JPS61194827A - Diffused protective film forming method - Google Patents

Diffused protective film forming method

Info

Publication number
JPS61194827A
JPS61194827A JP60035992A JP3599285A JPS61194827A JP S61194827 A JPS61194827 A JP S61194827A JP 60035992 A JP60035992 A JP 60035992A JP 3599285 A JP3599285 A JP 3599285A JP S61194827 A JPS61194827 A JP S61194827A
Authority
JP
Japan
Prior art keywords
silicon nitride
film
diffusion
layer
monosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60035992A
Other languages
Japanese (ja)
Other versions
JPH0147003B2 (en
Inventor
Akihiro Hashimoto
明弘 橋本
Masao Kobayashi
正男 小林
Takeshi Kamijo
健 上條
Takeshi Takamori
高森 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60035992A priority Critical patent/JPS61194827A/en
Publication of JPS61194827A publication Critical patent/JPS61194827A/en
Publication of JPH0147003B2 publication Critical patent/JPH0147003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities

Abstract

PURPOSE:To accurately and readily control to etch, to improve the reliability of an element and to improve the yield by utilizing a silicon nitride film and a silicon oxide nitride film grown at a low temperature by a plasma CVD method as a diffused protective film. CONSTITUTION:A silicon nitride film 2 of 300-500Angstrom is grown by a plasma CVD method with monosilane and ammonia on a GaAsP layer 1b laminated on a GaAs layer 1a of a substrate 1, a silicon oxide nitride film 3 of 1,000-2,000Angstrom is then grown by a plasma CVD method with monosilane, ammonia and laughing gas, a resist pattern 4 is formed to expose a portion 3a. With the pattern 4 as a mask it is etched by dry etching method to form a selectively diffusing diffusion window 6 and a diffused protective film 5, and the pattern 4 is removed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体基板に不純物を拡散させて拡散層を形
成するために用いる拡散保護膜を形成する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a diffusion protection film used for forming a diffusion layer by diffusing impurities into a semiconductor substrate.

(従来の技術) 従来から半導体基板に拡散層を形成して種々の構造の半
導体素子を製造している。この拡散層を形成するに際し
、例えばプレーナ型発光素子や或いは高密度発光素子の
場合には、拡散保護膜としてA1203膜或は常圧GV
D法により作られた窒化珪素膜或は窒化酸化珪素膜を用
いて、熱拡散による不純物の選択拡散を行っていた。
(Prior Art) Conventionally, semiconductor elements of various structures have been manufactured by forming a diffusion layer on a semiconductor substrate. When forming this diffusion layer, for example, in the case of a planar type light emitting device or a high density light emitting device, an A1203 film or a normal pressure GV film is used as a diffusion protective film.
A silicon nitride film or a silicon nitride oxide film made by the D method was used to selectively diffuse impurities by thermal diffusion.

これらA1203膜及び窒化珪素膜そして窒化酸化珪素
膜のような絶縁膜の形成方法は、例えば文献(「半導体
ハンドブック(第2版)」(昭和56年6月30日)、
オーム社pp2B9〜291)に開示されている。
Methods for forming insulating films such as A1203 films, silicon nitride films, and silicon nitride oxide films are described in, for example, the literature ("Semiconductor Handbook (2nd Edition)" (June 30, 1981)),
It is disclosed in Ohmsha pp2B9-291).

又、窒化酸化珪素膜の形成方法は、例えば文献(「半導
体プラズマプロセス」 (昭和55年7月10日)、産
業図書P、338〜349)に開示されている。
Further, a method for forming a silicon nitride oxide film is disclosed, for example, in a document ("Semiconductor Plasma Process" (July 10, 1980), Sangyo Tosho P, 338-349).

Al2O3膜の場合には、拡散窓の形成に乾式エツチン
グが困難であるため、通常は熱リン酸を用いた湿式エツ
チングを行っていた。
In the case of an Al2O3 film, since dry etching is difficult to form a diffusion window, wet etching using hot phosphoric acid is usually performed.

一方常圧cvn法による窒化珪素膜の場合には、成長さ
せた窒化珪素膜を拡散保護膜として用いるために、成長
温度を通常は500〜B00℃或いはそれ以上の高温に
して行っていた。
On the other hand, in the case of a silicon nitride film formed by the normal pressure CVN method, the growth temperature is usually set at a high temperature of 500 to BO0°C or higher in order to use the grown silicon nitride film as a diffusion protection film.

(発明が解決しようとする問題点) しかしながら、湿式エツチングは乾式エツチングに比べ
てAl2O3膜のエツチング形状の制御が劣っているた
め、不純物拡散層の領域の形状の制御が困難であり、素
子の高密度化が達成することが出来ず、しかも、各素子
間での発光出力にバラツキが生じてしまうという欠点が
あった。
(Problems to be Solved by the Invention) However, wet etching is inferior to dry etching in controlling the etched shape of the Al2O3 film, so it is difficult to control the shape of the impurity diffusion layer region, and it is difficult to control the shape of the region of the impurity diffusion layer. This method has disadvantages in that it is not possible to achieve high density, and furthermore, there is variation in the light emitting output between each element.

又、湿式エツチングでは、エツチング工程後、エツチン
グ液が基板面上に残留するため、次工程に悪影響を及ぼ
し、これがため、製造歩留が低下してしまうという欠点
もあった。
In addition, wet etching has the disadvantage that the etching solution remains on the substrate surface after the etching process, which adversely affects the next process, resulting in a reduction in manufacturing yield.

一方、窒化珪素膜の場合には、上述したような高温成長
により得られた窒化珪素膜の室温での内部応力は〜10
9 dyn/am2程度とかなり大きいので、クラック
が発生したり、この応力によって下地の基板結晶に結晶
欠陥が生じ易く、よって得られた素子の信頼性が低下す
るという欠点があった。
On the other hand, in the case of a silicon nitride film, the internal stress at room temperature of the silicon nitride film obtained by high-temperature growth as described above is ~10
Since the stress is quite large at about 9 dyn/am2, cracks are likely to occur and crystal defects are likely to occur in the underlying substrate crystal due to this stress, resulting in a disadvantage that the reliability of the obtained device is reduced.

又、窒化酸化珪素膜の場合には、この膜の組成により窒
化酸化珪素膜中へGa (GaAsやGaAsP等の基
板中のGa )が拡散する現象が起こり、界面方向に異
常拡散が起こるという欠点があった。
In addition, in the case of a silicon nitride oxide film, a phenomenon occurs in which Ga (Ga in a substrate such as GaAs or GaAsP) diffuses into the silicon nitride oxide film depending on the composition of the film, and abnormal diffusion occurs in the direction of the interface. was there.

この発明の目的はこのような従来の欠点に鑑み、エツチ
ング形状を正確かつ容易に制御出来。
SUMMARY OF THE INVENTION In view of these conventional drawbacks, the object of the present invention is to provide a method for accurately and easily controlling the etching shape.

素子の信頼性を向上させ、しかも、製造歩留りを向上さ
せる拡散保護膜形成方法を提供することにある。
It is an object of the present invention to provide a method for forming a diffusion protective film that improves the reliability of an element and also improves manufacturing yield.

(問題点を解決するための手段) この目的の達成を図るため、この発明によれば、半導体
基板に不純物の拡散を行うための拡散保護膜を形成する
に当り、 反応ガスをモノシラン、アンモニア、笑気ガスとしたプ
ラズマ気相成長によりこの基板上に、第一層としてモノ
シランとアンモニアを用いて窒化珪素膜を形成し、この
窒化珪素膜上に第二層としてモノシランとアンモニアと
笑気ガスを用いて窒化酸化珪素膜を形成し、この窒化珪
素膜と窒化酸化珪素膜に拡散窓を開けて拡散保護膜を形
成したことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, when forming a diffusion protection film for diffusing impurities into a semiconductor substrate, a reactive gas such as monosilane, ammonia, or A silicon nitride film is formed on this substrate using monosilane and ammonia as a first layer by plasma vapor deposition using laughing gas, and monosilane, ammonia, and laughing gas are formed as a second layer on this silicon nitride film. The invention is characterized in that a silicon nitride oxide film is formed using the silicon nitride film, and a diffusion window is formed in the silicon nitride film and the silicon nitride oxide film to form a diffusion protection film.

この発明の実施に当って、第一層の窒化珪素膜の膜厚を
300A〜500λとし、第二層の窒化酸化珪素膜の膜
厚を100OA〜2000λとするのが好適である。
In carrying out this invention, it is preferable that the first layer silicon nitride film has a thickness of 300 Å to 500 λ, and the second layer silicon nitride oxide film has a thickness of 100 OA to 2000 λ.

この発明の実施に当って、第一層の窒化珪素膜の成膜に
当り反応ガス中のモノシランとアンモニアの流量比を1
:2〜3とし、第二層の窒化酸化珪素膜の成膜に当り反
応ガス中のモノシランとアンモニアの流量比及びモノシ
ランと笑気ガスの流量比をl:o、2〜0.8とするの
が好適である。
In carrying out this invention, the flow rate ratio of monosilane and ammonia in the reaction gas was adjusted to 1 when forming the first layer of silicon nitride film.
:2 to 3, and when forming the second layer of silicon nitride oxide film, the flow rate ratio of monosilane to ammonia and the flow rate ratio of monosilane to laughing gas in the reaction gas are l:o, 2 to 0.8. is preferable.

さらにこの発明の実施に当って、プラズマ気相成長を2
50〜300℃の基板温度で行うのが好適である。
Furthermore, in carrying out this invention, two plasma vapor phase epitaxes are performed.
It is preferable to carry out the process at a substrate temperature of 50 to 300°C.

(作用) このように構成することにより、プラズマCVD法によ
り成長させた窒化珪素膜と窒化酸化珪素膜を拡散層MI
Hとして用いるので、乾式エツチングを行え、エツチン
グ形状の制御が極めて正確にかつ容易となる。
(Function) With this configuration, the silicon nitride film and silicon nitride oxide film grown by the plasma CVD method can be used as the diffusion layer MI.
Since it is used as H, dry etching can be performed and the etched shape can be controlled extremely accurately and easily.

さらに、拡散窓の形成に際し、乾式エッチングを用いる
ことが出来るので、従来のようなエツチング液の残留と
いう問題は生ぜず、従って、素子の製造歩留りが向上す
る。
Furthermore, since dry etching can be used to form the diffusion window, there is no problem of residual etching solution as in the prior art, and therefore the manufacturing yield of the device is improved.

さらに、得られた窒化珪素膜及び窒化酸化珪素膜の室温
における内部応力は〜108dyn/cm2以下と小さ
く、かつ上層の窒化酸化珪素膜が下層の窒化珪素膜の応
力を緩和しているため、基板結晶に応力の悪影響を与え
ることがない。
Furthermore, the internal stress of the obtained silicon nitride film and silicon nitride oxide film at room temperature is as small as ~108 dyn/cm2 or less, and the upper layer silicon nitride oxide film relieves the stress of the lower layer silicon nitride film. There is no adverse effect of stress on the crystal.

さらに、この発明によれば、下層の窒化珪素膜が上層の
窒化酸化珪素膜中へのGaの拡散を阻止するため選択拡
散の場合の横方向への異常拡散を著しく減少させること
ができる。
Further, according to the present invention, since the lower silicon nitride film prevents Ga from diffusing into the upper silicon nitride oxide film, abnormal lateral diffusion in the case of selective diffusion can be significantly reduced.

上述したように、この窒化珪素膜と窒化酸化珪素膜から
成る二層の拡散保護膜を介して不純物熱拡散を行って得
られる拡散層の領域は状態が良好となり5よって素子の
信頼性が高まる。
As mentioned above, the region of the diffusion layer obtained by performing impurity thermal diffusion through the two-layer diffusion protection film consisting of the silicon nitride film and the silicon nitride oxide film is in good condition5, thereby increasing the reliability of the device. .

(実施例) 以下、図面を参照して、この発明の実施例につき説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図(A)〜(E)はこの発明の拡散保護膜形成方法
の一実施例を説明するため、半導体素子の製造工程を示
す図である。これら図1!主要段階でのウェハの状態を
路線的に示している。また、これら図において、同一構
成成分については同一の符合を付して示すと共に、断面
を表わすハツチング等を一部分省略して示している。
FIGS. 1(A) to 1(E) are diagrams showing the manufacturing process of a semiconductor element in order to explain an embodiment of the method for forming a diffusion protection film of the present invention. These Figure 1! The state of the wafer at major stages is shown in a linear manner. Further, in these figures, the same constituent components are indicated by the same reference numerals, and hatching etc. representing cross sections are partially omitted.

半導体基板として、n型のGaAsP/Ga+Lg基板
を用いた例につき説明する。
An example in which an n-type GaAsP/Ga+Lg substrate is used as the semiconductor substrate will be explained.

先ず、基板1のGaAs層1aに積層させたGaAsP
層lb上に、モノシランとアンモニアを用いたプラズマ
CVD法によって300〜500λ窒化珪素膜2を成膜
し、次にモノシランとアンモニアと笑気ガスを用いたプ
ラズマCVD法により窒化酸化珪素膜3を1000〜2
000λ成膜して、第1図(A)に示すような構造のウ
ェハを得る。この窒化珪素膜2の成膜と窒化酸化珪素膜
3の成膜は、例えば次のようにして順次行う。
First, GaAsP is laminated on the GaAs layer 1a of the substrate 1.
A silicon nitride film 2 with a thickness of 300 to 500 λ is formed on the layer lb by a plasma CVD method using monosilane and ammonia, and then a silicon nitride oxide film 3 with a thickness of 1000 λ is formed by a plasma CVD method using monosilane, ammonia, and laughing gas. ~2
A wafer having a structure as shown in FIG. 1(A) is obtained by forming a film with a thickness of 000λ. The formation of the silicon nitride film 2 and the silicon nitride oxide film 3 are performed sequentially, for example, as follows.

この成膜に際し、基板lのGaAgP層!bの表面の残
留歪層を除去するため、トリクロルエチレン、メタノー
ルアルコール等を用いて表面の有機洗浄を行った後、H
2SO4: H2O: H2O2= 4 : l : 
lのエツチング液で室温で数分間エツチングを行って清
浄する。
During this film formation, the GaAgP layer of the substrate 1! In order to remove the residual strain layer on the surface of b, the surface was organically cleaned using trichlorethylene, methanol alcohol, etc., and then H
2SO4: H2O: H2O2= 4: l:
Clean by etching for several minutes at room temperature with 1 ml of etching solution.

次に、窒化珪素膜を成膜するため、プラズマCVD装置
の反応室内に基板lをセットした後、反応ガスを流す、
その場合、反応ガスのモノシランと純アンモニアとのガ
ス流量比をl : 2.0〜1:3.0とし、反応室の
ガス圧を0.4〜l Tarrとし、基板温度を250
〜300℃という低温とし、高周波出力パワーを0.1
− I W / cm2 という条件の下で窒化珪素I
l!2の膜厚が300〜500λと成るまで成長を行わ
せる。
Next, in order to form a silicon nitride film, after setting the substrate l in the reaction chamber of the plasma CVD apparatus, a reaction gas is caused to flow.
In that case, the gas flow ratio of the reaction gas monosilane and pure ammonia is set to 1:2.0 to 1:3.0, the gas pressure in the reaction chamber is set to 0.4 to 1 Tarr, and the substrate temperature is set to 250
The low temperature is ~300℃, and the high frequency output power is 0.1
- silicon nitride I under the conditions of I W / cm2
l! Growth is performed until the film thickness of No. 2 becomes 300 to 500λ.

次に、窒化酸化珪素膜をIItI8Iするため、モノシ
ランと純アンモニアとのガス流量比を1:2.Q〜1:
3.0とし、モノシランと笑気ガスとのガス流量比をl
 : 0.2〜l:o、8とし、反応室のガス圧を0.
4〜I Torrとし、基板温度を250〜300℃と
いう低温とし、高周波出力パワーを0.1〜IW/Cm
2 という条件の下で窒化酸化珪素膜3の膜厚が100
0〜200OAと成るまで成長を行わせる。
Next, in order to process the silicon nitride oxide film with IItI8I, the gas flow ratio of monosilane and pure ammonia was set to 1:2. Q~1:
3.0, and the gas flow rate ratio of monosilane and laughing gas is l.
: 0.2 to l:o, 8, and the gas pressure in the reaction chamber was set to 0.
4 to I Torr, the substrate temperature to a low temperature of 250 to 300°C, and the high frequency output power to 0.1 to IW/Cm.
2, the thickness of the silicon nitride oxide film 3 is 100
Growth is performed until it reaches 0 to 200 OA.

以上のようにすれば第1図(A)に示すような。If the above is done, the result will be as shown in FIG. 1(A).

窒化珪素膜2と窒化酸化珪素膜3から成る二層の拡散保
護膜を有する構造のウェハが得られる。
A wafer having a structure having a two-layer diffusion protection film consisting of a silicon nitride film 2 and a silicon nitride oxide film 3 is obtained.

次に、窒化酸化珪素膜31にレジストを塗布した後、フ
ォトリソグラフィー技術を用いてこのレジストに、拡散
層;11+151を所望パターンにエツチングするため
のレジストパターン4を形成し窒化酸化珪素膜の一部分
3aを露出させれば、第1図CB)のような構造のウェ
ハを得る。
Next, after applying a resist to the silicon nitride oxide film 31, a resist pattern 4 for etching the diffusion layer; By exposing the wafer, a wafer having a structure as shown in FIG. 1 (CB) is obtained.

次に、例えばOLガスとかその他の好適な反応性ガスを
用いた乾式エツチング法により、このレジストパターン
4をマスクとして用いて、先ず露出している窒化酸化珪
素膜の一部分3aをエツチングし、これにより下層から
露出してくる窒化珪素膜2の一部分を連続してエツチン
グする。
Next, using this resist pattern 4 as a mask, the exposed portion 3a of the silicon nitride oxide film is first etched by a dry etching method using, for example, OL gas or other suitable reactive gas. A portion of the silicon nitride film 2 exposed from the lower layer is continuously etched.

これにより窒化酸化珪素膜3と窒化珪素膜2に選択拡散
用の拡散窓6を形成し、拡散保護膜5を形成する。然る
後、残留しているレジストパターン4を除去して第1図
(C)に示すような拡散窓6を有する拡散保wI膜5を
得る。
As a result, a diffusion window 6 for selective diffusion is formed in the silicon nitride oxide film 3 and the silicon nitride film 2, and a diffusion protection film 5 is formed. Thereafter, the remaining resist pattern 4 is removed to obtain a diffusion retaining film 5 having a diffusion window 6 as shown in FIG. 1(C).

ここで、窒化珪素膜の膜厚を300〜500λとし、窒
化醸化珪素膜の膜厚を 1000〜2000λとしそし
てこれら二つの膜を形成する際の各工程でのガス流量比
を上述したような条件としたのは。
Here, the thickness of the silicon nitride film is 300 to 500λ, the thickness of the silicon nitride film is 1000 to 2000λ, and the gas flow rate ratio in each step when forming these two films is as described above. The conditions were:

成膜の際の膜内応力の低減や膜内欠陥(例えばピンホー
ル)を低減し、これにより熱処理した際のクラックの発
生を防止するためである。
This is to reduce stress within the film during film formation and defects within the film (for example, pinholes), thereby preventing cracks from occurring during heat treatment.

又、窒化珪素膜2と窒化酸化珪素1tI3とからなる二
層構造とした理由は横方向への拡散の広がりをおさえる
ためである。
Further, the reason for the two-layer structure consisting of silicon nitride film 2 and silicon nitride oxide 1tI3 is to suppress the spread of diffusion in the lateral direction.

このようにして形成された窒化珪素1lI2及び窒化酸
化珪素$3は何れも乾式エツチングが可能であり、ピン
ホールが発生しない良質の膜であり、内部応力も〜10
8dyn/cm2程度と従来拡散保護膜として用いられ
ていた窒化珪素膜の約1710以下となっているので下
地の基板に及ぼす影響が小さくなっている。
Both silicon nitride 1lI2 and silicon nitride oxide $3 thus formed can be dry-etched, are high-quality films with no pinholes, and have an internal stress of ~10
Since it is about 8 dyn/cm2, which is less than about 1710 dyn/cm2 of the silicon nitride film conventionally used as a diffusion protection film, the influence on the underlying substrate is small.

次に、この発明の方法により形成された拡散保護膜5を
用いて、半導体素子を形成するための次工程につき説明
する。
Next, the next step for forming a semiconductor element using the diffusion protection film 5 formed by the method of the present invention will be explained.

先ず、適当な熱拡散法、例えば封管熱拡散法、によりこ
の拡散窓6を介してこの場合p型不純物(例えば、亜鉛
その他の不純物)を基板1のGaAsP層1bに拡散し
、この層lb中にp型拡散層7を形成する。この拡散層
はp型半導体層であるので、n型基板lとpn接合を形
成する。この場合の拡散条件は所要に応じて適切に設定
することが出来る。続いて、拡散保護膜5の全面に、適
当な方法、例えばCVD法により、絶縁膜8を形成し、
続いて、この絶縁J1!8の表面から拡散層7に達する
深さの、p側電極形成用の溝9をエツチングして形成し
、第1図(D)に示すようなウェハ構造を得る。
First, a p-type impurity (for example, zinc or other impurity) in this case is diffused into the GaAsP layer 1b of the substrate 1 through this diffusion window 6 by a suitable thermal diffusion method, such as a sealed tube thermal diffusion method, and this layer lb A p-type diffusion layer 7 is formed therein. Since this diffusion layer is a p-type semiconductor layer, it forms a pn junction with the n-type substrate l. Diffusion conditions in this case can be appropriately set as required. Subsequently, an insulating film 8 is formed on the entire surface of the diffusion protection film 5 by an appropriate method, for example, a CVD method.
Subsequently, a groove 9 for forming a p-side electrode is etched to a depth reaching the diffusion layer 7 from the surface of the insulator J1!8 to obtain a wafer structure as shown in FIG. 1(D).

次に、一方の電極であるp側電極lOとしてAM主電極
蒸着すると共に、基板1の反対側の面に他方の電極であ
るn側電極11としてAu−Ge−旧等を蒸着してこれ
らを合金化する(第1図(E) ) 。
Next, an AM main electrode is deposited as the p-side electrode lO, which is one electrode, and Au-Ge-old, etc. is deposited on the opposite surface of the substrate 1 as the n-side electrode 11, which is the other electrode. Alloyed (Figure 1(E)).

尚、上述した実施例では基板としてGaAs系の半導体
素子につき説明したが、これに限定されるものではなく
、例えばInP系、Si系、その他の半導体素子であっ
ても良く、さらに、素子構造も上述した構造のものに限
定されるものではない、又。
In the above-described embodiments, a GaAs-based semiconductor element is used as the substrate, but the substrate is not limited to this. For example, an InP-based, Si-based, or other semiconductor element may be used, and the element structure may also be changed. It is not limited to the structure described above.

導電型も半導体素子に適合した任意の導電型の組み合わ
せであっても良い。
The conductivity types may be any combination of conductivity types that is compatible with the semiconductor element.

(発明の効果) 上述した説明からも明らかなように、この発明によれば
、プラズマCVD法により、低温で成長させた窒化珪素
膜及び窒化酸化珪素膜を拡散保護膜として利用している
ので、乾式エツチングを行うことが出来る。従って、エ
ツチング制御が正確かつ容易となり、よって、拡散窓の
形成が設計通りの形状に出来ると共に、拡散窓を介する
下地への不純物の拡散、特に、熱拡散により得られる拡
散層の領域の断面形状も正確かつ奇麗となる。これがた
め、例えば、発光素子を従来よりも高密度化出来ると共
に、各素子間の発光出力のバラツキを従来よりも著しく
低減することが出来る。
(Effects of the Invention) As is clear from the above description, according to the present invention, a silicon nitride film and a silicon nitride oxide film grown at low temperatures by plasma CVD are used as a diffusion protective film. Dry etching can be performed. Therefore, etching control becomes accurate and easy, and the diffusion window can be formed in the designed shape, and the cross-sectional shape of the region of the diffusion layer obtained by diffusion of impurities into the underlying layer through the diffusion window, especially thermal diffusion, can be improved. It will also be accurate and beautiful. Therefore, for example, it is possible to increase the density of the light emitting elements than in the past, and it is also possible to significantly reduce the variation in light emission output between the elements than in the past.

さらに、これらの窒化珪素膜及び窒化酸化珪素膜の室温
における内部応力は〜108 dyn/cm2以下と小
さく、かつ上層の窒化酸化珪素膜が下層の窒化珪素膜の
北方を緩和しているため、ピンホールのない良質の拡散
層:4膜が得られると共に、本構造では内部応力は従来
の拡散保護膜の内部応力の約七分の一程度かそれ以下と
なるので、クラックの発生成いは結晶欠陥の発生が著し
く減少する。
Furthermore, the internal stress of these silicon nitride films and silicon nitride oxide films at room temperature is as small as ~108 dyn/cm2 or less, and the upper silicon nitride oxide film relaxes the northern part of the lower silicon nitride film. In addition to obtaining a high-quality diffusion layer without holes, this structure has an internal stress that is about one-seventh or less of that of conventional diffusion protection films, which prevents cracks from forming or crystallizing. The occurrence of defects is significantly reduced.

これがため、拡散により得られた拡散層の領域が良質な
状態となり、よって素子の信頼性が従来よりも著しく向
上する。
Therefore, the region of the diffusion layer obtained by diffusion is in a good quality state, and therefore the reliability of the device is significantly improved compared to the conventional one.

さらに、この発明によれば、下層の窒化珪素膜が上層の
窒化酸化珪素膜中へのGaの拡散を阻止するため選択拡
散の場合の横方向への異常拡散を著しく減少させること
ができる。
Further, according to the present invention, since the lower silicon nitride film prevents Ga from diffusing into the upper silicon nitride oxide film, abnormal lateral diffusion in the case of selective diffusion can be significantly reduced.

さらに、この発明によれば、乾式エツチングが回部であ
るので、湿式エツチングの場合のような基板とにエツチ
ング液が残留することがなく、従って、エツチング工程
がその後の半導体素子の製造工程に悪影響を及ぼずこと
がないので、結局は素子の製造歩留りは従来よりも著し
く向上する。このようにして得られた拡散層N1膜は、
上述した熱拡散にのみ使用が限定されるものではなく、
イオン注入による場合にも使用出来ること勿論である。
Further, according to the present invention, since the dry etching process is a circular process, there is no possibility that the etching solution remains on the substrate as in the case of wet etching, and therefore, the etching process has no adverse effect on the subsequent manufacturing process of semiconductor devices. As a result, the manufacturing yield of the device is significantly improved compared to the conventional method. The diffusion layer N1 film obtained in this way is
The use is not limited to the above-mentioned heat diffusion;
Of course, it can also be used when using ion implantation.

この発明は上述したような利点を有するので、プレーナ
型の半導体素子、特に半導体発光素子や高密度発光素子
の製造の際に適用して好適である。
Since the present invention has the above-mentioned advantages, it is suitable for application to the manufacture of planar semiconductor devices, particularly semiconductor light emitting devices and high-density light emitting devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(E)はこの発明の拡散保護膜形成方法
を説明に供する。半導体素子の製造工程を示す工程図で
ある。 1 ・・・半導体基板(GaAsP/GaAs基板)l
a・−・GaAs層、      lb・−GaAsP
層2・・・窒化珪素膜 3・・・窒化酸化珪素膜 3a・・・窒化酸化珪素膜の一部分 4・・・レジストパターン 5・・・拡散保護膜6・・
・拡散窓      7・・・拡散層8・・・絶縁膜 
     9・・・溝10・・・一方の電極    1
1・・・他方の電極。 第1図 2! 1【と鳳E11月罫
FIGS. 1(A) to 1(E) provide an explanation of the method for forming a diffusion protection film of the present invention. It is a process diagram showing the manufacturing process of a semiconductor element. 1... Semiconductor substrate (GaAsP/GaAs substrate) l
a・-GaAs layer, lb・-GaAsP
Layer 2...Silicon nitride film 3...Silicon nitride oxide film 3a...Part of silicon nitride oxide film 4...Resist pattern 5...Diffusion protection film 6...
・Diffusion window 7...Diffusion layer 8...Insulating film
9...Groove 10...One electrode 1
1...Other electrode. Figure 1 2! 1 [and Otori E November ruled line

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板に不純物の拡散を行うための拡散保護
膜を形成するに当り、 反応ガス系をモノシラン、アンモニア、笑気ガスとした
プラズマ気相成長により、 前記基板上に、第一層としてモノシランとアンモニアを
用いて窒化珪素膜を形成し、 該窒化珪素膜上に第二層としてモノシランとアンモニア
と笑気ガスを用いて窒化酸化珪素膜を形成し、 該窒化珪素膜と該窒化酸化珪素膜に拡散窓を開けて拡散
保護膜を形成したこと を特徴とする拡散保護膜形成方法。
(1) When forming a diffusion protection film for diffusing impurities on a semiconductor substrate, a first layer is formed on the substrate by plasma vapor deposition using monosilane, ammonia, or laughing gas as a reactive gas system. A silicon nitride film is formed using monosilane and ammonia, a silicon nitride oxide film is formed as a second layer on the silicon nitride film using monosilane, ammonia, and laughing gas, and the silicon nitride film and the silicon nitride oxide A method for forming a diffusion protective film, characterized in that the diffusion protective film is formed by opening a diffusion window in the film.
(2)前記第一層の窒化珪素膜の膜厚を300Å〜50
0Åとし、 前記第二層の窒化酸化珪素膜の膜厚を1000Å〜20
00Åとしたことを特徴とする特許請求の範囲第1項記
載の拡散保護膜形成方法。
(2) The thickness of the first layer silicon nitride film is 300 Å to 50 Å.
0 Å, and the thickness of the second layer silicon nitride oxide film is 1000 Å to 20 Å.
The method for forming a diffusion protective film according to claim 1, wherein the diffusion protective film has a thickness of 00 Å.
(3)前記第一層の窒化珪素膜の成膜に当り前記反応ガ
ス中のモノシランとアンモニアの流量比を1:2〜3と
し、 前記第二層の窒化酸化珪素膜の成膜に当り前記反応ガス
中のモノシランとアンモニアの流量比及びモノシランと
笑気ガスの流量比を1:0.2〜0.8としたことを特
徴とする特許請求の範囲第2項記載の拡散保護膜形成方
法。
(3) When forming the silicon nitride film as the first layer, the flow rate ratio of monosilane and ammonia in the reaction gas is 1:2 to 3, and when forming the silicon nitride oxide film as the second layer, The method for forming a diffusion protective film according to claim 2, characterized in that the flow ratio of monosilane to ammonia and the flow ratio of monosilane to laughing gas in the reaction gas are set to 1:0.2 to 0.8. .
(4)前記プラズマ気相成長を250〜300℃の基板
温度で行うことを特徴とする特許請求の範囲第3項記載
の拡散保護膜形成方法。
(4) The method for forming a diffusion protective film according to claim 3, wherein the plasma vapor phase growth is performed at a substrate temperature of 250 to 300°C.
JP60035992A 1985-02-25 1985-02-25 Diffused protective film forming method Granted JPS61194827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60035992A JPS61194827A (en) 1985-02-25 1985-02-25 Diffused protective film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60035992A JPS61194827A (en) 1985-02-25 1985-02-25 Diffused protective film forming method

Publications (2)

Publication Number Publication Date
JPS61194827A true JPS61194827A (en) 1986-08-29
JPH0147003B2 JPH0147003B2 (en) 1989-10-12

Family

ID=12457325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60035992A Granted JPS61194827A (en) 1985-02-25 1985-02-25 Diffused protective film forming method

Country Status (1)

Country Link
JP (1) JPS61194827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449234A (en) * 1987-08-20 1989-02-23 Nec Corp Semiconductor device
JP2015128174A (en) * 2002-05-17 2015-07-09 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449234A (en) * 1987-08-20 1989-02-23 Nec Corp Semiconductor device
JP2015128174A (en) * 2002-05-17 2015-07-09 株式会社半導体エネルギー研究所 Semiconductor device
US9847355B2 (en) 2002-05-17 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Silicon nitride film, and semiconductor device

Also Published As

Publication number Publication date
JPH0147003B2 (en) 1989-10-12

Similar Documents

Publication Publication Date Title
US5700714A (en) Diffusion mask and fabrication method for forming pn-junction elements in a compound semiconductor substrate
JP2760068B2 (en) Method of manufacturing MIS type semiconductor device
US4810668A (en) Semiconductor device element-isolation by oxidation of polysilicon in trench
JPH06163532A (en) Method for isolation of semiconductor element
JPS61194827A (en) Diffused protective film forming method
JPS59108325A (en) Manufacture of semiconductor device
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
JPH0684938A (en) Manufacture of semiconductor device
JPH10242049A (en) Semiconductor device and manufacturing method thereof
JPH0258248A (en) Manufacture of semiconductor device
JPS6199328A (en) Formation of diffusion protective film
JP3222344B2 (en) Method for manufacturing light emitting diode array
JPS6115579B2 (en)
JPS6255305B2 (en)
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JPS5910236A (en) Fabrication of semiconductor device
JPS61198713A (en) Manufacture of semiconductor device
JPS6210027B2 (en)
JPH04139725A (en) Manufacture of semiconductor device
JPS6021539A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPS62177917A (en) Manufacture of iii-v compound semiconductor device
JPS6118348B2 (en)
JPS61147575A (en) Manufacture of semiconductor device
JPS6237946A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term