JPS61149080A - Organism cell culture device for scaling up - Google Patents

Organism cell culture device for scaling up

Info

Publication number
JPS61149080A
JPS61149080A JP27212584A JP27212584A JPS61149080A JP S61149080 A JPS61149080 A JP S61149080A JP 27212584 A JP27212584 A JP 27212584A JP 27212584 A JP27212584 A JP 27212584A JP S61149080 A JPS61149080 A JP S61149080A
Authority
JP
Japan
Prior art keywords
culture
solenoid valve
culture tank
supply pipe
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27212584A
Other languages
Japanese (ja)
Other versions
JPS6331191B2 (en
Inventor
Hideo Tanaka
秀夫 田中
Hiroshi Kataoka
片岡 廣
Sensuke Sawada
澤田 宣介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWASHIYA SEIBUTSU KAGAKU KK
Original Assignee
IWASHIYA SEIBUTSU KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWASHIYA SEIBUTSU KAGAKU KK filed Critical IWASHIYA SEIBUTSU KAGAKU KK
Priority to JP27212584A priority Critical patent/JPS61149080A/en
Publication of JPS61149080A publication Critical patent/JPS61149080A/en
Publication of JPS6331191B2 publication Critical patent/JPS6331191B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To control accurately a dissolved gas concentration of culture solution, by connecting feed pipes O2, N2, CO2, etc. through solenoid valves to a culture tank, and controlling automatically the solenoid valves in such a way that a detected value by a detector for a dissolved gas concentration becomes a set value. CONSTITUTION:The gas feed pipe 3 equipped with the solenoid valves 5 and 6, the gas exhaust pipe 27, etc., are connected to the culture tank 1 equipped with the agitating blade 21. The oxygen gas feed pipe 18, the nitrogen gas feed pipe 19, the carbonic acid gas feed pipe 20, etc. are connected through the solenoid valves 15, 16, 17, etc. to the gas feed pipe 3. The culture solution A is fed to the culture tank 1 to carry out cultivation, and a dissolved gas concentration in the culture solution A is detected by the detector 25 for a dissolved gas concentration set in the culture tank 1. Operations of the solenoid valves 5, 6, 15, 17, etc. are controlled by the automatic control device 28 in such a way that the detected value is adjusted to a preset value of dissolved oxygen concentration.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、工業用大型培養装置の培養槽内における培養
液の培養物性を、実験用小型培養装置の培養槽内に再現
させるための、スケールアップ用生物細胞培養装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is a method for reproducing the culture physical properties of a culture solution in a culture tank of a large-scale industrial culture device in a culture tank of a small-scale experimental culture device. This invention relates to a scale-up biological cell culture device.

[従来技術とその問題点] 小さな規模の培養装置で得られた培養結果を大きな規模
の培養装置で再現させる、いわゆる、スケールアップは
、従来、両装置内の培養液物性(培地組成、温度、PH
溶存酸素など)が等しいという仮定のもとにおこなわれ
てきた。
[Prior art and its problems] So-called scale-up, in which the culture results obtained with a small-scale culture device are reproduced in a large-scale culture device, has conventionally involved changing the physical properties of the culture fluid in both devices (medium composition, temperature, P.H.
This has been done on the assumption that the amounts of dissolved oxygen (such as dissolved oxygen) are equal.

しかしながら、フラスコやジャーファーメンタ−などの
小さな規模の培養装置内では、それらの培養物性が均一
であるのに対し、数十トン、数百トンという工業規模で
の大型培養装置では、液深が数メートルから数十メート
ルとなり、培養槽内の液表面と槽底の間にかなりの反差
が生じ、それに伴い、培養物性のいくつかは、槽内で不
均一となる。      たとえば、大型の基型培養装
置内では、液流動がブラッグフローに近いために、槽底
から液表面の間で生ずる圧力分布と同様に種々の溶存ガ
スの濃度分布が生ずるし、完全混合状態が形成される通
気攪拌型培養装置においても、大型培養装置においては
、槽底から液表面の間で生ずる圧力分布はもとより、溶
存ガス濃度分布も生ずることが報告されている(R,M
anfredini等、Biotechnol、 ′B
ioeng、、  第25巻、第3115頁、1983
年)。
However, in small-scale culture devices such as flasks and jar fermenters, the culture properties are uniform, whereas in large-scale culture devices on an industrial scale of tens or hundreds of tons, the liquid depth varies. The length ranges from several meters to several tens of meters, and there is a considerable difference between the liquid surface in the culture tank and the bottom of the tank, and as a result, some of the physical properties of the culture become non-uniform within the tank. For example, in a large substrate culture device, the liquid flow is close to a Bragg flow, so the concentration distribution of various dissolved gases occurs similar to the pressure distribution between the tank bottom and the liquid surface, and a complete mixing state occurs. It has been reported that in large-scale culture apparatuses, not only pressure distribution occurs between the tank bottom and the liquid surface, but also dissolved gas concentration distribution occurs in the aerated agitation type culture apparatus (R, M
anfredini et al., Biotechnol, 'B
ioeng, Volume 25, Page 3115, 1983
Year).

このように、小型培養装置内では均一であるが、大型培
養装置では不均一となる培養物性に関しては、従来のス
ケールアップにおいてほとんど考慮されていない、  
    大型培養装置内での不均一な培養物性のなかで
、もっとも重要なものは溶存ガス濃度であり、そのなか
でも、酸素と炭酸ガスにあるものと考えられる。
In this way, in conventional scale-up, little consideration is given to culture physical properties, which are uniform in small culture devices but non-uniform in large culture devices.
Among the non-uniform culture properties in a large-scale culture apparatus, the most important one is the concentration of dissolved gases, and among these, it is thought that oxygen and carbon dioxide gases are involved.

特に酸素は、好気培養において培養結果を支配する最も
重要な因子であり、また炭酸ガスは、培養液のPHや細
胞の生理活性に大きな影響を及ぼす因子である。   
  さらに不均一な因子として、圧力が挙げられ、細胞
の種類により圧力そのものも細胞の生理活性に大きな影
響を与えることが考えられる。    培養装置の培養
槽内に生理細胞が接種され、培養が開始されると、細胞
は培養槽内をある平均周期で′循環することになり、そ
の間、増殖およびその他の生理活動C以下総称して生命
活動という)が行われる。
In particular, oxygen is the most important factor governing the culture results in aerobic culture, and carbon dioxide is a factor that greatly affects the pH of the culture solution and the physiological activity of cells.
Another non-uniform factor is pressure, and depending on the type of cell, pressure itself is thought to have a large effect on the physiological activity of the cell. When physiological cells are inoculated into the culture tank of a culture device and culture is started, the cells circulate within the culture tank at a certain average cycle, and during this period, proliferation and other physiological activities (hereinafter collectively referred to as C) occur. life activities) are carried out.

いいかえると、先に述べたように、大型培養装置では、
Jl内で不均一な溶存ガスの濃度分布や。
In other words, as mentioned earlier, in large culture equipment,
Uneven concentration distribution of dissolved gas within Jl.

圧力分布が生じ、その間を細胞がある平均周期で循環す
ることとなり、細胞は、それら、の不均一因子の影響を
受けながら、生命活動を行うことになる。    これ
らの培養槽内の不均一因子が、培養結果にどのような影
響を及ぼすかは、従来のスケールアップ法ではまったく
予想がつかず、経済的負担が大きな、大型培養装置での
実験を実際に行ってみて、初めて明らかにされていた。
A pressure distribution occurs, through which cells circulate at a certain average cycle, and cells carry out their life activities while being influenced by these heterogeneous factors. Conventional scale-up methods cannot predict how these heterogeneous factors within the culture tank will affect the culture results, making it difficult to actually conduct experiments using large-scale culture equipment, which is a huge economic burden. When I went there, it was revealed for the first time.

したがって、従来のスケールアップ法は、まったく意味
がないという問題点があった。
Therefore, the conventional scale-up method has the problem of being completely meaningless.

[発明の概要] 本発明者らは、上記問題点を解決し、前述のような大型
生物細胞培養装置における培養槽の中を、ある一定周期
で循環する生物細胞(微生物、植物、動物等)が受ける
種々の変動条件、すなわち培養槽内の圧力、溶存ガス濃
度の周期的変動、および剪断応力、ならびにこれらの変
動幅や周期時間等に対応して、実験用小型生物細胞培養
装置内に、これらを再現できるようにしたスケールアッ
プ用生物銅胞培養装置を開発したもので、培養槽内に、
電磁弁が介在されたエアー導入パイプと・、圧力検出器
と、溶存ガス濃度検出器と、電磁弁が介在されたエアー
排出パイプと、モーターに接続された攪拌羽根とが設け
られ、エアー導入パイプの電磁弁と培養槽間のエアー導
入パイプには、酸素ガス供給パイプと、窒素ガス供給パ
イプと、炭酸ガス供給パイプとが、それぞれ電磁弁を介
して接続されると共に、培養槽内の培養液の上記圧力検
出器および溶存ガス濃度検出器による検出値、ならびに
剪断応力値が、あらかじめ設定されたこれらの設定値と
整合するように、自動制御装置により前記各電磁弁およ
びモーターの作動が制御されること、および上記エアー
導入パイプの電磁弁と培養槽間のエアー導入パイプに、
電磁弁を介してガス混合器が接続され、かつこのガス混
合器に酸素ガス供給パイプと、窒素ガス供給パイプと、
炭酸ガス供給パイプとが、それぞれ電磁弁を介して接続
されたことを特徴とする。
[Summary of the Invention] The present inventors have solved the above-mentioned problems, and have provided biological cells (microorganisms, plants, animals, etc.) that circulate at a certain period in a culture tank in a large-scale biological cell culture device as described above. In response to the various fluctuating conditions that the cells are subjected to, such as the pressure in the culture tank, periodic fluctuations in dissolved gas concentration, and shear stress, as well as the range of these fluctuations and cycle times, there are We have developed a scale-up biological copper cell culture device that can reproduce these conditions.
An air introduction pipe with a solenoid valve interposed therein, a pressure detector, a dissolved gas concentration detector, an air discharge pipe with a solenoid valve interposed therebetween, and a stirring blade connected to a motor are provided. An oxygen gas supply pipe, a nitrogen gas supply pipe, and a carbon dioxide gas supply pipe are connected to the air introduction pipe between the solenoid valve and the culture tank through the respective solenoid valves, and the culture solution in the culture tank is The operation of each of the electromagnetic valves and the motor is controlled by the automatic control device so that the values detected by the pressure detector and the dissolved gas concentration detector and the shear stress value match these preset values. and the air introduction pipe between the solenoid valve of the air introduction pipe and the culture tank,
A gas mixer is connected via a solenoid valve, and the gas mixer includes an oxygen gas supply pipe, a nitrogen gas supply pipe,
It is characterized in that the carbon dioxide gas supply pipes are connected to each other via electromagnetic valves.

[実施例コ 別紙図面について本発明に係るスケールアップ用生物細
胞培養装置の実施例を説明する。
[Example 1] An example of the scale-up biological cell culture device according to the present invention will be described with reference to the attached drawings.

密閉可能に構成された公知の培養槽l内には、図示され
ていないコンプレッサーおよびエアートランスホーマか
らなる加圧装置2のエアー導入パイプ3がレギュレタ−
4と電磁弁5を介して培養槽1内底面に開口され、この
エアー導入パイプ3における電磁弁5と培養槽1間のエ
アー導入パイプ3には、電磁弁8を介してガス混合器7
が混合ガス供給パイプ8により接続され、かつこのガス
混合器7には酸素ボンベ8、窒素ガスボンベ10、炭酸
ガスボンベ11がそれぞれレギュレタ−12,13,1
4と電磁弁15.18.17を介して酸素ガス供給パイ
プ18.窒素ガス供給パイプ18、炭酸ガス供給パイプ
20により接続されると共に、培養槽1の中心部には下
端部に攪拌羽根21を有する攪拌軸22が吊設され、攪
拌軸22はモータ23に連設されている。      
培養槽lの側壁で培養液Aに浸漬される位置には酸素電
極25が取りつけられ、培養槽1の上面で培養液Aに接
しない位置には、圧力発信器24と電磁弁26を介した
エアー排出パイプ27が取りつけられている。
An air introduction pipe 3 of a pressurizing device 2 consisting of a compressor and an air transformer (not shown) is connected to a regulator in a known culture tank 1 that is configured to be airtight.
A gas mixer 7 is connected to the air introduction pipe 3 between the electromagnetic valve 5 and the culture tank 1 through an electromagnetic valve 8.
are connected by a mixed gas supply pipe 8, and an oxygen cylinder 8, a nitrogen gas cylinder 10, and a carbon dioxide gas cylinder 11 are connected to the gas mixer 7 by regulators 12, 13, and 1, respectively.
4 and the oxygen gas supply pipe 18. through the solenoid valve 15.18.17. In addition to being connected by a nitrogen gas supply pipe 18 and a carbon dioxide gas supply pipe 20, a stirring shaft 22 having a stirring blade 21 at the lower end is suspended from the center of the culture tank 1, and the stirring shaft 22 is connected to a motor 23. has been done.
An oxygen electrode 25 is attached to the side wall of the culture tank 1 at a position that is immersed in the culture solution A, and an oxygen electrode 25 is attached to a position on the top surface of the culture tank 1 that is not in contact with the culture solution A via a pressure transmitter 24 and a solenoid valve 26. An air discharge pipe 27 is attached.

圧力発信器24と酸素電極25は自動制御装置28の入
力部29に接続される。     自動制御装置2日の
入力部23と設定部31は演算部32に接続され、演算
部32は変換部33を介して出力部30に接続されてい
る。     自動制御装置2Bの出力部30には前述
の各電磁弁5 、8 、15.18.1?、26と、各
レギュレタ−4,12,13,14とモータ23がそれ
ぞれ接続される。
The pressure transmitter 24 and the oxygen electrode 25 are connected to an input 29 of the automatic control device 28 . The input section 23 and setting section 31 of the automatic control device 2 are connected to a calculation section 32, and the calculation section 32 is connected to the output section 30 via a conversion section 33. The output section 30 of the automatic control device 2B includes the aforementioned solenoid valves 5, 8, 15.18.1? , 26, each of the regulators 4, 12, 13, 14, and the motor 23 are connected, respectively.

つぎに、この装置を用いて培養槽1内の培養液Aに対す
る圧力、溶存ガス濃度および剪断応力の制御方法を説明
する。
Next, a method of controlling the pressure, dissolved gas concentration, and shear stress on the culture solution A in the culture tank 1 using this device will be explained.

圧力の制御: 培養槽l内の圧力を制御するには、加圧装置2により加
圧された空気を培養槽1内へ供給し、あるいは培養槽1
内からこの空気を排出することにより行い、設定周期の
前半ではレギュレター4と電磁弁5を開き、電磁弁Bと
電磁弁2Bを閉じて設定圧力まで加圧し、後半ではレギ
ュレタ−4と電磁弁5を閉じ、電磁弁2Bを開き培養槽
1内を常圧まで減圧する。      この工程を繰返
し、生物細胞が大型培養槽を循環する間に受ける圧力の
変動を再現する。
Pressure control: To control the pressure inside the culture tank 1, pressurized air is supplied into the culture tank 1 by the pressurizing device 2, or
This is done by discharging this air from inside. In the first half of the set cycle, regulator 4 and solenoid valve 5 are opened, solenoid valve B and solenoid valve 2B are closed to pressurize to the set pressure, and in the second half, regulator 4 and solenoid valve 5 are pressurized. , and open the solenoid valve 2B to reduce the pressure inside the culture tank 1 to normal pressure. This process is repeated to recreate the pressure fluctuations experienced by biological cells as they circulate through a large culture tank.

すなわち、加圧装置2により加圧された空気は、エアー
トランスホーマにより、水分、塵埃等を除去されてレギ
ュレタ−4に導入され、レギュレタ−4により一定の圧
力により設定される。
That is, the air pressurized by the pressurizing device 2 is introduced into the regulator 4 after moisture, dust, etc. are removed by the air transformer, and the regulator 4 sets a constant pressure.

培養槽1の排出側の電磁弁2Bと逆流防止用を兼ねた混
合ガス供給パイプ8の電磁弁8を閉じた状態で吸入側の
電磁弁5を開くと、培養槽1内の圧力は次第に高くなり
、この圧力変化は培養槽1に設けられた圧力発信器24
により検出され、その”圧力信号が自動制御装置2Bの
入力部2Sに入る。
When the solenoid valve 5 on the suction side is opened with the solenoid valve 2B on the discharge side of the culture tank 1 and the solenoid valve 8 of the mixed gas supply pipe 8, which also serves as backflow prevention, closed, the pressure inside the culture tank 1 gradually increases. This pressure change is detected by the pressure transmitter 24 installed in the culture tank 1.
The pressure signal is input to the input section 2S of the automatic control device 2B.

培養槽1内の圧力が設定部31により設定された圧力、
に達すると、出力部30からの信号で電磁弁5が閉じら
れ、設定部31で設定された任意時間経過後電磁弁26
が開き、培養槽1内の加圧空気、が排出されて培養槽1
内の圧力が常圧にまで下げられる。      レギュ
レタ−4の設定圧力と、電磁弁5を閉じて電磁弁26を
開く間の時間を調節することにより、圧力の設定値と、
圧力の上昇、下降の傾きを自由に設定することができる
The pressure in the culture tank 1 is the pressure set by the setting unit 31,
When the solenoid valve 5 is reached, the solenoid valve 5 is closed by a signal from the output section 30, and the solenoid valve 26 is closed after an arbitrary time set in the setting section 31.
opens, the pressurized air inside the culture tank 1 is discharged, and the
The internal pressure is reduced to normal pressure. By adjusting the set pressure of the regulator 4 and the time between closing the solenoid valve 5 and opening the solenoid valve 26, the set value of the pressure can be adjusted.
The slope of pressure rise and fall can be set freely.

上記一連の動作を繰返すことにより、大型培養槽内を循
環する間に生物細胞が受ける圧力変動が再現される。
By repeating the above series of operations, the pressure fluctuations that the biological cells undergo while circulating in the large culture tank are reproduced.

ガス濃度の制御: 加圧によって変化する因子としては、先に述べたように
、液中溶存ガス濃度が考えられ、これは大別して、溶存
酸素濃度と溶存炭酸ガス濃度に別けられる。     
そして、溶存ガス濃度はその系に作用する圧力に比例す
るため、大型培養槽内の溶存酸素濃度は、加圧空気を一
定圧力で供給していても、培養槽1の上部と下部では異
る。
Control of gas concentration: As mentioned above, a factor that changes due to pressurization is the concentration of dissolved gas in the liquid, which can be roughly divided into dissolved oxygen concentration and dissolved carbon dioxide concentration.
Since the dissolved gas concentration is proportional to the pressure acting on the system, the dissolved oxygen concentration in the large culture tank will differ between the upper and lower parts of the culture tank 1 even if pressurized air is supplied at a constant pressure. .

したがって、生物細胞が大型培養槽内を循環する周期に
合わせて、培養槽1内の溶存酸素濃度を変化させなくて
はならない。
Therefore, it is necessary to change the dissolved oxygen concentration within the culture tank 1 in accordance with the cycle in which biological cells circulate within the large culture tank.

このために、空気供給ラインに酸素および窒素ガスを混
合して培養槽lに供給し、酸素もしくは窒素ガスの量を
周期的に調節し、溶存酸素濃度を変化させ、生物細胞が
大型培養槽を循環する間に受ける溶存酸素濃度の変化を
再現する。
For this purpose, a mixture of oxygen and nitrogen gas is supplied to the culture tank l through the air supply line, and the amount of oxygen or nitrogen gas is periodically adjusted to change the dissolved oxygen concentration, so that the biological cells can move through the large culture tank. Reproduces the changes in dissolved oxygen concentration that occur during circulation.

同様に溶存炭酸ガスの変化も再現する。Similarly, changes in dissolved carbon dioxide are also reproduced.

すなわち、まず、圧力による溶存酸素濃度の制御は、酸
素、または酸素に窒素ガスを混合させて変化させる。
That is, first, the dissolved oxygen concentration is controlled by pressure by changing oxygen or by mixing nitrogen gas with oxygen.

基準となる溶存酸素濃度が設定されると、ある圧力下で
の溶存酸素濃度はその系に作用する圧力に比例するので
計算により決定することができるから、あらかじめ得ら
れた所望圧力下での計算値を設定部31に設定しておく
Once the standard dissolved oxygen concentration is set, the dissolved oxygen concentration under a certain pressure is proportional to the pressure acting on the system, so it can be determined by calculation. The value is set in the setting section 31.

ついで加圧装置2のレギュレター礁と電磁弁5を閉じ、
酸素ボンベ8のレギュレタ−12と電磁弁15を開け、
電磁弁8を開けると、酸素ボンベ9からの酸素はレギュ
レタ−12により一定の圧力に設定され、ガス混合器7
を介して培養槽1内に供給される。      培養槽
lに設置さ″れた酸素電極25により培養槽1内”の溶
存酸素濃度が検出され、その酸素量が設定部31で設定
された設定値に達すると、レギュレタ−12と電磁弁1
5が閉じられる。
Then, close the regulator reef of the pressurizing device 2 and the solenoid valve 5,
Open the regulator 12 and solenoid valve 15 of the oxygen cylinder 8,
When the solenoid valve 8 is opened, the oxygen from the oxygen cylinder 9 is set at a constant pressure by the regulator 12, and the oxygen is supplied to the gas mixer 7.
It is supplied into the culture tank 1 via. The dissolved oxygen concentration in the culture tank 1 is detected by the oxygen electrode 25 installed in the culture tank 1, and when the amount of oxygen reaches the set value set in the setting section 31, the regulator 12 and the solenoid valve 1 are activated.
5 is closed.

このように、生物細胞が大型培養槽内を循環する周期に
合わせて、レギュレター12と電磁弁15を開いて、酸
素を培養槽l内に供給する量により、溶存酸素濃度が増
えである圧力下の溶存酸素濃度が再現できる。
In this way, the regulator 12 and the solenoid valve 15 are opened in accordance with the cycle in which biological cells circulate in the large culture tank, and the amount of oxygen supplied to the culture tank 1 increases the dissolved oxygen concentration under a certain pressure. Dissolved oxygen concentration can be reproduced.

ここまでの過程は細胞が培養槽1の上部から底部へ移動
した状態を一再現している。
The process up to this point reproduces the state in which cells move from the top to the bottom of the culture tank 1.

底部から上部へ細胞が移動するにつれて、溶存酸素濃度
が減少するが、これく対応させるには窒素ガスボンベl
Oのレギュレタ−13と電磁弁1Bを開き、窒素ガスを
レギュレタ−13により一定の圧力−にしてガス混合器
7内に導入すれば、゛ガス混合器7内で窒素ガスと酸素
ガスが混合され、この混合ガスが培養槽1内に供給され
讐溶存酸素濃度が薄くなるから、酸素電極25による検
出値が設定部31で設定さ□れた基準となる酸素量にな
ると、窒素ガスボンベ10のレギユレター13と電磁弁
1Bが閉じられる。
As cells move from the bottom to the top, the dissolved oxygen concentration decreases, but to cope with this, a nitrogen gas cylinder is required.
When the O regulator 13 and the solenoid valve 1B are opened and nitrogen gas is brought to a constant pressure by the regulator 13 and introduced into the gas mixer 7, nitrogen gas and oxygen gas are mixed in the gas mixer 7. Since this mixed gas is supplied into the culture tank 1 and the dissolved oxygen concentration becomes diluted, when the detected value by the oxygen electrode 25 reaches the reference oxygen amount set in the setting section 31, the regulator of the nitrogen gas cylinder 10 is activated. 13 and solenoid valve 1B are closed.

この一連の動作を繰返し、基準となる酸素量となるよう
に、加える酸素の量と加える時間の調節、iよび加える
窒素ガスの量と加える時間の調節を行うことにより、細
胞が大型培養槽を循環するときに受ける溶存酸素濃度の
変動を再現させる。     同様に炭酸ガスも制御す
る。
By repeating this series of actions and adjusting the amount and time of adding oxygen and adjusting the amount and time of adding nitrogen gas so that the standard amount of oxygen is reached, the cells grow in a large culture tank. Reproduce the fluctuations in dissolved oxygen concentration experienced during circulation. Carbon dioxide gas is also controlled in the same way.

剪断応力の制御: 培養液を混合攪拌するために攪拌羽根を回転させるが、
回転する攪拌羽根の先端の位置と攪拌羽根から離れた位
置とでは生物細胞が受ける力は一定でなく、いいかえれ
ば生物細胞は一定の剪断応力を受けているわけでなく、
攪拌羽根に近い位置にいたときに受ける剪断応力と、液
面に近く攪拌羽根から遠い位置にいたときに受ける剪断
応力は同等ではない。
Control of shear stress: The stirring blades are rotated to mix and stir the culture solution.
The force applied to biological cells is not constant between the position of the tip of the rotating stirring blade and the position away from the stirring blade. In other words, biological cells are not subjected to constant shear stress.
The shear stress experienced when one is close to the stirring blade is not the same as the shear stress one receives when one is close to the liquid level but far from the stirring blade.

このため攪拌のスピードを゛変化させることにより、生
物細胞が大型培養槽を循環する間に受ける剪断応力の変
化を再現する。
Therefore, by varying the speed of agitation, changes in shear stress experienced by biological cells as they circulate through a large culture tank can be reproduced.

すなわち、剪断応力の決定は攪拌羽根21の応力とし、
単位時間当たりの回転数と攪拌羽根21の中心からの距
離の積とする。
That is, the shear stress is determined by the stress of the stirring blade 21,
It is the product of the number of rotations per unit time and the distance from the center of the stirring blade 21.

大型培養槽の設定回転数から基準の攪拌羽根回転数が決
定される。
The standard stirring blade rotation speed is determined from the set rotation speed of the large culture tank.

生物細胞が大型培養槽を循環する周期に合わせ゛て回転
数を変化させるが、このとき最低剪断応力値を決定する
。     この決定は大型培養槽め液上部の流速をあ
らかじめ測定し、その速度から攪拌羽根21の回転数を
決定し、最低剪断応力値とするン  1     攪拌
羽根21の回転数から生物細胞の循環周期速度に合わせ
て、最低の回転数まで減速、または増速することにより
、大型培養槽内を一環する生物細胞が受ける剪断応力を
再現させる。  ゛ 上記各制御はすべて自動制御装置28により行われる。
The rotational speed is changed in accordance with the cycle in which biological cells circulate through the large culture tank, and at this time the minimum shear stress value is determined. This determination is made by measuring the flow velocity at the top of the large culture tank liquid in advance, determining the rotation speed of the stirring blade 21 from that speed, and determining the minimum shear stress value. By slowing down or speeding up the rotation to the lowest speed according to the speed, the shear stress experienced by biological cells moving inside a large culture tank can be reproduced. ``All of the above controls are performed by the automatic control device 28.

すなわち、培養槽1内の圧力、および培養液Aの溶存酸
素濃度と剪断応力等の最大、最低値、変動時間等の設定
、これらの設定値および圧、力発信器24と酸素電極2
5の入力信号に基づく各電磁弁5 、8.15.16.
17.28と各レギュレタ−4,12,13,14の制
御、ならびにモータ23の回転数制御は、公知の自動制
御装置28により行われるが、自動制御装置28にマイ
クロコンピュータ−を組込むことにより、大型培養装置
の形状、培養液の仕込量等を入力することで再現システ
ムの制御値は決定される。
That is, the pressure in the culture tank 1, the maximum, minimum values, and fluctuation times of the dissolved oxygen concentration and shear stress of the culture solution A, settings of these settings and pressures, the force transmitter 24 and the oxygen electrode 2
Each solenoid valve 5 based on the input signal of 5, 8.15.16.
17.28, the control of each regulator 4, 12, 13, 14, and the rotation speed control of the motor 23 are performed by a known automatic control device 28, but by incorporating a microcomputer into the automatic control device 28, The control values of the reproduction system are determined by inputting the shape of the large-scale culture device, the amount of culture solution, etc.

なお、本実施例では説明を省略したが、培養槽l内の温
度制御も自動制御装置28で行わせる。
Although the explanation is omitted in this embodiment, the temperature control inside the culture tank 1 is also performed by the automatic control device 28.

[効果] 本発明に係るスケールアップ用生物細胞培養装置によれ
ば、実験用小型培養装置に工業用大型培養装置における
培養液の培養物性を再現させることができると共に、大
型培養装置における培養槽−内での培養液に対する変動
条件による培養結果への影響を、容易かつ少量の実験培
養液で確認でき、生物細胞の実験培養に際して培養液の
無駄を排除することができるから、生物細胞培養の工業
化に神益するところ大である。
[Effect] According to the biological cell culture device for scale-up according to the present invention, it is possible to reproduce the culture physical properties of the culture solution in a large-scale industrial culture device in a small-scale experimental culture device, and the culture tank in the large-scale culture device can be reproduced. The influence of fluctuating conditions on culture medium on culture results can be easily confirmed using a small amount of experimental culture medium, and waste of culture medium can be eliminated during experimental culture of biological cells, making it possible to industrialize biological cell culture. It is of great divine benefit.

また、装置の構成上からみれば、再現しようとする大型
培養装置における培養液の培養物性の数的条件を、自動
制御装置の入力部に入力させるのみで、小型培養装置内
に大型培養装置内の培養液の培養物性を再現できて、操
作が簡単であり、しかもエアー導入パイプ、酸素ガス供
給パイプ、窒素ガス供給パイプおよび炭酸ガス供給パイ
プにレギュレターを介在させ、あるいはガス混合器を介
在させているので、加圧空気あるいは混合ガスが均一化
されて培養槽内へ供給されることになり、培養槽内の培
養液の物性変動が均一に行われるという効果がある。
In addition, from the perspective of the device configuration, the numerical conditions of the culture physical properties of the culture medium in the large-scale culture device that is to be reproduced can be input into the input section of the automatic control device. It is possible to reproduce the culture properties of the culture solution, and is easy to operate.Moreover, it can be used by interposing a regulator in the air introduction pipe, oxygen gas supply pipe, nitrogen gas supply pipe, and carbon dioxide gas supply pipe, or by interposing a gas mixer. Therefore, the pressurized air or mixed gas is supplied into the culture tank in a uniform manner, which has the effect of uniformly changing the physical properties of the culture solution in the culture tank.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明に係るスケールアップ用生物細胞培養装
置の説明図である。 1・・・培養槽 3・・・エアー導入パイプ 5.8,15.1B、17.26拳・・電磁弁7 os
・ガス混合器 18・・・酸素ガス供給パイプ 18拳・・窒素ガス供給パイプ 20−−・炭酸ガス供給パイプ 21・・・攪拌羽根 23・lモータ 24會・・圧力発信器 25・・・酸素電極 27−−−エアー排出パイプ 28・・拳自動制御装置
The drawing is an explanatory diagram of the scale-up biological cell culture device according to the present invention. 1...Culture tank 3...Air introduction pipe 5.8, 15.1B, 17.26 fist...Solenoid valve 7 os
・Gas mixer 18...Oxygen gas supply pipe 18 fist...Nitrogen gas supply pipe 20--・Carbon dioxide gas supply pipe 21...Stirring blade 23・L motor 24...Pressure transmitter 25...Oxygen Electrode 27---Air discharge pipe 28...Fist automatic control device

Claims (2)

【特許請求の範囲】[Claims] (1)培養槽内に、電磁弁が介在されたエアー導入パイ
プと、圧力検出器と、溶存ガス濃度検出器と、電磁弁が
介在されたエアー排出パイプと、モーターに接続された
攪拌羽根とが設けられ、エアー導入パイプの電磁弁と培
養槽間のエアー導入パイプには、酸素ガス供給パイプと
、窒素ガス供給パイプと、炭酸ガス供給パイプとが、そ
れぞれ電磁弁を介して接続されると共に、培養槽内の培
養液の上記圧力検出器および溶存ガス濃度検出器による
検出値、ならびに剪断応力値が、あらかじめ設定された
これらの設定値と整合するように、自動制御装置により
前記各電磁弁およびモーターの作動が制御されることを
特徴とするスケールアップ用生物細胞培養装置。
(1) Inside the culture tank, there is an air introduction pipe with a solenoid valve, a pressure detector, a dissolved gas concentration detector, an air discharge pipe with a solenoid valve, and a stirring blade connected to a motor. is provided, and an oxygen gas supply pipe, a nitrogen gas supply pipe, and a carbon dioxide gas supply pipe are connected to the solenoid valve of the air introduction pipe and the air introduction pipe between the culture tank via a solenoid valve, respectively. , each of the electromagnetic valves is controlled by an automatic control device so that the values detected by the pressure detector and dissolved gas concentration detector of the culture solution in the culture tank, and the shear stress value match these preset values. and a biological cell culture device for scale-up, characterized in that the operation of the motor is controlled.
(2)培養槽内に、レギュレターおよび電磁弁が介在さ
れたエアー導入パイプと、圧力検出器と、溶存ガス濃度
検出器と、電磁弁が介在されたエアー排出パイプと、モ
ーターに接続された攪拌羽根とが設けられ、エアー導入
パイプの電磁弁と培養槽間のエアー導入パイプには、電
磁弁を介してガス混合器が接続され、かつこのガス混合
器には酸素ガス供給パイプと、窒素ガス供給パイプと、
炭酸ガス供給パイプとが、それぞれレギュレターおよび
電磁弁を介して接続されると共に、培養槽内の培養液の
上記圧力検出器および溶存ガス濃度検出器による検出値
、ならびに剪断応力値が、あらかじめ設定されたこれら
の設定値と整合するように、自動制御装置により前記各
電磁弁およびモーターの作動が制御されることを特徴と
するスケールアップ用生物細胞培養装置。
(2) Inside the culture tank, there is an air introduction pipe with a regulator and a solenoid valve, a pressure detector, a dissolved gas concentration detector, an air discharge pipe with a solenoid valve, and a stirring device connected to a motor. A gas mixer is connected to the air introduction pipe between the solenoid valve of the air introduction pipe and the culture tank via the solenoid valve, and this gas mixer is connected to an oxygen gas supply pipe and a nitrogen gas supply pipe. a supply pipe;
The carbon dioxide gas supply pipe is connected via a regulator and a solenoid valve, respectively, and the detected values of the culture solution in the culture tank by the pressure detector and dissolved gas concentration detector, as well as the shear stress value, are set in advance. A biological cell culture device for scale-up, wherein the operation of each of the electromagnetic valves and the motor is controlled by an automatic control device so as to match these set values.
JP27212584A 1984-12-25 1984-12-25 Organism cell culture device for scaling up Granted JPS61149080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27212584A JPS61149080A (en) 1984-12-25 1984-12-25 Organism cell culture device for scaling up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27212584A JPS61149080A (en) 1984-12-25 1984-12-25 Organism cell culture device for scaling up

Publications (2)

Publication Number Publication Date
JPS61149080A true JPS61149080A (en) 1986-07-07
JPS6331191B2 JPS6331191B2 (en) 1988-06-22

Family

ID=17509436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27212584A Granted JPS61149080A (en) 1984-12-25 1984-12-25 Organism cell culture device for scaling up

Country Status (1)

Country Link
JP (1) JPS61149080A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749635A2 (en) 2012-12-26 2014-07-02 Hitachi, Ltd. Culture control method, cell culture apparatus, and apparatus for evaluation of cellular characteristics
JP2017529869A (en) * 2014-10-07 2017-10-12 ライフ テクノロジーズ コーポレイション Controlled vacuum degassing of gas filters for fluid treatment systems and related methods
WO2019009364A1 (en) * 2017-07-07 2019-01-10 国立大学法人京都大学 Platelet production method and apparatus and method for determining operating conditions in platelet production apparatus
US10688429B2 (en) 2014-03-21 2020-06-23 Life Technologies Corporation Gas filter systems for fluid processing systems
US10711233B2 (en) 2010-02-22 2020-07-14 Life Technologies Corporation Heat exchanger system with flexible bag
US11229855B2 (en) 2014-03-21 2022-01-25 Life Technologies Corporation Condenser systems for processing a fluid
US11268056B2 (en) 2015-12-29 2022-03-08 Life Technologies Corporation Flexible bioprocessing container with partial dividing partition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567200U (en) * 1979-06-29 1981-01-22
JPS60141286A (en) * 1983-12-28 1985-07-26 Ajinomoto Co Inc Method and apparatus for culturing animal cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567200U (en) * 1979-06-29 1981-01-22
JPS60141286A (en) * 1983-12-28 1985-07-26 Ajinomoto Co Inc Method and apparatus for culturing animal cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492582B2 (en) 2010-02-22 2022-11-08 Life Technologies Corporation Heat exchanger system with flexible bag
US12012579B2 (en) 2010-02-22 2024-06-18 Life Technologies Corporation Heat exchanger system with flexible bag
US10711233B2 (en) 2010-02-22 2020-07-14 Life Technologies Corporation Heat exchanger system with flexible bag
US10011812B2 (en) 2012-12-26 2018-07-03 Hitachi, Ltd. Culture control method, cell culture apparatus, and apparatus for evaluation of cellular characteristics
EP2749635A2 (en) 2012-12-26 2014-07-02 Hitachi, Ltd. Culture control method, cell culture apparatus, and apparatus for evaluation of cellular characteristics
US11717768B2 (en) 2014-03-21 2023-08-08 Life Technologies Corporation Condenser bag for processing a fluid
US10688429B2 (en) 2014-03-21 2020-06-23 Life Technologies Corporation Gas filter systems for fluid processing systems
US11229855B2 (en) 2014-03-21 2022-01-25 Life Technologies Corporation Condenser systems for processing a fluid
US11554335B2 (en) 2014-03-21 2023-01-17 Life Technologies Corporation Methods for gas filteration in fluid processing systems
US10822582B2 (en) 2014-10-07 2020-11-03 Life Technologies Corporation Regulated vacuum off-gassing of gas filter for fluid processing system and related methods
US11685886B2 (en) 2014-10-07 2023-06-27 Life Technologies Corporation Regulated vacuum off-gassing of gas filter for fluid processing system and related methods
JP2017529869A (en) * 2014-10-07 2017-10-12 ライフ テクノロジーズ コーポレイション Controlled vacuum degassing of gas filters for fluid treatment systems and related methods
US11268056B2 (en) 2015-12-29 2022-03-08 Life Technologies Corporation Flexible bioprocessing container with partial dividing partition
WO2019009364A1 (en) * 2017-07-07 2019-01-10 国立大学法人京都大学 Platelet production method and apparatus and method for determining operating conditions in platelet production apparatus

Also Published As

Publication number Publication date
JPS6331191B2 (en) 1988-06-22

Similar Documents

Publication Publication Date Title
George et al. Comparison of the Baker's yeast process performance in laboratory and production scale
Ni et al. A comparative study of mass transfer in yeast for a batch pulsed baffled bioreactor and a stirred tank fermenter
EP0185407B1 (en) Method and device for the carrying out of a microbiological or enzymatic process
Sieblist et al. Insights into large‐scale cell‐culture reactors: II. Gas‐phase mixing and CO2 stripping
US20070172945A1 (en) Bioreactor
Siegell et al. Automatic control of dissolved oxygen levels in fermentations
JPS61149080A (en) Organism cell culture device for scaling up
Durand et al. Solid state fermentation reactors: from lab scale to pilot plant
JP2022536668A (en) Methods for controlling fermentation processes
Fiechter Physical and chemical parameters of microbial growth
AU603578B2 (en) Method and reactor vessel for the fermentative preparation of polysaccharides, in particular xanthane
CN209878100U (en) Feeding and discharging control system of bioreactor
Pedersen et al. A novel technique based on 85Kr for quantification of gas—liquid mass transfer in bioreactors
Adler et al. Valuation of bioreactors for low viscous media and high oxygen transfer demand
Galaction et al. Evaluation and modeling of the aerobic stirred bioreactor performances for fungus broths
Viesturs et al. Investigation of fermentors with various contacting devices
Patel et al. Enhanced in situ dynamic method for measuring KLa in fermentation media
US3836432A (en) Continuous process for the hydrolysis of raffinose
Viesturs et al. Fermentors with the power introduced by aerating gas
Pons et al. A micro-mini computer hierarchical control system for a laboratory scale fermentor
Cardello et al. Application of gain scheduling to the control of batch bioreactors
Erickson et al. Biological Reactors
RU2766892C1 (en) Bioreactor for cultivating aerobic microorganisms
Pons et al. Low Level Control in Multiturbine Fermentors
GB1045930A (en) Process and apparatus for regulating aerobic fermentations in liquid culture media