均一な因子として、圧力が
挙げられ、細胞の種類により圧力そのものも細胞
の生理活性に大きな影響を与えることが考えられ
る。培養装置の培養槽内に生理細胞が接種され、
培養が開始されると、細胞は培養槽内をある平均
周期で循環することになり、その間、増殖および
その他の生理活動(以下総称して生命活動とい
う)が行われる。
In particular, oxygen is the most important factor governing the culture results in aerobic culture, and carbon dioxide is a factor that has a large effect on the pH of the culture solution and the physiological activity of cells. Another non-uniform factor is pressure, and depending on the type of cell, pressure itself is thought to have a large effect on the physiological activity of the cell. Physiological cells are inoculated into the culture tank of the culture device,
Once culture is started, cells circulate within the culture tank at a certain average cycle, during which they proliferate and perform other physiological activities (hereinafter collectively referred to as life activities).

いいかえると、先に述べたように、大型培養装
置では、槽内で不均一な溶存ガスの濃度分布や、
圧力分布が生じ、その間を細胞がある平均周期で
循環することとなり、細胞は、それらの不均一因
子の影響を受けながら、生命活動を行うことにな
る。これらの培養槽内の不均一因子が、培養結果
にどのような影響を及ぼすかは、従来のスケール
アツプ法ではまつたく予想がつかず、経済的負担
が大きな、大型培養装置での実験を実際に行つて
みて、初めて明らかにされていた。
In other words, as mentioned earlier, large-scale culture equipment has uneven concentration distribution of dissolved gas within the tank,
A pressure distribution occurs, through which cells circulate at a certain average cycle, and cells carry out their life activities while being influenced by these heterogeneous factors. How these heterogeneous factors within the culture tank will affect the culture results cannot be easily predicted using conventional scale-up methods, and it is difficult to actually conduct experiments using large-scale culture equipment, which imposes a heavy economic burden. When I went there, it was revealed for the first time.

したがつて、従来のスケールアツプ法は、まつ
たく意味がないという問題点があつた。
Therefore, the problem with conventional scale-up methods was that they were completely meaningless.

[発明の概要] 本発明者らは、上記問題点を解決し、前述のよ
うな大型生物細胞培養装置における培養槽の中
を、ある一定周期で循環する生物細胞(微生物、
植物、動物等)が受ける種々の変動条件、すなわ
ち培養槽内の圧力、溶存ガス濃度の周期的変動、
および剪断応力、ならびにこれらの変動幅や周期
時間等に対応して、実験用小型生物細胞培養装置
内に、これらを再現できるようにしたスケールア
ツプ用生物細胞培養装置を開発したもので、 (a) 気体もしくは撹拌羽根等の撹拌装置により、
培養液が撹拌される培養槽内に、レギユレータ
ーおよび電磁弁が介在され、培養液中に開口さ
れたガス導入パイプと、溶存ガス濃度検出器
と、電磁弁が介在されたガス排出パイプが設け
られ、ガス導入パイプの電磁弁と培養槽間のガ
ス導入パイプには、電磁弁を介してガス混合器
が接続され、かつこのガス混合器には酸素ガス
供給パイプ、窒素ガス供給パイプ、炭酸ガス供
給パイプ、その他のガス供給パイプ中の適宜数
のパイプがそれぞれレギユレーターおよび電磁
弁を介して接続されると共に、培養槽内の上記
溶存ガス濃度検出器による検出値が、あらかじ
め設定された周期的に変動するガス濃度の設定
値に対応して整合するように、自動制御装置に
より前記各レギユレーターおよび各電磁弁の作
動が制御されること。
[Summary of the Invention] The present inventors have solved the above-mentioned problems, and the present inventors have solved the above-mentioned problems by cultivating biological cells (microorganisms, microorganisms,
plants, animals, etc.), such as pressure in the culture tank, periodic fluctuations in dissolved gas concentration,
We have developed a biological cell culture device for scale-up that can reproduce these conditions in a small experimental biological cell culture device in response to the shear stress, their fluctuation range, cycle time, etc. ) using gas or a stirring device such as a stirring blade,
A regulator and a solenoid valve are interposed in the culture tank in which the culture solution is stirred, and a gas introduction pipe opened into the culture solution, a dissolved gas concentration detector, and a gas discharge pipe with an intervening solenoid valve are provided. A gas mixer is connected to the solenoid valve of the gas inlet pipe and the gas inlet pipe between the culture tank through the solenoid valve, and this gas mixer has an oxygen gas supply pipe, a nitrogen gas supply pipe, and a carbon dioxide gas supply pipe. An appropriate number of pipes among the pipes and other gas supply pipes are connected via regulators and solenoid valves, and the detected value by the dissolved gas concentration detector in the culture tank fluctuates in a preset periodic manner. The operation of each of the regulators and each electromagnetic valve is controlled by an automatic control device so as to correspond to and match the set value of the gas concentration.

(b) および培養槽内に、レギユレーターおよび電
磁弁が介在され、培養液中に開口されたガス導
入パイプと、圧力検出器と、溶存ガス濃度検出
器と、電磁弁が介在されたガス排出パイプと、
モーターに接続された撹拌羽根とが設けられ、
ガス導入パイプの電磁弁と培養槽間のガス導入
パイプには、酸素ガス供給パイプ、窒素ガス供
給パイプ、炭酸ガス供給パイプ、その他のガス
供給パイプが、それぞれレギユレーターおよび
電磁弁を介して接続されると共に、培養槽内の
培養液の上記圧力検出器および溶存ガス濃度検
出器による検出値、ならびに剪断応力値が、あ
らかじめ設定された周期的に変動するこれらの
設定値に対応して整合するように、自動制御装
置により前記各レギユレーターおよび電磁弁な
らびにモーターの作動が制御されること。
(b) and a gas introduction pipe opened into the culture solution with a regulator and a solenoid valve interposed in the culture tank, and a gas discharge pipe with a pressure detector, a dissolved gas concentration detector, and a solenoid valve interposed therein. and,
A stirring blade connected to a motor is provided,
An oxygen gas supply pipe, a nitrogen gas supply pipe, a carbon dioxide gas supply pipe, and other gas supply pipes are connected to the solenoid valve of the gas introduction pipe and the gas introduction pipe between the culture tank via a regulator and a solenoid valve, respectively. At the same time, the detected values of the culture solution in the culture tank by the pressure detector and the dissolved gas concentration detector, as well as the shear stress value, are made to match in accordance with these periodically fluctuating set values set in advance. , the operation of each of the regulators, solenoid valves, and motors is controlled by an automatic control device;

(c) および上記(b)の装置におけるガス導入パイプ
の電磁弁の下流側には電磁弁を介してガス混合
器が接続され、このガス混合器に、酸素ガス供
給パイプ、窒素ガス供給パイプ、炭酸ガス供給
パイプ、その他のガス供給パイプ中、少なくと
も前3者のパイプがそれぞれレギユレーターお
よび電磁弁を介して接続されること、をそれぞ
れ特徴としている。
A gas mixer is connected via a solenoid valve to the downstream side of the solenoid valve of the gas introduction pipe in the device (c) and (b) above, and this gas mixer is connected to an oxygen gas supply pipe, a nitrogen gas supply pipe, Among the carbon dioxide gas supply pipe and other gas supply pipes, at least the former three pipes are each connected via a regulator and a solenoid valve.

[実施例] 別紙図面について本発明に係るスケールアツプ
用生物細胞培養装置の実施例を説明する。
[Example] An example of the biological cell culture device for scale-up according to the present invention will be described with reference to the attached drawings.

密閉可能に構成された公知の培養槽1内には、
図示されていないコンプレツサーおよびエアート
ランスホーマからなる加圧装置2のガス導入パイ
プ3がレギユレーター4と電磁弁5を介して培養
槽1内底面に開口され、このガス導入パイプ3に
おける電磁弁5と培養槽1間のガス導入パイプ3
には、電磁弁6を介してガス混合器7が混合ガス
供給パイプ8により接続され、かつこのガス混合
器7には酸素ガスボンベ9、窒素ガスボンベ1
0、炭酸ガスボンベ11がそれぞれレギユレータ
ー12,13,14と電磁弁15,16,17を
介して酸素ガス供給パイプ18、窒素ガス供給パ
イプ19、炭酸ガス供給パイプ20により接続さ
れると共に、培養槽1の中心部には下端部に撹拌
羽根21を有する撹拌軸22が吊設され、撹拌軸
22はモータ23に連設されている。
In a known culture tank 1 configured to be airtight,
A gas introduction pipe 3 of a pressurizing device 2 consisting of a compressor and an air transformer (not shown) is opened to the inner bottom surface of the culture tank 1 via a regulator 4 and a solenoid valve 5. Gas introduction pipe 3 between tanks 1
A gas mixer 7 is connected by a mixed gas supply pipe 8 via a solenoid valve 6, and an oxygen gas cylinder 9 and a nitrogen gas cylinder 1 are connected to the gas mixer 7.
0, a carbon dioxide gas cylinder 11 is connected to an oxygen gas supply pipe 18, a nitrogen gas supply pipe 19, and a carbon dioxide gas supply pipe 20 via regulators 12, 13, 14 and solenoid valves 15, 16, 17, respectively, and the culture tank 1 A stirring shaft 22 having a stirring blade 21 at its lower end is suspended from the center of the stirring shaft 22 , and the stirring shaft 22 is connected to a motor 23 .

培養槽1の側壁で培養液Aに浸漬される位置に
は溶存ガス濃度検出用の酸素電極25が取りつけ
られ、培養槽1の上面で培養液Aに接しない位置
には、圧力発信器24と電磁弁26を介したガス
排出パイプ27が取りつけられている。
An oxygen electrode 25 for detecting dissolved gas concentration is attached to the side wall of the culture tank 1 at a position where it is immersed in the culture solution A, and a pressure transmitter 24 and a pressure transmitter are installed at a position on the top surface of the culture tank 1 that is not in contact with the culture solution A. A gas exhaust pipe 27 via a solenoid valve 26 is attached.

圧力発信器24と酸素電極25は自動制御装置
28の入力部29に接続される。自動制御装置2
8の入力部29と設定部31は演算部32に接続
され、演算部32は変換部33を介して出力部3
0に接続されている。自動制御装置28の出力部
30には前述の各電磁弁5,6,15,16,1
7,26と、各レギユレーター4,12,13,
14とモータ23がそれぞれ接続される。
The pressure transmitter 24 and the oxygen electrode 25 are connected to an input 29 of the automatic control device 28 . Automatic control device 2
The input section 29 and setting section 31 of 8 are connected to the calculation section 32, and the calculation section 32 outputs the output section 3 via the conversion section 33.
Connected to 0. The output section 30 of the automatic control device 28 includes the aforementioned solenoid valves 5, 6, 15, 16, 1.
7, 26, and each regulator 4, 12, 13,
14 and motor 23 are connected to each other.

つぎに、この装置を用いて培養槽1内の培養液
Aに対する圧力、溶存ガス濃度および剪断応力の
制御方法を説明する。
Next, a method of controlling the pressure, dissolved gas concentration, and shear stress on the culture solution A in the culture tank 1 using this device will be explained.

圧力の制御: 培養槽1内の圧力を制御するには、加圧装置2
により加圧された空気を培養槽1内へ供給し、あ
るいは培養槽1内からこの空気をガス排出パイプ
27を介して排出することにより行い、設定周期
の前半ではレギユレーター4と電磁弁5を開き、
電磁弁6と電磁弁26を閉じて設定圧力まで加圧
し、後半ではレギユレーター4と電磁弁5を閉
じ、電磁弁26を開き培養槽1内を常圧まで減圧
する。この工程を繰返し、生物細胞が大型培養槽
を循環する間に受ける圧力の変動を再現する。
Pressure control: To control the pressure inside the culture tank 1, a pressurizing device 2 is used.
This is done by supplying pressurized air into the culture tank 1, or by discharging this air from the culture tank 1 through the gas exhaust pipe 27, and in the first half of the set cycle, the regulator 4 and the solenoid valve 5 are opened. ,
The solenoid valve 6 and the solenoid valve 26 are closed to increase the pressure to the set pressure, and in the second half, the regulator 4 and the solenoid valve 5 are closed and the solenoid valve 26 is opened to reduce the pressure in the culture tank 1 to normal pressure. This process is repeated to recreate the pressure fluctuations experienced by biological cells as they circulate through a large culture tank.

すなわち、加圧装置2により加圧された空気
は、エアートランスホーマにより、水分、塵埃等
を除去されてレギユレーター4に導入され、レギ
ユレーター4により一定の圧力により設定され
る。
That is, the air pressurized by the pressurizing device 2 is introduced into the regulator 4 after moisture, dust, etc. are removed by the air transformer, and the regulator 4 sets a constant pressure.

培養槽1の排出側の電磁弁26と逆流防止用を
兼ねた混合ガス供給パイプ8の電磁弁6を閉じた
状態で吸入側の電磁弁5を開くと、培養槽1内の
圧力は次第に高くなり、この圧力変化は培養槽1
に設けられた圧力発信器24により検出され、そ
の圧力信号が自動制御装置28の入力部29に入
る。
When the solenoid valve 26 on the discharge side of the culture tank 1 and the solenoid valve 6 of the mixed gas supply pipe 8 which also serves as backflow prevention are closed, and the solenoid valve 5 on the suction side is opened, the pressure inside the culture tank 1 gradually increases. Therefore, this pressure change is caused by culture tank 1.
The pressure signal is detected by a pressure transmitter 24 provided at the automatic control device 28 and enters the input section 29 of the automatic control device 28.

培養槽1内の圧力が設定部31により設定され
た圧力に達すると、出力部30からの信号で電磁
弁5が閉じられ、設定部31で設定された任意時
間経過後電磁弁26が開き、培養槽1内の加圧空
気が排出されて培養槽1内の圧力が常圧にまで下
げられる。レギユレーター4の設定圧力と、電磁
弁5を閉じて電磁弁26を開く間の時間を調節す
ることにより、圧力の設定値と、圧力の上昇、下
降の傾きを自由に設定することができる。
When the pressure within the culture tank 1 reaches the pressure set by the setting unit 31, the solenoid valve 5 is closed by a signal from the output unit 30, and after an arbitrary time set by the setting unit 31 has elapsed, the solenoid valve 26 is opened. The pressurized air inside the culture tank 1 is discharged, and the pressure inside the culture tank 1 is lowered to normal pressure. By adjusting the set pressure of the regulator 4 and the time between closing the solenoid valve 5 and opening the solenoid valve 26, the set value of the pressure and the slope of the rise and fall of the pressure can be freely set.

上記一連の動作を繰返すことにより、大型培養
槽内を循環する間に生物細胞が受ける圧力変動が
再現される。
By repeating the above series of operations, the pressure fluctuations that the biological cells undergo while circulating in the large culture tank are reproduced.

ガス濃度の制御: 加圧によつて変化する因子としては、先に述べ
たように、液中溶存ガス濃度が考えられ、これは
大別して、溶存酸素濃度と溶存炭酸ガス濃度に別
けられる。そして、溶存酸素濃度はその系に作用
する圧力に比例するため、大型培養槽内の溶存酸
素濃度は、加圧空気を一定圧力で供給していて
も、培養槽1の上部と下部では異なる。
Control of gas concentration: As mentioned above, a factor that changes with pressurization is the concentration of dissolved gas in the liquid, which can be roughly divided into dissolved oxygen concentration and dissolved carbon dioxide concentration. Since the dissolved oxygen concentration is proportional to the pressure acting on the system, the dissolved oxygen concentration in the large culture tank differs between the upper and lower parts of the culture tank 1 even if pressurized air is supplied at a constant pressure.

したがつて、生物細胞が大型培養槽内を循環す
る周期に合わせて、培養槽1内の溶存酸素濃度を
変化させなくてはならない。
Therefore, it is necessary to change the dissolved oxygen concentration in the culture tank 1 in accordance with the cycle in which biological cells circulate within the large culture tank.

このために、空気供給ラインに酸素および窒素
ガスを混合して培養槽1に供給し、酸素もしくは
窒素ガスの量を周期的に調節し、溶存酸素濃度を
変化させ、生物細胞が大型培養槽を循環する間に
受ける溶存酸素濃度の変化を再現する。
For this purpose, a mixture of oxygen and nitrogen gas is supplied to the culture tank 1 through the air supply line, and the amount of oxygen or nitrogen gas is periodically adjusted to change the dissolved oxygen concentration so that the biological cells can move through the large culture tank. Reproduces the changes in dissolved oxygen concentration that occur during circulation.

同様に溶存炭酸ガスの変化も再現する。 Similarly, changes in dissolved carbon dioxide are also reproduced.

すなわち、まず、圧力による溶存酸素濃度の制
御は、酸素、または酸素に窒素ガスを混合させて
変化させる。
That is, first, the dissolved oxygen concentration is controlled by pressure by changing oxygen or by mixing nitrogen gas with oxygen.

基準となる溶存酸素濃度が設定されると、ある
圧力下での溶存酸素濃度はその系に作用する圧力
を比例するので計算により決定することができる
から、あらかじめ得られた所望圧力下での計算値
を設定部31に設定しておく。
Once the reference dissolved oxygen concentration is set, the dissolved oxygen concentration under a certain pressure is proportional to the pressure acting on the system, so it can be determined by calculation. The value is set in the setting section 31.

ついで加圧装置2のレギユレーター4と電磁弁
5を閉じ、酸素ボンベ9のレギユレーター12と
電磁弁15を開け、電磁弁6を開けると、酸素ボ
ンベ9からの酸素はレギユレーター12により一
定の圧力に設定され、ガス混合器7を介して培養
槽1内に供給される。培養槽1に設置された酸素
電極25により培養槽1内の溶存酸素濃度が検出
され、その酸素量が設定部31で設定された設定
値に達すると、レギユレーター12と電磁弁15
が閉じられる。
Then, when the regulator 4 and solenoid valve 5 of the pressurizing device 2 are closed, the regulator 12 and solenoid valve 15 of the oxygen cylinder 9 are opened, and the solenoid valve 6 is opened, the oxygen from the oxygen cylinder 9 is set at a constant pressure by the regulator 12. and is supplied into the culture tank 1 via the gas mixer 7. The dissolved oxygen concentration in the culture tank 1 is detected by the oxygen electrode 25 installed in the culture tank 1, and when the amount of oxygen reaches the set value set in the setting section 31, the regulator 12 and the solenoid valve 15 are activated.
is closed.

このように、生物細胞が大型培養槽内を循環す
る周期に合わせて、レギユレーター12と電磁弁
15を開いて、酸素を培養槽1内に供給する量に
より、溶存酸素濃度が増えて、ある圧力下の溶存
酸素濃度が再現できる。
In this way, the regulator 12 and the solenoid valve 15 are opened in accordance with the cycle in which biological cells circulate within the large culture tank, and the amount of oxygen supplied into the culture tank 1 increases the dissolved oxygen concentration to a certain pressure. The dissolved oxygen concentration below can be reproduced.

ここまでの過程は細胞が培養槽1の上部から底
部へ移動した状態を再現している。
The process up to this point reproduces the state in which cells move from the top to the bottom of the culture tank 1.

底部から上部へ細胞が移動するにつれて、溶存
酸素濃度が減少するが、これに対応させるには窒
素ガスボンベ10のレギユレーター13と電磁弁
16を開き、窒素ガスをレギユレーター13によ
り一定の圧力にしてガス混合器7内に導入すれ
ば、ガス混合器7内で窒素ガスと酸素ガスが混合
され、この混合ガスが培養槽1内に供給されて溶
存酸素濃度が薄くなるから、酸素電極25による
検出値が設定部31で設定された基準となる酸素
量になると、窒素ガスボンベ10のレギユレータ
ー13と電磁弁16が閉じられる。
As the cells move from the bottom to the top, the dissolved oxygen concentration decreases, but in order to cope with this, the regulator 13 and solenoid valve 16 of the nitrogen gas cylinder 10 are opened, and the nitrogen gas is kept at a constant pressure by the regulator 13 and mixed. When introduced into the vessel 7, nitrogen gas and oxygen gas are mixed in the gas mixer 7, and this mixed gas is supplied into the culture tank 1 to dilute the dissolved oxygen concentration, so that the value detected by the oxygen electrode 25 is When the standard oxygen amount set by the setting unit 31 is reached, the regulator 13 and the solenoid valve 16 of the nitrogen gas cylinder 10 are closed.

この一連の動作を繰返し、基準となる酸素量と
なるように、加える酸素の量と加える時間の調
節、および加える窒素ガスの量と加える時間の調
節を行うことにより、細胞が大型培養槽を循環す
るときに受ける溶存酸素濃度の変動を再現させ
る。同様に炭酸ガスも制御する。
By repeating this series of actions and adjusting the amount and time of adding oxygen and adjusting the amount and time of adding nitrogen gas to reach the standard amount of oxygen, the cells circulate through the large culture tank. This reproduces the fluctuations in dissolved oxygen concentration that occur when Carbon dioxide gas is also controlled in the same way.

剪断応力の制御: 培養液を混合撹拌するために撹拌羽根を回転さ
せるが、回転する撹拌羽根の先端の位置と撹拌羽
根から離れた位置とでは生物細胞が受ける力は一
定でなく、いいかえれば生物細胞は一定の剪断応
力を受けているわけでなく、撹拌羽根に近い位置
にいたときに受ける剪断応力と、液面に近く撹拌
羽根から遠い位置にいたときに受ける剪断応力は
同等ではない。
Control of shear stress: A stirring blade is rotated to mix and stir the culture solution, but the force applied to biological cells is not constant depending on the position of the tip of the rotating stirring blade and the position away from the stirring blade. Cells are not subject to constant shear stress, and the shear stress they receive when they are close to the stirring blade is not equivalent to the shear stress they receive when they are close to the liquid surface and far from the stirring blade.

このため撹拌のスピードを変化させることによ
り、生物細胞が大型培養槽を循環する間に受ける
剪断応力の変化を再現する。
Therefore, by changing the stirring speed, changes in shear stress that biological cells undergo while circulating in a large culture tank can be reproduced.

すなわち、剪断応力の決定は撹拌羽根21の応
力とし、単位時間当たりの回転数と撹拌羽根21
の中心からの距離の積とする。
That is, the shear stress is determined by the stress of the stirring blade 21, and the number of rotations per unit time and the stirring blade 21.
Let it be the product of the distance from the center of .

大型培養槽の設定回転数から基準の撹拌羽根回
転数が決定される。
The standard stirring blade rotation speed is determined from the set rotation speed of the large culture tank.

生物細胞が大型培養槽を循環する周期に合わせ
て回転数を変化させるが、このとき最低剪断応力
値を決定する。この決定は大型培養槽の液上部の
流速をあらかじめ測定し、その速度から撹拌羽根
21の回転数を決定し、最低剪断応力値とする。
撹拌羽根21の回転数から生物細胞の循環周期速
度に合わせて、最低の回転数まで減速、または加
速することにより、大型培養槽内を循環する生物
細胞が受ける剪断応力を再現させる。
The rotational speed is changed in accordance with the cycle of biological cells circulating in the large culture tank, and at this time the minimum shear stress value is determined. This determination is made by measuring the flow velocity in the upper part of the large culture tank in advance, determining the rotation speed of the stirring blade 21 from the measured velocity, and determining the lowest shear stress value.
By decelerating or accelerating the rotational speed of the stirring blade 21 to the lowest rotational speed in accordance with the circulation periodic speed of the biological cells, the shear stress experienced by the biological cells circulating in the large culture tank is reproduced.

上記各制御はすべて自動制御装置28により行
われる。
All of the above controls are performed by the automatic control device 28.

すなわち、培養槽1内の圧力、および培養液A
の溶存酸素濃度と剪断応力等の最大、最低値、変
動時間等の設定、これらの設定値および圧力発信
器24と酸素電極25の入力信号に基づく各電磁
弁5,6,15,16,17,26と各レギユレ
ーター4,12,13,14の制御、ならびにモ
ータ23の回転数制御は、公知の自動制御装置2
8により行われるが、自動制御装置28にマイク
ロコンピユーターを組込むことにより、大型培養
装置の形状、培養液の仕込量等を入力することで
再現システムの制御値は決定される。
That is, the pressure inside the culture tank 1 and the culture solution A
Setting of maximum, minimum value, variation time, etc. of dissolved oxygen concentration and shear stress, etc., and each solenoid valve 5, 6, 15, 16, 17 based on these set values and input signals of pressure transmitter 24 and oxygen electrode 25. , 26 and each regulator 4, 12, 13, 14, and the rotation speed control of the motor 23 is performed by a known automatic control device 2.
8, by incorporating a microcomputer into the automatic control device 28, the control values of the reproduction system are determined by inputting the shape of the large-scale culture device, the amount of culture solution, etc.

上記制御方法の説明においては、圧力の制御と
溶存ガス濃度の制御、ならびに剪断応力の制御に
ついて述べたが、菌種によつては圧力制御や剪断
応力の制御を必要としない場合があり、この場合
にはこれらの制御を行わなくてもよいことは自明
である。
In the explanation of the control method above, we have described pressure control, dissolved gas concentration control, and shear stress control, but depending on the bacterial species, pressure control and shear stress control may not be necessary. It is obvious that these controls may not be necessary in some cases.

なお、本実施例では説明を省略したが、培養槽
1内の温度制御も自動制御装置28で行わせるこ
とができると共に、培養液の撹拌手段は撹拌羽根
に限らず、エアーリフト方式、マグネチツクスタ
ーラーによる回転子の回転等公知の撹拌手段によ
ることができる。
Although the explanation is omitted in this embodiment, the temperature inside the culture tank 1 can also be controlled by the automatic control device 28, and the means for stirring the culture solution is not limited to a stirring blade, but may also be an air lift method or a magnetic one. It is possible to use known stirring means such as rotation of a rotor using a stirrer.

[効果] 本発明に係るスケールアツプ用生物細胞培養装
置によれば、実験用小型培養装置に工業用大型培
養装置における培養液の培養物性を再現させるこ
とができると共に、大型培養装置における培養槽
内での培養液に対する変動条件による培養結果へ
の影響を、容易かつ少量の実験培養液で確認で
き、生物細胞の実験培養に際して培養液の無駄を
排除することができるから、生物細胞培養の工業
化に裨益するところ大である。
[Effect] According to the biological cell culture device for scale-up according to the present invention, it is possible to reproduce the culture physical properties of the culture solution in a large-scale industrial culture device in a small-scale experimental culture device, and it is also possible to reproduce the culture properties of the culture solution in a large-scale industrial culture device. It is possible to easily check the influence of the culture results due to the varying conditions of the culture medium in a small amount of experimental culture medium, and it is possible to eliminate the waste of culture medium when experimentally culturing biological cells, which will contribute to the industrialization of biological cell culture. There are great benefits.

また、装置の構成上からみれば、第1発明にお
いては、再現しようとする大型培養装置における
培養液の培養物性の数的条件を、自動制御装置の
入力部に入力させるのみで、小型培養装置内に大
型培養装置内の培養液の培養物性を再現できて、
操作が簡単であると共に、ガス導入パイプ、酸素
ガス供給パイプ、窒素ガス供給パイプおよび炭酸
ガス供給パイプにレギユレーターを介在させ、あ
るいはガス混合器を介在させているので、加圧空
気あるいは混合ガスが均一化されて培養槽内へ供
給されることになり、培養槽内の培養液の物性変
動が均一に行われ、第2発明においては培養槽内
に圧力検出器が設けられ、モーターに接続された
撹拌羽根を有するので、培養槽内の圧力制御およ
び撹拌羽根の回転制御を行うことにより、菌種に
応じた培養槽内の圧力調節および剪断応力の再現
がはかられ、汎用性を有し、第3発明において
は、第1発明および第2発明における効果を併有
する。
In addition, from the viewpoint of the structure of the apparatus, in the first invention, the numerical conditions of the culture physical properties of the culture medium in the large-scale culture apparatus to be reproduced are inputted into the input section of the automatic control apparatus, and the small-scale culture apparatus It is possible to reproduce the culture physical properties of the culture medium in a large culture device,
In addition to being easy to operate, the gas introduction pipe, oxygen gas supply pipe, nitrogen gas supply pipe, and carbon dioxide gas supply pipe are equipped with regulators or gas mixers, so that the pressurized air or mixed gas is uniform. In the second invention, a pressure detector is provided in the culture tank and connected to the motor. Since it has a stirring blade, by controlling the pressure inside the culture tank and controlling the rotation of the stirring blade, it is possible to adjust the pressure inside the culture tank and reproduce the shear stress according to the bacterial species, and it has versatility. The third invention has both the effects of the first invention and the second invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係るスケールアツプ用生物細
胞培養装置の説明図である。 1……培養槽、3……ガス導入パイプ、5,
6,15,16,17,26……電磁弁、7……
ガス混合器、18……酸素ガス供給パイプ、19
……窒素ガス供給パイプ、20……炭酸ガス供給
パイプ、21……撹拌羽根、23……モータ、2
4……圧力発信器、25……酸素電極、27……
ガス排出パイプ、28……自動制御装置。
The drawing is an explanatory view of the biological cell culture device for scale-up according to the present invention. 1...Culture tank, 3...Gas introduction pipe, 5,
6, 15, 16, 17, 26... solenoid valve, 7...
Gas mixer, 18...Oxygen gas supply pipe, 19
... Nitrogen gas supply pipe, 20 ... Carbon dioxide gas supply pipe, 21 ... Stirring blade, 23 ... Motor, 2
4...Pressure transmitter, 25...Oxygen electrode, 27...
Gas discharge pipe, 28... automatic control device.

Claims (1)

【特許請求の範囲】 1 気体もしくは撹拌羽根等の撹拌装置により、
培養液が撹拌される培養槽内に、レギユレーター
および電磁弁が介在され、培養液中に開口された
ガス導入パイプと、溶存ガス濃度検出器と、電磁
弁が介在されたガス排出パイプが設けられ、ガス
導入パイプの電磁弁と培養槽間のガス導入パイプ
には、電磁弁を介してガス混合器が接続され、か
つこのガス混合器には酸素ガス供給パイプ、窒素
ガス供給パイプ、炭酸ガス供給パイプ、その他の
ガス供給パイプ中の適宜数のパイプがそれぞれレ
ギユレーターおよび電磁弁を介して接続されると
共に、培養槽内の上記溶存ガス濃度検出器による
検出値が、あらかじめ設定された周期的に変動す
るガス濃度の設定値に対応して整合するように、
自動制御装置により前記各レギユレーターおよび
各電磁弁の作動が制御されることを特徴とするス
ケールアツプ用生物細胞培養装置。 2 培養槽内に、レギユレーターおよび電磁弁が
介在され、培養液中に開口されたガス導入パイプ
と、圧力検出器と、溶存ガス濃度検出器と、電磁
弁が介在されたガス排出パイプと、モーターに接
続された撹拌羽根とが設けられ、ガス導入パイプ
の電磁弁と培養槽間のガス導入パイプには、酸素
ガス供給パイプ、窒素ガス供給パイプ、炭酸ガス
供給パイプ、その他のガス供給パイプが、それぞ
れレギユレーターおよび電磁弁を介して接続され
ると共に、培養槽内の培養液の上記圧力検出器お
よび溶存ガス濃度検出器による検出値、ならびに
剪断応力値が、あらかじめ設定された周期的に変
動するこれらの設定値に対応して整合するよう
に、自動制御装置により前記各レギユレーターお
よび各電磁弁ならびにモーターの作動が制御され
ることを特徴とするスケールアツプ用生物細胞培
養装置。 3 培養槽内に、レギユレーターおよび電磁弁が
介在され、培養液中に開口されたガス導入パイプ
と、圧力検出器と、溶存ガス濃度検出器と、電磁
弁が介在されたガス排出パイプと、モーターに接
続された撹拌羽根とが設けられ、ガス導入パイプ
の電磁弁と培養槽間のガス導入パイプには、電磁
弁を介してガス混合器が接続され、かつこのガス
混合器に、酸素ガス供給パイプ、窒素ガス供給パ
イプ、炭酸ガス供給パイプ、その他のガス供給パ
イプ中、少なくとも前3者のパイプが、それぞれ
レギユレーターおよび電磁弁を介して接続される
と共に、培養槽内の培養液の上記圧力検出器およ
び溶存ガス濃度検出器による検出値、ならびに剪
断応力値が、あらかじめ設定された周期的に変動
するこれらの設定値に対応して整合するように、
自動制御装置により前記各レギユレーターおよび
各電磁弁ならびにモーターの作動が制御されるこ
とを特徴とするスケールアツプ用生物細胞培養装
置。
[Claims] 1. By a gas or a stirring device such as a stirring blade,
A regulator and a solenoid valve are interposed in the culture tank in which the culture solution is stirred, and a gas introduction pipe opened into the culture solution, a dissolved gas concentration detector, and a gas discharge pipe with an intervening solenoid valve are provided. A gas mixer is connected to the gas inlet pipe between the solenoid valve of the gas inlet pipe and the culture tank via the solenoid valve, and this gas mixer has an oxygen gas supply pipe, a nitrogen gas supply pipe, and a carbon dioxide gas supply pipe. An appropriate number of pipes among the pipes and other gas supply pipes are connected via regulators and solenoid valves, and the detected value by the dissolved gas concentration detector in the culture tank fluctuates in a preset periodic manner. to match the set value of the gas concentration.
A biological cell culture device for scale-up, characterized in that the operation of each of the regulators and each electromagnetic valve is controlled by an automatic control device. 2. In the culture tank, a regulator and a solenoid valve are interposed, a gas introduction pipe opened into the culture medium, a pressure detector, a dissolved gas concentration detector, a gas discharge pipe with a solenoid valve interposed, and a motor. The gas introduction pipe between the electromagnetic valve of the gas introduction pipe and the culture tank is provided with an oxygen gas supply pipe, a nitrogen gas supply pipe, a carbon dioxide gas supply pipe, and other gas supply pipes. They are connected via a regulator and a solenoid valve, respectively, and the values detected by the pressure detector and dissolved gas concentration detector of the culture solution in the culture tank, as well as the shear stress value, fluctuate periodically in a preset manner. 1. A biological cell culture device for scale-up, characterized in that the operation of each of the regulators, each solenoid valve, and the motor is controlled by an automatic control device so as to correspond to and match a set value. 3 In the culture tank, a regulator and a solenoid valve are interposed, a gas introduction pipe opened into the culture medium, a pressure detector, a dissolved gas concentration detector, a gas discharge pipe with a solenoid valve interposed, and a motor. A gas mixer is connected to the gas introduction pipe between the solenoid valve of the gas introduction pipe and the culture tank via the solenoid valve, and oxygen gas is supplied to the gas mixer. pipes, nitrogen gas supply pipes, carbon dioxide gas supply pipes, and other gas supply pipes, at least the former three pipes are connected via regulators and solenoid valves, respectively, and the pressure of the culture solution in the culture tank is detected. so that the values detected by the detector and the dissolved gas concentration detector, as well as the shear stress values, correspond to and match these periodically fluctuating set values set in advance.
A biological cell culture device for scale-up, characterized in that the operation of each of the regulators, each solenoid valve, and the motor is controlled by an automatic control device.
JP27212584A 1984-12-25 1984-12-25 Organism cell culture device for scaling up Granted JPS61149080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27212584A JPS61149080A (en) 1984-12-25 1984-12-25 Organism cell culture device for scaling up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27212584A JPS61149080A (en) 1984-12-25 1984-12-25 Organism cell culture device for scaling up

Publications (2)

Publication Number Publication Date
JPS61149080A JPS61149080A (en) 1986-07-07
JPS6331191B2 true JPS6331191B2 (en) 1988-06-22

Family

ID=17509436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27212584A Granted JPS61149080A (en) 1984-12-25 1984-12-25 Organism cell culture device for scaling up

Country Status (1)

Country Link
JP (1) JPS61149080A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455242B2 (en) 2010-02-22 2013-06-04 Hyclone Laboratories, Inc. Mixing system with condenser
JP5913084B2 (en) 2012-12-26 2016-04-27 株式会社日立製作所 CULTURE CONTROL METHOD, CELL CULTURE DEVICE, AND CELL CHARACTERISTICS EVALUATION DEVICE
WO2015142406A1 (en) 2014-03-21 2015-09-24 Life Technologies Corporation Condenser systems for fluid processing systems
EP3119504B1 (en) 2014-03-21 2020-10-14 Life Technologies Corporation Gas filter systems for fluid processing systems
US9457306B2 (en) 2014-10-07 2016-10-04 Life Technologies Corporation Regulated vacuum off-gassing of gas filter for fluid processing system and related methods
CN112403668B (en) 2015-12-29 2023-06-27 生命科技股份有限公司 Flexible biological treatment vessel with partially segmented partitions
WO2019009364A1 (en) * 2017-07-07 2019-01-10 国立大学法人京都大学 Platelet production method and apparatus and method for determining operating conditions in platelet production apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567200U (en) * 1979-06-29 1981-01-22
JPS60141286A (en) * 1983-12-28 1985-07-26 Ajinomoto Co Inc Method and apparatus for culturing animal cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567200U (en) * 1979-06-29 1981-01-22
JPS60141286A (en) * 1983-12-28 1985-07-26 Ajinomoto Co Inc Method and apparatus for culturing animal cell

Also Published As

Publication number Publication date
JPS61149080A (en) 1986-07-07

Similar Documents

Publication Publication Date Title
Ni et al. A comparative study of mass transfer in yeast for a batch pulsed baffled bioreactor and a stirred tank fermenter
Gill et al. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale‐up
US7718066B2 (en) Method and apparatus for controlling wastewater treatment processes
Doran Design of mixing systems for plant cell suspensions in stirred reactors
Vega et al. Study of gaseous substrate fermentations: Carbon monoxide conversion to acetate. 2. Continuous culture
US20100120082A1 (en) Optimization of Process Variables in Oxygen Enriched Fermentors Through Process Controls
EP0185407A2 (en) Method and device for the carrying out of a microbiological or enzymatic process
Larsson et al. Studies of insufficient mixing in bioreactors: effects of limiting oxygen concentrations and short term oxygen starvation on Penicillium chrysogenum
KR101836383B1 (en) Measuring module for pressure and density type level meter
Siegell et al. Automatic control of dissolved oxygen levels in fermentations
US4840905A (en) Process for culturing biological material
JPS6331191B2 (en)
US3857757A (en) Means for the oxygen/temperature control of aerobic fermentations
Fiechter Physical and chemical parameters of microbial growth
Ballica et al. Effects of rheological properties and mass transfer on plant cell bioreactor performance: production of tropane alkaloids
CN209878100U (en) Feeding and discharging control system of bioreactor
JPS6356296A (en) Method and apparatus for producing polysaccharides especially by fermentation of xanthone
Galaction et al. Evaluation and modeling of the aerobic stirred bioreactor performances for fungus broths
Viesturs et al. Investigation of fermentors with various contacting devices
JPS5942884A (en) Method and apparatus for cultivation under aeration and agitation
Patel et al. Enhanced in situ dynamic method for measuring KLa in fermentation media
petersen et al. Modeling of an immobilized-cell three-phase fluidized-bed bioreactor
CN212833725U (en) Energy-saving microbial reaction fermentation control system
Erickson et al. Biological Reactors
CN213739494U (en) Fermentation household utensils for biological medicine